diff -r fd16c54261b3 -r 489c9b5090e2 hotspot/src/cpu/x86/vm/x86_32.ad --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hotspot/src/cpu/x86/vm/x86_32.ad Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,12778 @@ +// +// Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. +// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. +// +// This code is free software; you can redistribute it and/or modify it +// under the terms of the GNU General Public License version 2 only, as +// published by the Free Software Foundation. +// +// This code is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +// version 2 for more details (a copy is included in the LICENSE file that +// accompanied this code). +// +// You should have received a copy of the GNU General Public License version +// 2 along with this work; if not, write to the Free Software Foundation, +// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +// +// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +// CA 95054 USA or visit www.sun.com if you need additional information or +// have any questions. +// +// + +// X86 Architecture Description File + +//----------REGISTER DEFINITION BLOCK------------------------------------------ +// This information is used by the matcher and the register allocator to +// describe individual registers and classes of registers within the target +// archtecture. + +register %{ +//----------Architecture Description Register Definitions---------------------- +// General Registers +// "reg_def" name ( register save type, C convention save type, +// ideal register type, encoding ); +// Register Save Types: +// +// NS = No-Save: The register allocator assumes that these registers +// can be used without saving upon entry to the method, & +// that they do not need to be saved at call sites. +// +// SOC = Save-On-Call: The register allocator assumes that these registers +// can be used without saving upon entry to the method, +// but that they must be saved at call sites. +// +// SOE = Save-On-Entry: The register allocator assumes that these registers +// must be saved before using them upon entry to the +// method, but they do not need to be saved at call +// sites. +// +// AS = Always-Save: The register allocator assumes that these registers +// must be saved before using them upon entry to the +// method, & that they must be saved at call sites. +// +// Ideal Register Type is used to determine how to save & restore a +// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get +// spilled with LoadP/StoreP. If the register supports both, use Op_RegI. +// +// The encoding number is the actual bit-pattern placed into the opcodes. + +// General Registers +// Previously set EBX, ESI, and EDI as save-on-entry for java code +// Turn off SOE in java-code due to frequent use of uncommon-traps. +// Now that allocator is better, turn on ESI and EDI as SOE registers. + +reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg()); +reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg()); +reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg()); +reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg()); +// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code +reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg()); +reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg()); +reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg()); +reg_def ESP( NS, NS, Op_RegI, 4, rsp->as_VMReg()); + +// Special Registers +reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad()); + +// Float registers. We treat TOS/FPR0 special. It is invisible to the +// allocator, and only shows up in the encodings. +reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad()); +reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad()); +// Ok so here's the trick FPR1 is really st(0) except in the midst +// of emission of assembly for a machnode. During the emission the fpu stack +// is pushed making FPR1 == st(1) temporarily. However at any safepoint +// the stack will not have this element so FPR1 == st(0) from the +// oopMap viewpoint. This same weirdness with numbering causes +// instruction encoding to have to play games with the register +// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation +// where it does flt->flt moves to see an example +// +reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()); +reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next()); +reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()); +reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next()); +reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()); +reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next()); +reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()); +reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next()); +reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()); +reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next()); +reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()); +reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next()); +reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()); +reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next()); + +// XMM registers. 128-bit registers or 4 words each, labeled a-d. +// Word a in each register holds a Float, words ab hold a Double. +// We currently do not use the SIMD capabilities, so registers cd +// are unused at the moment. +reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()); +reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next()); +reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()); +reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next()); +reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()); +reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next()); +reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()); +reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next()); +reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()); +reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next()); +reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()); +reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next()); +reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()); +reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next()); +reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()); +reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next()); + +// Specify priority of register selection within phases of register +// allocation. Highest priority is first. A useful heuristic is to +// give registers a low priority when they are required by machine +// instructions, like EAX and EDX. Registers which are used as +// pairs must fall on an even boundry (witness the FPR#L's in this list). +// For the Intel integer registers, the equivalent Long pairs are +// EDX:EAX, EBX:ECX, and EDI:EBP. +alloc_class chunk0( ECX, EBX, EBP, EDI, EAX, EDX, ESI, ESP, + FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H, + FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H, + FPR6L, FPR6H, FPR7L, FPR7H ); + +alloc_class chunk1( XMM0a, XMM0b, + XMM1a, XMM1b, + XMM2a, XMM2b, + XMM3a, XMM3b, + XMM4a, XMM4b, + XMM5a, XMM5b, + XMM6a, XMM6b, + XMM7a, XMM7b, EFLAGS); + + +//----------Architecture Description Register Classes-------------------------- +// Several register classes are automatically defined based upon information in +// this architecture description. +// 1) reg_class inline_cache_reg ( /* as def'd in frame section */ ) +// 2) reg_class compiler_method_oop_reg ( /* as def'd in frame section */ ) +// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ ) +// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ ) +// +// Class for all registers +reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP); +// Class for general registers +reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX); +// Class for general registers which may be used for implicit null checks on win95 +// Also safe for use by tailjump. We don't want to allocate in rbp, +reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX); +// Class of "X" registers +reg_class x_reg(EBX, ECX, EDX, EAX); +// Class of registers that can appear in an address with no offset. +// EBP and ESP require an extra instruction byte for zero offset. +// Used in fast-unlock +reg_class p_reg(EDX, EDI, ESI, EBX); +// Class for general registers not including ECX +reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX); +// Class for general registers not including EAX +reg_class nax_reg(EDX, EDI, ESI, ECX, EBX); +// Class for general registers not including EAX or EBX. +reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP); +// Class of EAX (for multiply and divide operations) +reg_class eax_reg(EAX); +// Class of EBX (for atomic add) +reg_class ebx_reg(EBX); +// Class of ECX (for shift and JCXZ operations and cmpLTMask) +reg_class ecx_reg(ECX); +// Class of EDX (for multiply and divide operations) +reg_class edx_reg(EDX); +// Class of EDI (for synchronization) +reg_class edi_reg(EDI); +// Class of ESI (for synchronization) +reg_class esi_reg(ESI); +// Singleton class for interpreter's stack pointer +reg_class ebp_reg(EBP); +// Singleton class for stack pointer +reg_class sp_reg(ESP); +// Singleton class for instruction pointer +// reg_class ip_reg(EIP); +// Singleton class for condition codes +reg_class int_flags(EFLAGS); +// Class of integer register pairs +reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI ); +// Class of integer register pairs that aligns with calling convention +reg_class eadx_reg( EAX,EDX ); +reg_class ebcx_reg( ECX,EBX ); +// Not AX or DX, used in divides +reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP ); + +// Floating point registers. Notice FPR0 is not a choice. +// FPR0 is not ever allocated; we use clever encodings to fake +// a 2-address instructions out of Intels FP stack. +reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L ); + +// make a register class for SSE registers +reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a); + +// make a double register class for SSE2 registers +reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b, + XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b ); + +reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H, + FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H, + FPR7L,FPR7H ); + +reg_class flt_reg0( FPR1L ); +reg_class dbl_reg0( FPR1L,FPR1H ); +reg_class dbl_reg1( FPR2L,FPR2H ); +reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H, + FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H ); + +// XMM6 and XMM7 could be used as temporary registers for long, float and +// double values for SSE2. +reg_class xdb_reg6( XMM6a,XMM6b ); +reg_class xdb_reg7( XMM7a,XMM7b ); +%} + + +//----------SOURCE BLOCK------------------------------------------------------- +// This is a block of C++ code which provides values, functions, and +// definitions necessary in the rest of the architecture description +source %{ +#define RELOC_IMM32 Assembler::imm32_operand +#define RELOC_DISP32 Assembler::disp32_operand + +#define __ _masm. + +// How to find the high register of a Long pair, given the low register +#define HIGH_FROM_LOW(x) ((x)+2) + +// These masks are used to provide 128-bit aligned bitmasks to the XMM +// instructions, to allow sign-masking or sign-bit flipping. They allow +// fast versions of NegF/NegD and AbsF/AbsD. + +// Note: 'double' and 'long long' have 32-bits alignment on x86. +static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { + // Use the expression (adr)&(~0xF) to provide 128-bits aligned address + // of 128-bits operands for SSE instructions. + jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF))); + // Store the value to a 128-bits operand. + operand[0] = lo; + operand[1] = hi; + return operand; +} + +// Buffer for 128-bits masks used by SSE instructions. +static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) + +// Static initialization during VM startup. +static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); +static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); +static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); +static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); + +// !!!!! Special hack to get all type of calls to specify the byte offset +// from the start of the call to the point where the return address +// will point. +int MachCallStaticJavaNode::ret_addr_offset() { + return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0); // 5 bytes from start of call to where return address points +} + +int MachCallDynamicJavaNode::ret_addr_offset() { + return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0); // 10 bytes from start of call to where return address points +} + +static int sizeof_FFree_Float_Stack_All = -1; + +int MachCallRuntimeNode::ret_addr_offset() { + assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already"); + return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0); +} + +// Indicate if the safepoint node needs the polling page as an input. +// Since x86 does have absolute addressing, it doesn't. +bool SafePointNode::needs_polling_address_input() { + return false; +} + +// +// Compute padding required for nodes which need alignment +// + +// The address of the call instruction needs to be 4-byte aligned to +// ensure that it does not span a cache line so that it can be patched. +int CallStaticJavaDirectNode::compute_padding(int current_offset) const { + if (Compile::current()->in_24_bit_fp_mode()) + current_offset += 6; // skip fldcw in pre_call_FPU, if any + current_offset += 1; // skip call opcode byte + return round_to(current_offset, alignment_required()) - current_offset; +} + +// The address of the call instruction needs to be 4-byte aligned to +// ensure that it does not span a cache line so that it can be patched. +int CallDynamicJavaDirectNode::compute_padding(int current_offset) const { + if (Compile::current()->in_24_bit_fp_mode()) + current_offset += 6; // skip fldcw in pre_call_FPU, if any + current_offset += 5; // skip MOV instruction + current_offset += 1; // skip call opcode byte + return round_to(current_offset, alignment_required()) - current_offset; +} + +#ifndef PRODUCT +void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const { + st->print("INT3"); +} +#endif + +// EMIT_RM() +void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) { + unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3); + *(cbuf.code_end()) = c; + cbuf.set_code_end(cbuf.code_end() + 1); +} + +// EMIT_CC() +void emit_cc(CodeBuffer &cbuf, int f1, int f2) { + unsigned char c = (unsigned char)( f1 | f2 ); + *(cbuf.code_end()) = c; + cbuf.set_code_end(cbuf.code_end() + 1); +} + +// EMIT_OPCODE() +void emit_opcode(CodeBuffer &cbuf, int code) { + *(cbuf.code_end()) = (unsigned char)code; + cbuf.set_code_end(cbuf.code_end() + 1); +} + +// EMIT_OPCODE() w/ relocation information +void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) { + cbuf.relocate(cbuf.inst_mark() + offset, reloc); + emit_opcode(cbuf, code); +} + +// EMIT_D8() +void emit_d8(CodeBuffer &cbuf, int d8) { + *(cbuf.code_end()) = (unsigned char)d8; + cbuf.set_code_end(cbuf.code_end() + 1); +} + +// EMIT_D16() +void emit_d16(CodeBuffer &cbuf, int d16) { + *((short *)(cbuf.code_end())) = d16; + cbuf.set_code_end(cbuf.code_end() + 2); +} + +// EMIT_D32() +void emit_d32(CodeBuffer &cbuf, int d32) { + *((int *)(cbuf.code_end())) = d32; + cbuf.set_code_end(cbuf.code_end() + 4); +} + +// emit 32 bit value and construct relocation entry from relocInfo::relocType +void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc, + int format) { + cbuf.relocate(cbuf.inst_mark(), reloc, format); + + *((int *)(cbuf.code_end())) = d32; + cbuf.set_code_end(cbuf.code_end() + 4); +} + +// emit 32 bit value and construct relocation entry from RelocationHolder +void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec, + int format) { +#ifdef ASSERT + if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) { + assert(oop(d32)->is_oop() && oop(d32)->is_perm(), "cannot embed non-perm oops in code"); + } +#endif + cbuf.relocate(cbuf.inst_mark(), rspec, format); + + *((int *)(cbuf.code_end())) = d32; + cbuf.set_code_end(cbuf.code_end() + 4); +} + +// Access stack slot for load or store +void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) { + emit_opcode( cbuf, opcode ); // (e.g., FILD [ESP+src]) + if( -128 <= disp && disp <= 127 ) { + emit_rm( cbuf, 0x01, rm_field, ESP_enc ); // R/M byte + emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte + emit_d8 (cbuf, disp); // Displacement // R/M byte + } else { + emit_rm( cbuf, 0x02, rm_field, ESP_enc ); // R/M byte + emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte + emit_d32(cbuf, disp); // Displacement // R/M byte + } +} + + // eRegI ereg, memory mem) %{ // emit_reg_mem +void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) { + // There is no index & no scale, use form without SIB byte + if ((index == 0x4) && + (scale == 0) && (base != ESP_enc)) { + // If no displacement, mode is 0x0; unless base is [EBP] + if ( (displace == 0) && (base != EBP_enc) ) { + emit_rm(cbuf, 0x0, reg_encoding, base); + } + else { // If 8-bit displacement, mode 0x1 + if ((displace >= -128) && (displace <= 127) + && !(displace_is_oop) ) { + emit_rm(cbuf, 0x1, reg_encoding, base); + emit_d8(cbuf, displace); + } + else { // If 32-bit displacement + if (base == -1) { // Special flag for absolute address + emit_rm(cbuf, 0x0, reg_encoding, 0x5); + // (manual lies; no SIB needed here) + if ( displace_is_oop ) { + emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1); + } else { + emit_d32 (cbuf, displace); + } + } + else { // Normal base + offset + emit_rm(cbuf, 0x2, reg_encoding, base); + if ( displace_is_oop ) { + emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1); + } else { + emit_d32 (cbuf, displace); + } + } + } + } + } + else { // Else, encode with the SIB byte + // If no displacement, mode is 0x0; unless base is [EBP] + if (displace == 0 && (base != EBP_enc)) { // If no displacement + emit_rm(cbuf, 0x0, reg_encoding, 0x4); + emit_rm(cbuf, scale, index, base); + } + else { // If 8-bit displacement, mode 0x1 + if ((displace >= -128) && (displace <= 127) + && !(displace_is_oop) ) { + emit_rm(cbuf, 0x1, reg_encoding, 0x4); + emit_rm(cbuf, scale, index, base); + emit_d8(cbuf, displace); + } + else { // If 32-bit displacement + if (base == 0x04 ) { + emit_rm(cbuf, 0x2, reg_encoding, 0x4); + emit_rm(cbuf, scale, index, 0x04); + } else { + emit_rm(cbuf, 0x2, reg_encoding, 0x4); + emit_rm(cbuf, scale, index, base); + } + if ( displace_is_oop ) { + emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1); + } else { + emit_d32 (cbuf, displace); + } + } + } + } +} + + +void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) { + if( dst_encoding == src_encoding ) { + // reg-reg copy, use an empty encoding + } else { + emit_opcode( cbuf, 0x8B ); + emit_rm(cbuf, 0x3, dst_encoding, src_encoding ); + } +} + +void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) { + if( dst_encoding == src_encoding ) { + // reg-reg copy, use an empty encoding + } else { + MacroAssembler _masm(&cbuf); + + __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding)); + } +} + + +//============================================================================= +#ifndef PRODUCT +void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { + Compile* C = ra_->C; + if( C->in_24_bit_fp_mode() ) { + tty->print("FLDCW 24 bit fpu control word"); + tty->print_cr(""); tty->print("\t"); + } + + int framesize = C->frame_slots() << LogBytesPerInt; + assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); + // Remove two words for return addr and rbp, + framesize -= 2*wordSize; + + // Calls to C2R adapters often do not accept exceptional returns. + // We require that their callers must bang for them. But be careful, because + // some VM calls (such as call site linkage) can use several kilobytes of + // stack. But the stack safety zone should account for that. + // See bugs 4446381, 4468289, 4497237. + if (C->need_stack_bang(framesize)) { + tty->print_cr("# stack bang"); tty->print("\t"); + } + tty->print_cr("PUSHL EBP"); tty->print("\t"); + + if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth + tty->print("PUSH 0xBADB100D\t# Majik cookie for stack depth check"); + tty->print_cr(""); tty->print("\t"); + framesize -= wordSize; + } + + if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) { + if (framesize) { + tty->print("SUB ESP,%d\t# Create frame",framesize); + } + } else { + tty->print("SUB ESP,%d\t# Create frame",framesize); + } +} +#endif + + +void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { + Compile* C = ra_->C; + + if (UseSSE >= 2 && VerifyFPU) { + MacroAssembler masm(&cbuf); + masm.verify_FPU(0, "FPU stack must be clean on entry"); + } + + // WARNING: Initial instruction MUST be 5 bytes or longer so that + // NativeJump::patch_verified_entry will be able to patch out the entry + // code safely. The fldcw is ok at 6 bytes, the push to verify stack + // depth is ok at 5 bytes, the frame allocation can be either 3 or + // 6 bytes. So if we don't do the fldcw or the push then we must + // use the 6 byte frame allocation even if we have no frame. :-( + // If method sets FPU control word do it now + if( C->in_24_bit_fp_mode() ) { + MacroAssembler masm(&cbuf); + masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24())); + } + + int framesize = C->frame_slots() << LogBytesPerInt; + assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); + // Remove two words for return addr and rbp, + framesize -= 2*wordSize; + + // Calls to C2R adapters often do not accept exceptional returns. + // We require that their callers must bang for them. But be careful, because + // some VM calls (such as call site linkage) can use several kilobytes of + // stack. But the stack safety zone should account for that. + // See bugs 4446381, 4468289, 4497237. + if (C->need_stack_bang(framesize)) { + MacroAssembler masm(&cbuf); + masm.generate_stack_overflow_check(framesize); + } + + // We always push rbp, so that on return to interpreter rbp, will be + // restored correctly and we can correct the stack. + emit_opcode(cbuf, 0x50 | EBP_enc); + + if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth + emit_opcode(cbuf, 0x68); // push 0xbadb100d + emit_d32(cbuf, 0xbadb100d); + framesize -= wordSize; + } + + if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) { + if (framesize) { + emit_opcode(cbuf, 0x83); // sub SP,#framesize + emit_rm(cbuf, 0x3, 0x05, ESP_enc); + emit_d8(cbuf, framesize); + } + } else { + emit_opcode(cbuf, 0x81); // sub SP,#framesize + emit_rm(cbuf, 0x3, 0x05, ESP_enc); + emit_d32(cbuf, framesize); + } + C->set_frame_complete(cbuf.code_end() - cbuf.code_begin()); + +#ifdef ASSERT + if (VerifyStackAtCalls) { + Label L; + MacroAssembler masm(&cbuf); + masm.pushl(rax); + masm.movl(rax, rsp); + masm.andl(rax, StackAlignmentInBytes-1); + masm.cmpl(rax, StackAlignmentInBytes-wordSize); + masm.popl(rax); + masm.jcc(Assembler::equal, L); + masm.stop("Stack is not properly aligned!"); + masm.bind(L); + } +#endif + +} + +uint MachPrologNode::size(PhaseRegAlloc *ra_) const { + return MachNode::size(ra_); // too many variables; just compute it the hard way +} + +int MachPrologNode::reloc() const { + return 0; // a large enough number +} + +//============================================================================= +#ifndef PRODUCT +void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { + Compile *C = ra_->C; + int framesize = C->frame_slots() << LogBytesPerInt; + assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); + // Remove two words for return addr and rbp, + framesize -= 2*wordSize; + + if( C->in_24_bit_fp_mode() ) { + st->print("FLDCW standard control word"); + st->cr(); st->print("\t"); + } + if( framesize ) { + st->print("ADD ESP,%d\t# Destroy frame",framesize); + st->cr(); st->print("\t"); + } + st->print_cr("POPL EBP"); st->print("\t"); + if( do_polling() && C->is_method_compilation() ) { + st->print("TEST PollPage,EAX\t! Poll Safepoint"); + st->cr(); st->print("\t"); + } +} +#endif + +void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { + Compile *C = ra_->C; + + // If method set FPU control word, restore to standard control word + if( C->in_24_bit_fp_mode() ) { + MacroAssembler masm(&cbuf); + masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); + } + + int framesize = C->frame_slots() << LogBytesPerInt; + assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); + // Remove two words for return addr and rbp, + framesize -= 2*wordSize; + + // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here + + if( framesize >= 128 ) { + emit_opcode(cbuf, 0x81); // add SP, #framesize + emit_rm(cbuf, 0x3, 0x00, ESP_enc); + emit_d32(cbuf, framesize); + } + else if( framesize ) { + emit_opcode(cbuf, 0x83); // add SP, #framesize + emit_rm(cbuf, 0x3, 0x00, ESP_enc); + emit_d8(cbuf, framesize); + } + + emit_opcode(cbuf, 0x58 | EBP_enc); + + if( do_polling() && C->is_method_compilation() ) { + cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0); + emit_opcode(cbuf,0x85); + emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX + emit_d32(cbuf, (intptr_t)os::get_polling_page()); + } +} + +uint MachEpilogNode::size(PhaseRegAlloc *ra_) const { + Compile *C = ra_->C; + // If method set FPU control word, restore to standard control word + int size = C->in_24_bit_fp_mode() ? 6 : 0; + if( do_polling() && C->is_method_compilation() ) size += 6; + + int framesize = C->frame_slots() << LogBytesPerInt; + assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); + // Remove two words for return addr and rbp, + framesize -= 2*wordSize; + + size++; // popl rbp, + + if( framesize >= 128 ) { + size += 6; + } else { + size += framesize ? 3 : 0; + } + return size; +} + +int MachEpilogNode::reloc() const { + return 0; // a large enough number +} + +const Pipeline * MachEpilogNode::pipeline() const { + return MachNode::pipeline_class(); +} + +int MachEpilogNode::safepoint_offset() const { return 0; } + +//============================================================================= + +enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack }; +static enum RC rc_class( OptoReg::Name reg ) { + + if( !OptoReg::is_valid(reg) ) return rc_bad; + if (OptoReg::is_stack(reg)) return rc_stack; + + VMReg r = OptoReg::as_VMReg(reg); + if (r->is_Register()) return rc_int; + if (r->is_FloatRegister()) { + assert(UseSSE < 2, "shouldn't be used in SSE2+ mode"); + return rc_float; + } + assert(r->is_XMMRegister(), "must be"); + return rc_xmm; +} + +static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size ) { + if( cbuf ) { + emit_opcode (*cbuf, opcode ); + encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) tty->print("\n\t"); + if( opcode == 0x8B || opcode == 0x89 ) { // MOV + if( is_load ) tty->print("%s %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset); + else tty->print("%s [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]); + } else { // FLD, FST, PUSH, POP + tty->print("%s [ESP + #%d]",op_str,offset); + } +#endif + } + int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4); + return size+3+offset_size; +} + +// Helper for XMM registers. Extra opcode bits, limited syntax. +static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load, + int offset, int reg_lo, int reg_hi, int size ) { + if( cbuf ) { + if( reg_lo+1 == reg_hi ) { // double move? + if( is_load && !UseXmmLoadAndClearUpper ) + emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load + else + emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise + } else { + emit_opcode(*cbuf, 0xF3 ); + } + emit_opcode(*cbuf, 0x0F ); + if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper ) + emit_opcode(*cbuf, 0x12 ); // use 'movlpd' for load + else + emit_opcode(*cbuf, is_load ? 0x10 : 0x11 ); + encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) tty->print("\n\t"); + if( reg_lo+1 == reg_hi ) { // double move? + if( is_load ) tty->print("%s %s,[ESP + #%d]", + UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD", + Matcher::regName[reg_lo], offset); + else tty->print("MOVSD [ESP + #%d],%s", + offset, Matcher::regName[reg_lo]); + } else { + if( is_load ) tty->print("MOVSS %s,[ESP + #%d]", + Matcher::regName[reg_lo], offset); + else tty->print("MOVSS [ESP + #%d],%s", + offset, Matcher::regName[reg_lo]); + } +#endif + } + int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4); + return size+5+offset_size; +} + + +static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo, + int src_hi, int dst_hi, int size ) { + if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers + if( cbuf ) { + if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) { + emit_opcode(*cbuf, 0x66 ); + } + emit_opcode(*cbuf, 0x0F ); + emit_opcode(*cbuf, 0x28 ); + emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] ); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) tty->print("\n\t"); + if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move? + tty->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]); + } else { + tty->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]); + } +#endif + } + return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3); + } else { + if( cbuf ) { + emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 ); + emit_opcode(*cbuf, 0x0F ); + emit_opcode(*cbuf, 0x10 ); + emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] ); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) tty->print("\n\t"); + if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move? + tty->print("MOVSD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]); + } else { + tty->print("MOVSS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]); + } +#endif + } + return size+4; + } +} + +static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size ) { + if( cbuf ) { + emit_opcode(*cbuf, 0x8B ); + emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] ); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) tty->print("\n\t"); + tty->print("MOV %s,%s",Matcher::regName[dst],Matcher::regName[src]); +#endif + } + return size+2; +} + +static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi, int offset, int size ) { + if( src_lo != FPR1L_num ) { // Move value to top of FP stack, if not already there + if( cbuf ) { + emit_opcode( *cbuf, 0xD9 ); // FLD (i.e., push it) + emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] ); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) tty->print("\n\t"); + tty->print("FLD %s",Matcher::regName[src_lo]); +#endif + } + size += 2; + } + + int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/; + const char *op_str; + int op; + if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store? + op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D "; + op = 0xDD; + } else { // 32-bit store + op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S "; + op = 0xD9; + assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" ); + } + + return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size); +} + +uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const { + // Get registers to move + OptoReg::Name src_second = ra_->get_reg_second(in(1)); + OptoReg::Name src_first = ra_->get_reg_first(in(1)); + OptoReg::Name dst_second = ra_->get_reg_second(this ); + OptoReg::Name dst_first = ra_->get_reg_first(this ); + + enum RC src_second_rc = rc_class(src_second); + enum RC src_first_rc = rc_class(src_first); + enum RC dst_second_rc = rc_class(dst_second); + enum RC dst_first_rc = rc_class(dst_first); + + assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" ); + + // Generate spill code! + int size = 0; + + if( src_first == dst_first && src_second == dst_second ) + return size; // Self copy, no move + + // -------------------------------------- + // Check for mem-mem move. push/pop to move. + if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) { + if( src_second == dst_first ) { // overlapping stack copy ranges + assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" ); + size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH ",size); + size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP ",size); + src_second_rc = dst_second_rc = rc_bad; // flag as already moved the second bits + } + // move low bits + size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH ",size); + size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP ",size); + if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits + size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH ",size); + size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP ",size); + } + return size; + } + + // -------------------------------------- + // Check for integer reg-reg copy + if( src_first_rc == rc_int && dst_first_rc == rc_int ) + size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size); + + // Check for integer store + if( src_first_rc == rc_int && dst_first_rc == rc_stack ) + size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size); + + // Check for integer load + if( dst_first_rc == rc_int && src_first_rc == rc_stack ) + size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size); + + // -------------------------------------- + // Check for float reg-reg copy + if( src_first_rc == rc_float && dst_first_rc == rc_float ) { + assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) || + (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" ); + if( cbuf ) { + + // Note the mucking with the register encode to compensate for the 0/1 + // indexing issue mentioned in a comment in the reg_def sections + // for FPR registers many lines above here. + + if( src_first != FPR1L_num ) { + emit_opcode (*cbuf, 0xD9 ); // FLD ST(i) + emit_d8 (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 ); + emit_opcode (*cbuf, 0xDD ); // FSTP ST(i) + emit_d8 (*cbuf, 0xD8+Matcher::_regEncode[dst_first] ); + } else { + emit_opcode (*cbuf, 0xDD ); // FST ST(i) + emit_d8 (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 ); + } +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) st->print("\n\t"); + if( src_first != FPR1L_num ) st->print("FLD %s\n\tFSTP %s",Matcher::regName[src_first],Matcher::regName[dst_first]); + else st->print( "FST %s", Matcher::regName[dst_first]); +#endif + } + return size + ((src_first != FPR1L_num) ? 2+2 : 2); + } + + // Check for float store + if( src_first_rc == rc_float && dst_first_rc == rc_stack ) { + return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size); + } + + // Check for float load + if( dst_first_rc == rc_float && src_first_rc == rc_stack ) { + int offset = ra_->reg2offset(src_first); + const char *op_str; + int op; + if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load? + op_str = "FLD_D"; + op = 0xDD; + } else { // 32-bit load + op_str = "FLD_S"; + op = 0xD9; + assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" ); + } + if( cbuf ) { + emit_opcode (*cbuf, op ); + encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false); + emit_opcode (*cbuf, 0xDD ); // FSTP ST(i) + emit_d8 (*cbuf, 0xD8+Matcher::_regEncode[dst_first] ); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) st->print("\n\t"); + st->print("%s ST,[ESP + #%d]\n\tFSTP %s",op_str, offset,Matcher::regName[dst_first]); +#endif + } + int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4); + return size + 3+offset_size+2; + } + + // Check for xmm reg-reg copy + if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) { + assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) || + (src_first+1 == src_second && dst_first+1 == dst_second), + "no non-adjacent float-moves" ); + return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size); + } + + // Check for xmm store + if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) { + return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size); + } + + // Check for float xmm load + if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) { + return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size); + } + + // Copy from float reg to xmm reg + if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) { + // copy to the top of stack from floating point reg + // and use LEA to preserve flags + if( cbuf ) { + emit_opcode(*cbuf,0x8D); // LEA ESP,[ESP-8] + emit_rm(*cbuf, 0x1, ESP_enc, 0x04); + emit_rm(*cbuf, 0x0, 0x04, ESP_enc); + emit_d8(*cbuf,0xF8); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) st->print("\n\t"); + st->print("LEA ESP,[ESP-8]"); +#endif + } + size += 4; + + size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size); + + // Copy from the temp memory to the xmm reg. + size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size); + + if( cbuf ) { + emit_opcode(*cbuf,0x8D); // LEA ESP,[ESP+8] + emit_rm(*cbuf, 0x1, ESP_enc, 0x04); + emit_rm(*cbuf, 0x0, 0x04, ESP_enc); + emit_d8(*cbuf,0x08); +#ifndef PRODUCT + } else if( !do_size ) { + if( size != 0 ) st->print("\n\t"); + st->print("LEA ESP,[ESP+8]"); +#endif + } + size += 4; + return size; + } + + assert( size > 0, "missed a case" ); + + // -------------------------------------------------------------------- + // Check for second bits still needing moving. + if( src_second == dst_second ) + return size; // Self copy; no move + assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" ); + + // Check for second word int-int move + if( src_second_rc == rc_int && dst_second_rc == rc_int ) + return impl_mov_helper(cbuf,do_size,src_second,dst_second,size); + + // Check for second word integer store + if( src_second_rc == rc_int && dst_second_rc == rc_stack ) + return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size); + + // Check for second word integer load + if( dst_second_rc == rc_int && src_second_rc == rc_stack ) + return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size); + + + Unimplemented(); +} + +#ifndef PRODUCT +void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { + implementation( NULL, ra_, false, st ); +} +#endif + +void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { + implementation( &cbuf, ra_, false, NULL ); +} + +uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const { + return implementation( NULL, ra_, true, NULL ); +} + +//============================================================================= +#ifndef PRODUCT +void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const { + st->print("NOP \t# %d bytes pad for loops and calls", _count); +} +#endif + +void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const { + MacroAssembler _masm(&cbuf); + __ nop(_count); +} + +uint MachNopNode::size(PhaseRegAlloc *) const { + return _count; +} + + +//============================================================================= +#ifndef PRODUCT +void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { + int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); + int reg = ra_->get_reg_first(this); + st->print("LEA %s,[ESP + #%d]",Matcher::regName[reg],offset); +} +#endif + +void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { + int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); + int reg = ra_->get_encode(this); + if( offset >= 128 ) { + emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset] + emit_rm(cbuf, 0x2, reg, 0x04); + emit_rm(cbuf, 0x0, 0x04, ESP_enc); + emit_d32(cbuf, offset); + } + else { + emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset] + emit_rm(cbuf, 0x1, reg, 0x04); + emit_rm(cbuf, 0x0, 0x04, ESP_enc); + emit_d8(cbuf, offset); + } +} + +uint BoxLockNode::size(PhaseRegAlloc *ra_) const { + int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); + if( offset >= 128 ) { + return 7; + } + else { + return 4; + } +} + +//============================================================================= + +// emit call stub, compiled java to interpreter +void emit_java_to_interp(CodeBuffer &cbuf ) { + // Stub is fixed up when the corresponding call is converted from calling + // compiled code to calling interpreted code. + // mov rbx,0 + // jmp -1 + + address mark = cbuf.inst_mark(); // get mark within main instrs section + + // Note that the code buffer's inst_mark is always relative to insts. + // That's why we must use the macroassembler to generate a stub. + MacroAssembler _masm(&cbuf); + + address base = + __ start_a_stub(Compile::MAX_stubs_size); + if (base == NULL) return; // CodeBuffer::expand failed + // static stub relocation stores the instruction address of the call + __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32); + // static stub relocation also tags the methodOop in the code-stream. + __ movoop(rbx, (jobject)NULL); // method is zapped till fixup time + __ jump(RuntimeAddress((address)-1)); + + __ end_a_stub(); + // Update current stubs pointer and restore code_end. +} +// size of call stub, compiled java to interpretor +uint size_java_to_interp() { + return 10; // movl; jmp +} +// relocation entries for call stub, compiled java to interpretor +uint reloc_java_to_interp() { + return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call +} + +//============================================================================= +#ifndef PRODUCT +void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { + st->print_cr( "CMP EAX,[ECX+4]\t# Inline cache check"); + st->print_cr("\tJNE SharedRuntime::handle_ic_miss_stub"); + st->print_cr("\tNOP"); + st->print_cr("\tNOP"); + if( !OptoBreakpoint ) + st->print_cr("\tNOP"); +} +#endif + +void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { + MacroAssembler masm(&cbuf); +#ifdef ASSERT + uint code_size = cbuf.code_size(); +#endif + masm.cmpl(rax, Address(rcx, oopDesc::klass_offset_in_bytes())); + masm.jump_cc(Assembler::notEqual, + RuntimeAddress(SharedRuntime::get_ic_miss_stub())); + /* WARNING these NOPs are critical so that verified entry point is properly + aligned for patching by NativeJump::patch_verified_entry() */ + int nops_cnt = 2; + if( !OptoBreakpoint ) // Leave space for int3 + nops_cnt += 1; + masm.nop(nops_cnt); + + assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node"); +} + +uint MachUEPNode::size(PhaseRegAlloc *ra_) const { + return OptoBreakpoint ? 11 : 12; +} + + +//============================================================================= +uint size_exception_handler() { + // NativeCall instruction size is the same as NativeJump. + // exception handler starts out as jump and can be patched to + // a call be deoptimization. (4932387) + // Note that this value is also credited (in output.cpp) to + // the size of the code section. + return NativeJump::instruction_size; +} + +// Emit exception handler code. Stuff framesize into a register +// and call a VM stub routine. +int emit_exception_handler(CodeBuffer& cbuf) { + + // Note that the code buffer's inst_mark is always relative to insts. + // That's why we must use the macroassembler to generate a handler. + MacroAssembler _masm(&cbuf); + address base = + __ start_a_stub(size_exception_handler()); + if (base == NULL) return 0; // CodeBuffer::expand failed + int offset = __ offset(); + __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin())); + assert(__ offset() - offset <= (int) size_exception_handler(), "overflow"); + __ end_a_stub(); + return offset; +} + +uint size_deopt_handler() { + // NativeCall instruction size is the same as NativeJump. + // exception handler starts out as jump and can be patched to + // a call be deoptimization. (4932387) + // Note that this value is also credited (in output.cpp) to + // the size of the code section. + return 5 + NativeJump::instruction_size; // pushl(); jmp; +} + +// Emit deopt handler code. +int emit_deopt_handler(CodeBuffer& cbuf) { + + // Note that the code buffer's inst_mark is always relative to insts. + // That's why we must use the macroassembler to generate a handler. + MacroAssembler _masm(&cbuf); + address base = + __ start_a_stub(size_exception_handler()); + if (base == NULL) return 0; // CodeBuffer::expand failed + int offset = __ offset(); + InternalAddress here(__ pc()); + __ pushptr(here.addr()); + + __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); + assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow"); + __ end_a_stub(); + return offset; +} + + +static void emit_double_constant(CodeBuffer& cbuf, double x) { + int mark = cbuf.insts()->mark_off(); + MacroAssembler _masm(&cbuf); + address double_address = __ double_constant(x); + cbuf.insts()->set_mark_off(mark); // preserve mark across masm shift + emit_d32_reloc(cbuf, + (int)double_address, + internal_word_Relocation::spec(double_address), + RELOC_DISP32); +} + +static void emit_float_constant(CodeBuffer& cbuf, float x) { + int mark = cbuf.insts()->mark_off(); + MacroAssembler _masm(&cbuf); + address float_address = __ float_constant(x); + cbuf.insts()->set_mark_off(mark); // preserve mark across masm shift + emit_d32_reloc(cbuf, + (int)float_address, + internal_word_Relocation::spec(float_address), + RELOC_DISP32); +} + + +int Matcher::regnum_to_fpu_offset(int regnum) { + return regnum - 32; // The FP registers are in the second chunk +} + +bool is_positive_zero_float(jfloat f) { + return jint_cast(f) == jint_cast(0.0F); +} + +bool is_positive_one_float(jfloat f) { + return jint_cast(f) == jint_cast(1.0F); +} + +bool is_positive_zero_double(jdouble d) { + return jlong_cast(d) == jlong_cast(0.0); +} + +bool is_positive_one_double(jdouble d) { + return jlong_cast(d) == jlong_cast(1.0); +} + +// This is UltraSparc specific, true just means we have fast l2f conversion +const bool Matcher::convL2FSupported(void) { + return true; +} + +// Vector width in bytes +const uint Matcher::vector_width_in_bytes(void) { + return UseSSE >= 2 ? 8 : 0; +} + +// Vector ideal reg +const uint Matcher::vector_ideal_reg(void) { + return Op_RegD; +} + +// Is this branch offset short enough that a short branch can be used? +// +// NOTE: If the platform does not provide any short branch variants, then +// this method should return false for offset 0. +bool Matcher::is_short_branch_offset(int offset) { + return (-128 <= offset && offset <= 127); +} + +const bool Matcher::isSimpleConstant64(jlong value) { + // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?. + return false; +} + +// The ecx parameter to rep stos for the ClearArray node is in dwords. +const bool Matcher::init_array_count_is_in_bytes = false; + +// Threshold size for cleararray. +const int Matcher::init_array_short_size = 8 * BytesPerLong; + +// Should the Matcher clone shifts on addressing modes, expecting them to +// be subsumed into complex addressing expressions or compute them into +// registers? True for Intel but false for most RISCs +const bool Matcher::clone_shift_expressions = true; + +// Is it better to copy float constants, or load them directly from memory? +// Intel can load a float constant from a direct address, requiring no +// extra registers. Most RISCs will have to materialize an address into a +// register first, so they would do better to copy the constant from stack. +const bool Matcher::rematerialize_float_constants = true; + +// If CPU can load and store mis-aligned doubles directly then no fixup is +// needed. Else we split the double into 2 integer pieces and move it +// piece-by-piece. Only happens when passing doubles into C code as the +// Java calling convention forces doubles to be aligned. +const bool Matcher::misaligned_doubles_ok = true; + + +void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) { + // Get the memory operand from the node + uint numopnds = node->num_opnds(); // Virtual call for number of operands + uint skipped = node->oper_input_base(); // Sum of leaves skipped so far + assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" ); + uint opcnt = 1; // First operand + uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand + while( idx >= skipped+num_edges ) { + skipped += num_edges; + opcnt++; // Bump operand count + assert( opcnt < numopnds, "Accessing non-existent operand" ); + num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand + } + + MachOper *memory = node->_opnds[opcnt]; + MachOper *new_memory = NULL; + switch (memory->opcode()) { + case DIRECT: + case INDOFFSET32X: + // No transformation necessary. + return; + case INDIRECT: + new_memory = new (C) indirect_win95_safeOper( ); + break; + case INDOFFSET8: + new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0)); + break; + case INDOFFSET32: + new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0)); + break; + case INDINDEXOFFSET: + new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0)); + break; + case INDINDEXSCALE: + new_memory = new (C) indIndexScale_win95_safeOper(memory->scale()); + break; + case INDINDEXSCALEOFFSET: + new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0)); + break; + case LOAD_LONG_INDIRECT: + case LOAD_LONG_INDOFFSET32: + // Does not use EBP as address register, use { EDX, EBX, EDI, ESI} + return; + default: + assert(false, "unexpected memory operand in pd_implicit_null_fixup()"); + return; + } + node->_opnds[opcnt] = new_memory; +} + +// Advertise here if the CPU requires explicit rounding operations +// to implement the UseStrictFP mode. +const bool Matcher::strict_fp_requires_explicit_rounding = true; + +// Do floats take an entire double register or just half? +const bool Matcher::float_in_double = true; +// Do ints take an entire long register or just half? +const bool Matcher::int_in_long = false; + +// Return whether or not this register is ever used as an argument. This +// function is used on startup to build the trampoline stubs in generateOptoStub. +// Registers not mentioned will be killed by the VM call in the trampoline, and +// arguments in those registers not be available to the callee. +bool Matcher::can_be_java_arg( int reg ) { + if( reg == ECX_num || reg == EDX_num ) return true; + if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true; + if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true; + return false; +} + +bool Matcher::is_spillable_arg( int reg ) { + return can_be_java_arg(reg); +} + +// Register for DIVI projection of divmodI +RegMask Matcher::divI_proj_mask() { + return EAX_REG_mask; +} + +// Register for MODI projection of divmodI +RegMask Matcher::modI_proj_mask() { + return EDX_REG_mask; +} + +// Register for DIVL projection of divmodL +RegMask Matcher::divL_proj_mask() { + ShouldNotReachHere(); + return RegMask(); +} + +// Register for MODL projection of divmodL +RegMask Matcher::modL_proj_mask() { + ShouldNotReachHere(); + return RegMask(); +} + +%} + +//----------ENCODING BLOCK----------------------------------------------------- +// This block specifies the encoding classes used by the compiler to output +// byte streams. Encoding classes generate functions which are called by +// Machine Instruction Nodes in order to generate the bit encoding of the +// instruction. Operands specify their base encoding interface with the +// interface keyword. There are currently supported four interfaces, +// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an +// operand to generate a function which returns its register number when +// queried. CONST_INTER causes an operand to generate a function which +// returns the value of the constant when queried. MEMORY_INTER causes an +// operand to generate four functions which return the Base Register, the +// Index Register, the Scale Value, and the Offset Value of the operand when +// queried. COND_INTER causes an operand to generate six functions which +// return the encoding code (ie - encoding bits for the instruction) +// associated with each basic boolean condition for a conditional instruction. +// Instructions specify two basic values for encoding. They use the +// ins_encode keyword to specify their encoding class (which must be one of +// the class names specified in the encoding block), and they use the +// opcode keyword to specify, in order, their primary, secondary, and +// tertiary opcode. Only the opcode sections which a particular instruction +// needs for encoding need to be specified. +encode %{ + // Build emit functions for each basic byte or larger field in the intel + // encoding scheme (opcode, rm, sib, immediate), and call them from C++ + // code in the enc_class source block. Emit functions will live in the + // main source block for now. In future, we can generalize this by + // adding a syntax that specifies the sizes of fields in an order, + // so that the adlc can build the emit functions automagically + enc_class OpcP %{ // Emit opcode + emit_opcode(cbuf,$primary); + %} + + enc_class OpcS %{ // Emit opcode + emit_opcode(cbuf,$secondary); + %} + + enc_class Opcode(immI d8 ) %{ // Emit opcode + emit_opcode(cbuf,$d8$$constant); + %} + + enc_class SizePrefix %{ + emit_opcode(cbuf,0x66); + %} + + enc_class RegReg (eRegI dst, eRegI src) %{ // RegReg(Many) + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + %} + + enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{ // OpcRegReg(Many) + emit_opcode(cbuf,$opcode$$constant); + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + %} + + enc_class mov_r32_imm0( eRegI dst ) %{ + emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd -- MOV r32 ,imm32 + emit_d32 ( cbuf, 0x0 ); // imm32==0x0 + %} + + enc_class cdq_enc %{ + // Full implementation of Java idiv and irem; checks for + // special case as described in JVM spec., p.243 & p.271. + // + // normal case special case + // + // input : rax,: dividend min_int + // reg: divisor -1 + // + // output: rax,: quotient (= rax, idiv reg) min_int + // rdx: remainder (= rax, irem reg) 0 + // + // Code sequnce: + // + // 81 F8 00 00 00 80 cmp rax,80000000h + // 0F 85 0B 00 00 00 jne normal_case + // 33 D2 xor rdx,edx + // 83 F9 FF cmp rcx,0FFh + // 0F 84 03 00 00 00 je done + // normal_case: + // 99 cdq + // F7 F9 idiv rax,ecx + // done: + // + emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8); + emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00); + emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80); // cmp rax,80000000h + emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85); + emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00); + emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00); // jne normal_case + emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2); // xor rdx,edx + emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh + emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84); + emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00); + emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00); // je done + // normal_case: + emit_opcode(cbuf,0x99); // cdq + // idiv (note: must be emitted by the user of this rule) + // normal: + %} + + // Dense encoding for older common ops + enc_class Opc_plus(immI opcode, eRegI reg) %{ + emit_opcode(cbuf, $opcode$$constant + $reg$$reg); + %} + + + // Opcde enc_class for 8/32 bit immediate instructions with sign-extension + enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit + // Check for 8-bit immediate, and set sign extend bit in opcode + if (($imm$$constant >= -128) && ($imm$$constant <= 127)) { + emit_opcode(cbuf, $primary | 0x02); + } + else { // If 32-bit immediate + emit_opcode(cbuf, $primary); + } + %} + + enc_class OpcSErm (eRegI dst, immI imm) %{ // OpcSEr/m + // Emit primary opcode and set sign-extend bit + // Check for 8-bit immediate, and set sign extend bit in opcode + if (($imm$$constant >= -128) && ($imm$$constant <= 127)) { + emit_opcode(cbuf, $primary | 0x02); } + else { // If 32-bit immediate + emit_opcode(cbuf, $primary); + } + // Emit r/m byte with secondary opcode, after primary opcode. + emit_rm(cbuf, 0x3, $secondary, $dst$$reg); + %} + + enc_class Con8or32 (immI imm) %{ // Con8or32(storeImmI), 8 or 32 bits + // Check for 8-bit immediate, and set sign extend bit in opcode + if (($imm$$constant >= -128) && ($imm$$constant <= 127)) { + $$$emit8$imm$$constant; + } + else { // If 32-bit immediate + // Output immediate + $$$emit32$imm$$constant; + } + %} + + enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{ + // Emit primary opcode and set sign-extend bit + // Check for 8-bit immediate, and set sign extend bit in opcode + int con = (int)$imm$$constant; // Throw away top bits + emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary); + // Emit r/m byte with secondary opcode, after primary opcode. + emit_rm(cbuf, 0x3, $secondary, $dst$$reg); + if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con); + else emit_d32(cbuf,con); + %} + + enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{ + // Emit primary opcode and set sign-extend bit + // Check for 8-bit immediate, and set sign extend bit in opcode + int con = (int)($imm$$constant >> 32); // Throw away bottom bits + emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary); + // Emit r/m byte with tertiary opcode, after primary opcode. + emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg)); + if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con); + else emit_d32(cbuf,con); + %} + + enc_class Lbl (label labl) %{ // JMP, CALL + Label *l = $labl$$label; + emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0); + %} + + enc_class LblShort (label labl) %{ // JMP, CALL + Label *l = $labl$$label; + int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0; + assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp"); + emit_d8(cbuf, disp); + %} + + enc_class OpcSReg (eRegI dst) %{ // BSWAP + emit_cc(cbuf, $secondary, $dst$$reg ); + %} + + enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP + int destlo = $dst$$reg; + int desthi = HIGH_FROM_LOW(destlo); + // bswap lo + emit_opcode(cbuf, 0x0F); + emit_cc(cbuf, 0xC8, destlo); + // bswap hi + emit_opcode(cbuf, 0x0F); + emit_cc(cbuf, 0xC8, desthi); + // xchg lo and hi + emit_opcode(cbuf, 0x87); + emit_rm(cbuf, 0x3, destlo, desthi); + %} + + enc_class RegOpc (eRegI div) %{ // IDIV, IMOD, JMP indirect, ... + emit_rm(cbuf, 0x3, $secondary, $div$$reg ); + %} + + enc_class Jcc (cmpOp cop, label labl) %{ // JCC + Label *l = $labl$$label; + $$$emit8$primary; + emit_cc(cbuf, $secondary, $cop$$cmpcode); + emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0); + %} + + enc_class JccShort (cmpOp cop, label labl) %{ // JCC + Label *l = $labl$$label; + emit_cc(cbuf, $primary, $cop$$cmpcode); + int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0; + assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp"); + emit_d8(cbuf, disp); + %} + + enc_class enc_cmov(cmpOp cop ) %{ // CMOV + $$$emit8$primary; + emit_cc(cbuf, $secondary, $cop$$cmpcode); + %} + + enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV + int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1); + emit_d8(cbuf, op >> 8 ); + emit_d8(cbuf, op & 255); + %} + + // emulate a CMOV with a conditional branch around a MOV + enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV + // Invert sense of branch from sense of CMOV + emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) ); + emit_d8( cbuf, $brOffs$$constant ); + %} + + enc_class enc_PartialSubtypeCheck( ) %{ + Register Redi = as_Register(EDI_enc); // result register + Register Reax = as_Register(EAX_enc); // super class + Register Recx = as_Register(ECX_enc); // killed + Register Resi = as_Register(ESI_enc); // sub class + Label hit, miss; + + MacroAssembler _masm(&cbuf); + // Compare super with sub directly, since super is not in its own SSA. + // The compiler used to emit this test, but we fold it in here, + // to allow platform-specific tweaking on sparc. + __ cmpl(Reax, Resi); + __ jcc(Assembler::equal, hit); +#ifndef PRODUCT + __ increment(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); +#endif //PRODUCT + __ movl(Redi,Address(Resi,sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())); + __ movl(Recx,Address(Redi,arrayOopDesc::length_offset_in_bytes())); + __ addl(Redi,arrayOopDesc::base_offset_in_bytes(T_OBJECT)); + __ repne_scan(); + __ jcc(Assembler::notEqual, miss); + __ movl(Address(Resi,sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()),Reax); + __ bind(hit); + if( $primary ) + __ xorl(Redi,Redi); + __ bind(miss); + %} + + enc_class FFree_Float_Stack_All %{ // Free_Float_Stack_All + MacroAssembler masm(&cbuf); + int start = masm.offset(); + if (UseSSE >= 2) { + if (VerifyFPU) { + masm.verify_FPU(0, "must be empty in SSE2+ mode"); + } + } else { + // External c_calling_convention expects the FPU stack to be 'clean'. + // Compiled code leaves it dirty. Do cleanup now. + masm.empty_FPU_stack(); + } + if (sizeof_FFree_Float_Stack_All == -1) { + sizeof_FFree_Float_Stack_All = masm.offset() - start; + } else { + assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size"); + } + %} + + enc_class Verify_FPU_For_Leaf %{ + if( VerifyFPU ) { + MacroAssembler masm(&cbuf); + masm.verify_FPU( -3, "Returning from Runtime Leaf call"); + } + %} + + enc_class Java_To_Runtime (method meth) %{ // CALL Java_To_Runtime, Java_To_Runtime_Leaf + // This is the instruction starting address for relocation info. + cbuf.set_inst_mark(); + $$$emit8$primary; + // CALL directly to the runtime + emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4), + runtime_call_Relocation::spec(), RELOC_IMM32 ); + + if (UseSSE >= 2) { + MacroAssembler _masm(&cbuf); + BasicType rt = tf()->return_type(); + + if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) { + // A C runtime call where the return value is unused. In SSE2+ + // mode the result needs to be removed from the FPU stack. It's + // likely that this function call could be removed by the + // optimizer if the C function is a pure function. + __ ffree(0); + } else if (rt == T_FLOAT) { + __ leal(rsp, Address(rsp, -4)); + __ fstp_s(Address(rsp, 0)); + __ movflt(xmm0, Address(rsp, 0)); + __ leal(rsp, Address(rsp, 4)); + } else if (rt == T_DOUBLE) { + __ leal(rsp, Address(rsp, -8)); + __ fstp_d(Address(rsp, 0)); + __ movdbl(xmm0, Address(rsp, 0)); + __ leal(rsp, Address(rsp, 8)); + } + } + %} + + + enc_class pre_call_FPU %{ + // If method sets FPU control word restore it here + if( Compile::current()->in_24_bit_fp_mode() ) { + MacroAssembler masm(&cbuf); + masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); + } + %} + + enc_class post_call_FPU %{ + // If method sets FPU control word do it here also + if( Compile::current()->in_24_bit_fp_mode() ) { + MacroAssembler masm(&cbuf); + masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24())); + } + %} + + enc_class Java_Static_Call (method meth) %{ // JAVA STATIC CALL + // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine + // who we intended to call. + cbuf.set_inst_mark(); + $$$emit8$primary; + if ( !_method ) { + emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4), + runtime_call_Relocation::spec(), RELOC_IMM32 ); + } else if(_optimized_virtual) { + emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4), + opt_virtual_call_Relocation::spec(), RELOC_IMM32 ); + } else { + emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4), + static_call_Relocation::spec(), RELOC_IMM32 ); + } + if( _method ) { // Emit stub for static call + emit_java_to_interp(cbuf); + } + %} + + enc_class Java_Dynamic_Call (method meth) %{ // JAVA DYNAMIC CALL + // !!!!! + // Generate "Mov EAX,0x00", placeholder instruction to load oop-info + // emit_call_dynamic_prologue( cbuf ); + cbuf.set_inst_mark(); + emit_opcode(cbuf, 0xB8 + EAX_enc); // mov EAX,-1 + emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32); + address virtual_call_oop_addr = cbuf.inst_mark(); + // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine + // who we intended to call. + cbuf.set_inst_mark(); + $$$emit8$primary; + emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4), + virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 ); + %} + + enc_class Java_Compiled_Call (method meth) %{ // JAVA COMPILED CALL + int disp = in_bytes(methodOopDesc::from_compiled_offset()); + assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small"); + + // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())] + cbuf.set_inst_mark(); + $$$emit8$primary; + emit_rm(cbuf, 0x01, $secondary, EAX_enc ); // R/M byte + emit_d8(cbuf, disp); // Displacement + + %} + + enc_class Xor_Reg (eRegI dst) %{ + emit_opcode(cbuf, 0x33); + emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg); + %} + +// Following encoding is no longer used, but may be restored if calling +// convention changes significantly. +// Became: Xor_Reg(EBP), Java_To_Runtime( labl ) +// +// enc_class Java_Interpreter_Call (label labl) %{ // JAVA INTERPRETER CALL +// // int ic_reg = Matcher::inline_cache_reg(); +// // int ic_encode = Matcher::_regEncode[ic_reg]; +// // int imo_reg = Matcher::interpreter_method_oop_reg(); +// // int imo_encode = Matcher::_regEncode[imo_reg]; +// +// // // Interpreter expects method_oop in EBX, currently a callee-saved register, +// // // so we load it immediately before the call +// // emit_opcode(cbuf, 0x8B); // MOV imo_reg,ic_reg # method_oop +// // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte +// +// // xor rbp,ebp +// emit_opcode(cbuf, 0x33); +// emit_rm(cbuf, 0x3, EBP_enc, EBP_enc); +// +// // CALL to interpreter. +// cbuf.set_inst_mark(); +// $$$emit8$primary; +// emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4), +// runtime_call_Relocation::spec(), RELOC_IMM32 ); +// %} + + enc_class RegOpcImm (eRegI dst, immI8 shift) %{ // SHL, SAR, SHR + $$$emit8$primary; + emit_rm(cbuf, 0x3, $secondary, $dst$$reg); + $$$emit8$shift$$constant; + %} + + enc_class LdImmI (eRegI dst, immI src) %{ // Load Immediate + // Load immediate does not have a zero or sign extended version + // for 8-bit immediates + emit_opcode(cbuf, 0xB8 + $dst$$reg); + $$$emit32$src$$constant; + %} + + enc_class LdImmP (eRegI dst, immI src) %{ // Load Immediate + // Load immediate does not have a zero or sign extended version + // for 8-bit immediates + emit_opcode(cbuf, $primary + $dst$$reg); + $$$emit32$src$$constant; + %} + + enc_class LdImmL_Lo( eRegL dst, immL src) %{ // Load Immediate + // Load immediate does not have a zero or sign extended version + // for 8-bit immediates + int dst_enc = $dst$$reg; + int src_con = $src$$constant & 0x0FFFFFFFFL; + if (src_con == 0) { + // xor dst, dst + emit_opcode(cbuf, 0x33); + emit_rm(cbuf, 0x3, dst_enc, dst_enc); + } else { + emit_opcode(cbuf, $primary + dst_enc); + emit_d32(cbuf, src_con); + } + %} + + enc_class LdImmL_Hi( eRegL dst, immL src) %{ // Load Immediate + // Load immediate does not have a zero or sign extended version + // for 8-bit immediates + int dst_enc = $dst$$reg + 2; + int src_con = ((julong)($src$$constant)) >> 32; + if (src_con == 0) { + // xor dst, dst + emit_opcode(cbuf, 0x33); + emit_rm(cbuf, 0x3, dst_enc, dst_enc); + } else { + emit_opcode(cbuf, $primary + dst_enc); + emit_d32(cbuf, src_con); + } + %} + + + enc_class LdImmD (immD src) %{ // Load Immediate + if( is_positive_zero_double($src$$constant)) { + // FLDZ + emit_opcode(cbuf,0xD9); + emit_opcode(cbuf,0xEE); + } else if( is_positive_one_double($src$$constant)) { + // FLD1 + emit_opcode(cbuf,0xD9); + emit_opcode(cbuf,0xE8); + } else { + emit_opcode(cbuf,0xDD); + emit_rm(cbuf, 0x0, 0x0, 0x5); + emit_double_constant(cbuf, $src$$constant); + } + %} + + + enc_class LdImmF (immF src) %{ // Load Immediate + if( is_positive_zero_float($src$$constant)) { + emit_opcode(cbuf,0xD9); + emit_opcode(cbuf,0xEE); + } else if( is_positive_one_float($src$$constant)) { + emit_opcode(cbuf,0xD9); + emit_opcode(cbuf,0xE8); + } else { + $$$emit8$primary; + // Load immediate does not have a zero or sign extended version + // for 8-bit immediates + // First load to TOS, then move to dst + emit_rm(cbuf, 0x0, 0x0, 0x5); + emit_float_constant(cbuf, $src$$constant); + } + %} + + enc_class LdImmX (regX dst, immXF con) %{ // Load Immediate + emit_rm(cbuf, 0x0, $dst$$reg, 0x5); + emit_float_constant(cbuf, $con$$constant); + %} + + enc_class LdImmXD (regXD dst, immXD con) %{ // Load Immediate + emit_rm(cbuf, 0x0, $dst$$reg, 0x5); + emit_double_constant(cbuf, $con$$constant); + %} + + enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant + // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con) + emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66); + emit_opcode(cbuf, 0x0F); + emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12); + emit_rm(cbuf, 0x0, $dst$$reg, 0x5); + emit_double_constant(cbuf, $con$$constant); + %} + + enc_class Opc_MemImm_F(immF src) %{ + cbuf.set_inst_mark(); + $$$emit8$primary; + emit_rm(cbuf, 0x0, $secondary, 0x5); + emit_float_constant(cbuf, $src$$constant); + %} + + + enc_class MovI2X_reg(regX dst, eRegI src) %{ + emit_opcode(cbuf, 0x66 ); // MOVD dst,src + emit_opcode(cbuf, 0x0F ); + emit_opcode(cbuf, 0x6E ); + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + %} + + enc_class MovX2I_reg(eRegI dst, regX src) %{ + emit_opcode(cbuf, 0x66 ); // MOVD dst,src + emit_opcode(cbuf, 0x0F ); + emit_opcode(cbuf, 0x7E ); + emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg); + %} + + enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{ + { // MOVD $dst,$src.lo + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x6E); + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + } + { // MOVD $tmp,$src.hi + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x6E); + emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg)); + } + { // PUNPCKLDQ $dst,$tmp + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x62); + emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg); + } + %} + + enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{ + { // MOVD $dst.lo,$src + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x7E); + emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg); + } + { // PSHUFLW $tmp,$src,0x4E (01001110b) + emit_opcode(cbuf,0xF2); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x70); + emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg); + emit_d8(cbuf, 0x4E); + } + { // MOVD $dst.hi,$tmp + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x7E); + emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg)); + } + %} + + + // Encode a reg-reg copy. If it is useless, then empty encoding. + enc_class enc_Copy( eRegI dst, eRegI src ) %{ + encode_Copy( cbuf, $dst$$reg, $src$$reg ); + %} + + enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{ + encode_Copy( cbuf, $dst$$reg, $src$$reg ); + %} + + // Encode xmm reg-reg copy. If it is useless, then empty encoding. + enc_class enc_CopyXD( RegXD dst, RegXD src ) %{ + encode_CopyXD( cbuf, $dst$$reg, $src$$reg ); + %} + + enc_class RegReg (eRegI dst, eRegI src) %{ // RegReg(Many) + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + %} + + enc_class RegReg_Lo(eRegL dst, eRegL src) %{ // RegReg(Many) + $$$emit8$primary; + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + %} + + enc_class RegReg_Hi(eRegL dst, eRegL src) %{ // RegReg(Many) + $$$emit8$secondary; + emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg)); + %} + + enc_class RegReg_Lo2(eRegL dst, eRegL src) %{ // RegReg(Many) + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + %} + + enc_class RegReg_Hi2(eRegL dst, eRegL src) %{ // RegReg(Many) + emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg)); + %} + + enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{ + emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg)); + %} + + enc_class Con32 (immI src) %{ // Con32(storeImmI) + // Output immediate + $$$emit32$src$$constant; + %} + + enc_class Con32F_as_bits(immF src) %{ // storeF_imm + // Output Float immediate bits + jfloat jf = $src$$constant; + int jf_as_bits = jint_cast( jf ); + emit_d32(cbuf, jf_as_bits); + %} + + enc_class Con32XF_as_bits(immXF src) %{ // storeX_imm + // Output Float immediate bits + jfloat jf = $src$$constant; + int jf_as_bits = jint_cast( jf ); + emit_d32(cbuf, jf_as_bits); + %} + + enc_class Con16 (immI src) %{ // Con16(storeImmI) + // Output immediate + $$$emit16$src$$constant; + %} + + enc_class Con_d32(immI src) %{ + emit_d32(cbuf,$src$$constant); + %} + + enc_class conmemref (eRegP t1) %{ // Con32(storeImmI) + // Output immediate memory reference + emit_rm(cbuf, 0x00, $t1$$reg, 0x05 ); + emit_d32(cbuf, 0x00); + %} + + enc_class lock_prefix( ) %{ + if( os::is_MP() ) + emit_opcode(cbuf,0xF0); // [Lock] + %} + + // Cmp-xchg long value. + // Note: we need to swap rbx, and rcx before and after the + // cmpxchg8 instruction because the instruction uses + // rcx as the high order word of the new value to store but + // our register encoding uses rbx,. + enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{ + + // XCHG rbx,ecx + emit_opcode(cbuf,0x87); + emit_opcode(cbuf,0xD9); + // [Lock] + if( os::is_MP() ) + emit_opcode(cbuf,0xF0); + // CMPXCHG8 [Eptr] + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0xC7); + emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg ); + // XCHG rbx,ecx + emit_opcode(cbuf,0x87); + emit_opcode(cbuf,0xD9); + %} + + enc_class enc_cmpxchg(eSIRegP mem_ptr) %{ + // [Lock] + if( os::is_MP() ) + emit_opcode(cbuf,0xF0); + + // CMPXCHG [Eptr] + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0xB1); + emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg ); + %} + + enc_class enc_flags_ne_to_boolean( iRegI res ) %{ + int res_encoding = $res$$reg; + + // MOV res,0 + emit_opcode( cbuf, 0xB8 + res_encoding); + emit_d32( cbuf, 0 ); + // JNE,s fail + emit_opcode(cbuf,0x75); + emit_d8(cbuf, 5 ); + // MOV res,1 + emit_opcode( cbuf, 0xB8 + res_encoding); + emit_d32( cbuf, 1 ); + // fail: + %} + + enc_class set_instruction_start( ) %{ + cbuf.set_inst_mark(); // Mark start of opcode for reloc info in mem operand + %} + + enc_class RegMem (eRegI ereg, memory mem) %{ // emit_reg_mem + int reg_encoding = $ereg$$reg; + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); + encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); + %} + + enc_class RegMem_Hi(eRegL ereg, memory mem) %{ // emit_reg_mem + int reg_encoding = HIGH_FROM_LOW($ereg$$reg); // Hi register of pair, computed from lo + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp + 4; // Offset is 4 further in memory + assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" ); + encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/); + %} + + enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{ + int r1, r2; + if( $tertiary == 0xA4 ) { r1 = $dst$$reg; r2 = HIGH_FROM_LOW($dst$$reg); } + else { r2 = $dst$$reg; r1 = HIGH_FROM_LOW($dst$$reg); } + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,$tertiary); + emit_rm(cbuf, 0x3, r1, r2); + emit_d8(cbuf,$cnt$$constant); + emit_d8(cbuf,$primary); + emit_rm(cbuf, 0x3, $secondary, r1); + emit_d8(cbuf,$cnt$$constant); + %} + + enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{ + emit_opcode( cbuf, 0x8B ); // Move + emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg)); + emit_d8(cbuf,$primary); + emit_rm(cbuf, 0x3, $secondary, $dst$$reg); + emit_d8(cbuf,$cnt$$constant-32); + emit_d8(cbuf,$primary); + emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg)); + emit_d8(cbuf,31); + %} + + enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{ + int r1, r2; + if( $secondary == 0x5 ) { r1 = $dst$$reg; r2 = HIGH_FROM_LOW($dst$$reg); } + else { r2 = $dst$$reg; r1 = HIGH_FROM_LOW($dst$$reg); } + + emit_opcode( cbuf, 0x8B ); // Move r1,r2 + emit_rm(cbuf, 0x3, r1, r2); + if( $cnt$$constant > 32 ) { // Shift, if not by zero + emit_opcode(cbuf,$primary); + emit_rm(cbuf, 0x3, $secondary, r1); + emit_d8(cbuf,$cnt$$constant-32); + } + emit_opcode(cbuf,0x33); // XOR r2,r2 + emit_rm(cbuf, 0x3, r2, r2); + %} + + // Clone of RegMem but accepts an extra parameter to access each + // half of a double in memory; it never needs relocation info. + enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{ + emit_opcode(cbuf,$opcode$$constant); + int reg_encoding = $rm_reg$$reg; + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp + $disp_for_half$$constant; + bool disp_is_oop = false; + encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); + %} + + // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!! + // + // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant + // and it never needs relocation information. + // Frequently used to move data between FPU's Stack Top and memory. + enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{ + int rm_byte_opcode = $rm_opcode$$constant; + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" ); + encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false); + %} + + enc_class RMopc_Mem (immI rm_opcode, memory mem) %{ + int rm_byte_opcode = $rm_opcode$$constant; + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop); + %} + + enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{ // emit_reg_lea + int reg_encoding = $dst$$reg; + int base = $src0$$reg; // 0xFFFFFFFF indicates no base + int index = 0x04; // 0x04 indicates no index + int scale = 0x00; // 0x00 indicates no scale + int displace = $src1$$constant; // 0x00 indicates no displacement + bool disp_is_oop = false; + encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); + %} + + enc_class min_enc (eRegI dst, eRegI src) %{ // MIN + // Compare dst,src + emit_opcode(cbuf,0x3B); + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + // jmp dst < src around move + emit_opcode(cbuf,0x7C); + emit_d8(cbuf,2); + // move dst,src + emit_opcode(cbuf,0x8B); + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + %} + + enc_class max_enc (eRegI dst, eRegI src) %{ // MAX + // Compare dst,src + emit_opcode(cbuf,0x3B); + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + // jmp dst > src around move + emit_opcode(cbuf,0x7F); + emit_d8(cbuf,2); + // move dst,src + emit_opcode(cbuf,0x8B); + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + %} + + enc_class enc_FP_store(memory mem, regD src) %{ + // If src is FPR1, we can just FST to store it. + // Else we need to FLD it to FPR1, then FSTP to store/pop it. + int reg_encoding = 0x2; // Just store + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals + if( $src$$reg != FPR1L_enc ) { + reg_encoding = 0x3; // Store & pop + emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it) + emit_d8( cbuf, 0xC0-1+$src$$reg ); + } + cbuf.set_inst_mark(); // Mark start of opcode for reloc info in mem operand + emit_opcode(cbuf,$primary); + encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); + %} + + enc_class neg_reg(eRegI dst) %{ + // NEG $dst + emit_opcode(cbuf,0xF7); + emit_rm(cbuf, 0x3, 0x03, $dst$$reg ); + %} + + enc_class setLT_reg(eCXRegI dst) %{ + // SETLT $dst + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x9C); + emit_rm( cbuf, 0x3, 0x4, $dst$$reg ); + %} + + enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{ // cadd_cmpLT + int tmpReg = $tmp$$reg; + + // SUB $p,$q + emit_opcode(cbuf,0x2B); + emit_rm(cbuf, 0x3, $p$$reg, $q$$reg); + // SBB $tmp,$tmp + emit_opcode(cbuf,0x1B); + emit_rm(cbuf, 0x3, tmpReg, tmpReg); + // AND $tmp,$y + emit_opcode(cbuf,0x23); + emit_rm(cbuf, 0x3, tmpReg, $y$$reg); + // ADD $p,$tmp + emit_opcode(cbuf,0x03); + emit_rm(cbuf, 0x3, $p$$reg, tmpReg); + %} + + enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{ // cadd_cmpLT + int tmpReg = $tmp$$reg; + + // SUB $p,$q + emit_opcode(cbuf,0x2B); + emit_rm(cbuf, 0x3, $p$$reg, $q$$reg); + // SBB $tmp,$tmp + emit_opcode(cbuf,0x1B); + emit_rm(cbuf, 0x3, tmpReg, tmpReg); + // AND $tmp,$y + cbuf.set_inst_mark(); // Mark start of opcode for reloc info in mem operand + emit_opcode(cbuf,0x23); + int reg_encoding = tmpReg; + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); + encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); + // ADD $p,$tmp + emit_opcode(cbuf,0x03); + emit_rm(cbuf, 0x3, $p$$reg, tmpReg); + %} + + enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{ + // TEST shift,32 + emit_opcode(cbuf,0xF7); + emit_rm(cbuf, 0x3, 0, ECX_enc); + emit_d32(cbuf,0x20); + // JEQ,s small + emit_opcode(cbuf, 0x74); + emit_d8(cbuf, 0x04); + // MOV $dst.hi,$dst.lo + emit_opcode( cbuf, 0x8B ); + emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg ); + // CLR $dst.lo + emit_opcode(cbuf, 0x33); + emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg); +// small: + // SHLD $dst.hi,$dst.lo,$shift + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0xA5); + emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg)); + // SHL $dst.lo,$shift" + emit_opcode(cbuf,0xD3); + emit_rm(cbuf, 0x3, 0x4, $dst$$reg ); + %} + + enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{ + // TEST shift,32 + emit_opcode(cbuf,0xF7); + emit_rm(cbuf, 0x3, 0, ECX_enc); + emit_d32(cbuf,0x20); + // JEQ,s small + emit_opcode(cbuf, 0x74); + emit_d8(cbuf, 0x04); + // MOV $dst.lo,$dst.hi + emit_opcode( cbuf, 0x8B ); + emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) ); + // CLR $dst.hi + emit_opcode(cbuf, 0x33); + emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg)); +// small: + // SHRD $dst.lo,$dst.hi,$shift + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0xAD); + emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg); + // SHR $dst.hi,$shift" + emit_opcode(cbuf,0xD3); + emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) ); + %} + + enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{ + // TEST shift,32 + emit_opcode(cbuf,0xF7); + emit_rm(cbuf, 0x3, 0, ECX_enc); + emit_d32(cbuf,0x20); + // JEQ,s small + emit_opcode(cbuf, 0x74); + emit_d8(cbuf, 0x05); + // MOV $dst.lo,$dst.hi + emit_opcode( cbuf, 0x8B ); + emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) ); + // SAR $dst.hi,31 + emit_opcode(cbuf, 0xC1); + emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) ); + emit_d8(cbuf, 0x1F ); +// small: + // SHRD $dst.lo,$dst.hi,$shift + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0xAD); + emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg); + // SAR $dst.hi,$shift" + emit_opcode(cbuf,0xD3); + emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) ); + %} + + + // ----------------- Encodings for floating point unit ----------------- + // May leave result in FPU-TOS or FPU reg depending on opcodes + enc_class OpcReg_F (regF src) %{ // FMUL, FDIV + $$$emit8$primary; + emit_rm(cbuf, 0x3, $secondary, $src$$reg ); + %} + + // Pop argument in FPR0 with FSTP ST(0) + enc_class PopFPU() %{ + emit_opcode( cbuf, 0xDD ); + emit_d8( cbuf, 0xD8 ); + %} + + // !!!!! equivalent to Pop_Reg_F + enc_class Pop_Reg_D( regD dst ) %{ + emit_opcode( cbuf, 0xDD ); // FSTP ST(i) + emit_d8( cbuf, 0xD8+$dst$$reg ); + %} + + enc_class Push_Reg_D( regD dst ) %{ + emit_opcode( cbuf, 0xD9 ); + emit_d8( cbuf, 0xC0-1+$dst$$reg ); // FLD ST(i-1) + %} + + enc_class strictfp_bias1( regD dst ) %{ + emit_opcode( cbuf, 0xDB ); // FLD m80real + emit_opcode( cbuf, 0x2D ); + emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() ); + emit_opcode( cbuf, 0xDE ); // FMULP ST(dst), ST0 + emit_opcode( cbuf, 0xC8+$dst$$reg ); + %} + + enc_class strictfp_bias2( regD dst ) %{ + emit_opcode( cbuf, 0xDB ); // FLD m80real + emit_opcode( cbuf, 0x2D ); + emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() ); + emit_opcode( cbuf, 0xDE ); // FMULP ST(dst), ST0 + emit_opcode( cbuf, 0xC8+$dst$$reg ); + %} + + // Special case for moving an integer register to a stack slot. + enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS + store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp ); + %} + + // Special case for moving a register to a stack slot. + enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS + // Opcode already emitted + emit_rm( cbuf, 0x02, $src$$reg, ESP_enc ); // R/M byte + emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte + emit_d32(cbuf, $dst$$disp); // Displacement + %} + + // Push the integer in stackSlot 'src' onto FP-stack + enc_class Push_Mem_I( memory src ) %{ // FILD [ESP+src] + store_to_stackslot( cbuf, $primary, $secondary, $src$$disp ); + %} + + // Push the float in stackSlot 'src' onto FP-stack + enc_class Push_Mem_F( memory src ) %{ // FLD_S [ESP+src] + store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp ); + %} + + // Push the double in stackSlot 'src' onto FP-stack + enc_class Push_Mem_D( memory src ) %{ // FLD_D [ESP+src] + store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp ); + %} + + // Push FPU's TOS float to a stack-slot, and pop FPU-stack + enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst] + store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp ); + %} + + // Same as Pop_Mem_F except for opcode + // Push FPU's TOS double to a stack-slot, and pop FPU-stack + enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst] + store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp ); + %} + + enc_class Pop_Reg_F( regF dst ) %{ + emit_opcode( cbuf, 0xDD ); // FSTP ST(i) + emit_d8( cbuf, 0xD8+$dst$$reg ); + %} + + enc_class Push_Reg_F( regF dst ) %{ + emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1) + emit_d8( cbuf, 0xC0-1+$dst$$reg ); + %} + + // Push FPU's float to a stack-slot, and pop FPU-stack + enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{ + int pop = 0x02; + if ($src$$reg != FPR1L_enc) { + emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1) + emit_d8( cbuf, 0xC0-1+$src$$reg ); + pop = 0x03; + } + store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST

_S [ESP+dst] + %} + + // Push FPU's double to a stack-slot, and pop FPU-stack + enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{ + int pop = 0x02; + if ($src$$reg != FPR1L_enc) { + emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1) + emit_d8( cbuf, 0xC0-1+$src$$reg ); + pop = 0x03; + } + store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST

_D [ESP+dst] + %} + + // Push FPU's double to a FPU-stack-slot, and pop FPU-stack + enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{ + int pop = 0xD0 - 1; // -1 since we skip FLD + if ($src$$reg != FPR1L_enc) { + emit_opcode( cbuf, 0xD9 ); // FLD ST(src-1) + emit_d8( cbuf, 0xC0-1+$src$$reg ); + pop = 0xD8; + } + emit_opcode( cbuf, 0xDD ); + emit_d8( cbuf, pop+$dst$$reg ); // FST

ST(i) + %} + + + enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{ + MacroAssembler masm(&cbuf); + masm.fld_s( $src1$$reg-1); // nothing at TOS, load TOS from src1.reg + masm.fmul( $src2$$reg+0); // value at TOS + masm.fadd( $src$$reg+0); // value at TOS + masm.fstp_d( $dst$$reg+0); // value at TOS, popped off after store + %} + + + enc_class Push_Reg_Mod_D( regD dst, regD src) %{ + // load dst in FPR0 + emit_opcode( cbuf, 0xD9 ); + emit_d8( cbuf, 0xC0-1+$dst$$reg ); + if ($src$$reg != FPR1L_enc) { + // fincstp + emit_opcode (cbuf, 0xD9); + emit_opcode (cbuf, 0xF7); + // swap src with FPR1: + // FXCH FPR1 with src + emit_opcode(cbuf, 0xD9); + emit_d8(cbuf, 0xC8-1+$src$$reg ); + // fdecstp + emit_opcode (cbuf, 0xD9); + emit_opcode (cbuf, 0xF6); + } + %} + + enc_class Push_ModD_encoding( regXD src0, regXD src1) %{ + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,8 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x08); + + emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src1 + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xDD ); // FLD_D [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src0 + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xDD ); // FLD_D [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + %} + + enc_class Push_ModX_encoding( regX src0, regX src1) %{ + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,4 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x04); + + emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src1 + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xD9 ); // FLD [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src0 + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xD9 ); // FLD [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + %} + + enc_class Push_ResultXD(regXD dst) %{ + store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP] + + // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp] + emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66); + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12); + encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0x83); // ADD ESP,8 + emit_opcode(cbuf,0xC4); + emit_d8(cbuf,0x08); + %} + + enc_class Push_ResultX(regX dst, immI d8) %{ + store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP] + + emit_opcode (cbuf, 0xF3 ); // MOVSS dst(xmm), [ESP] + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x10 ); + encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0x83); // ADD ESP,d8 (4 or 8) + emit_opcode(cbuf,0xC4); + emit_d8(cbuf,$d8$$constant); + %} + + enc_class Push_SrcXD(regXD src) %{ + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,8 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x08); + + emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xDD ); // FLD_D [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + %} + + enc_class push_stack_temp_qword() %{ + emit_opcode(cbuf,0x83); // SUB ESP,8 + emit_opcode(cbuf,0xEC); + emit_d8 (cbuf,0x08); + %} + + enc_class pop_stack_temp_qword() %{ + emit_opcode(cbuf,0x83); // ADD ESP,8 + emit_opcode(cbuf,0xC4); + emit_d8 (cbuf,0x08); + %} + + enc_class push_xmm_to_fpr1( regXD xmm_src ) %{ + emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], xmm_src + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xDD ); // FLD_D [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + %} + + // Compute X^Y using Intel's fast hardware instructions, if possible. + // Otherwise return a NaN. + enc_class pow_exp_core_encoding %{ + // FPR1 holds Y*ln2(X). Compute FPR1 = 2^(Y*ln2(X)) + emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0); // fdup = fld st(0) Q Q + emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC); // frndint int(Q) Q + emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9); // fsub st(1) -= st(0); int(Q) frac(Q) + emit_opcode(cbuf,0xDB); // FISTP [ESP] frac(Q) + emit_opcode(cbuf,0x1C); + emit_d8(cbuf,0x24); + emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0); // f2xm1 2^frac(Q)-1 + emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8); // fld1 1 2^frac(Q)-1 + emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1); // faddp 2^frac(Q) + emit_opcode(cbuf,0x8B); // mov rax,[esp+0]=int(Q) + encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false); + emit_opcode(cbuf,0xC7); // mov rcx,0xFFFFF800 - overflow mask + emit_rm(cbuf, 0x3, 0x0, ECX_enc); + emit_d32(cbuf,0xFFFFF800); + emit_opcode(cbuf,0x81); // add rax,1023 - the double exponent bias + emit_rm(cbuf, 0x3, 0x0, EAX_enc); + emit_d32(cbuf,1023); + emit_opcode(cbuf,0x8B); // mov rbx,eax + emit_rm(cbuf, 0x3, EBX_enc, EAX_enc); + emit_opcode(cbuf,0xC1); // shl rax,20 - Slide to exponent position + emit_rm(cbuf,0x3,0x4,EAX_enc); + emit_d8(cbuf,20); + emit_opcode(cbuf,0x85); // test rbx,ecx - check for overflow + emit_rm(cbuf, 0x3, EBX_enc, ECX_enc); + emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45); // CMOVne rax,ecx - overflow; stuff NAN into EAX + emit_rm(cbuf, 0x3, EAX_enc, ECX_enc); + emit_opcode(cbuf,0x89); // mov [esp+4],eax - Store as part of double word + encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false); + emit_opcode(cbuf,0xC7); // mov [esp+0],0 - [ESP] = (double)(1< 0) { + emit_opcode(cbuf, 0xC1); + emit_rm(cbuf, 0x3, 7, $dst$$reg ); + emit_d8(cbuf, shift_count); + } + %} + + // this version doesn't have add sp, 8 + enc_class convert_long_double2( eRegL src ) %{ + // push $src.hi + emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg)); + // push $src.lo + emit_opcode(cbuf, 0x50+$src$$reg ); + // fild 64-bits at [SP] + emit_opcode(cbuf,0xdf); + emit_d8(cbuf, 0x6C); + emit_d8(cbuf, 0x24); + emit_d8(cbuf, 0x00); + %} + + enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{ + // Basic idea: long = (long)int * (long)int + // IMUL EDX:EAX, src + emit_opcode( cbuf, 0xF7 ); + emit_rm( cbuf, 0x3, 0x5, $src$$reg); + %} + + enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{ + // Basic Idea: long = (int & 0xffffffffL) * (int & 0xffffffffL) + // MUL EDX:EAX, src + emit_opcode( cbuf, 0xF7 ); + emit_rm( cbuf, 0x3, 0x4, $src$$reg); + %} + + enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{ + // Basic idea: lo(result) = lo(x_lo * y_lo) + // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) + // MOV $tmp,$src.lo + encode_Copy( cbuf, $tmp$$reg, $src$$reg ); + // IMUL $tmp,EDX + emit_opcode( cbuf, 0x0F ); + emit_opcode( cbuf, 0xAF ); + emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) ); + // MOV EDX,$src.hi + encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) ); + // IMUL EDX,EAX + emit_opcode( cbuf, 0x0F ); + emit_opcode( cbuf, 0xAF ); + emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg ); + // ADD $tmp,EDX + emit_opcode( cbuf, 0x03 ); + emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) ); + // MUL EDX:EAX,$src.lo + emit_opcode( cbuf, 0xF7 ); + emit_rm( cbuf, 0x3, 0x4, $src$$reg ); + // ADD EDX,ESI + emit_opcode( cbuf, 0x03 ); + emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg ); + %} + + enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{ + // Basic idea: lo(result) = lo(src * y_lo) + // hi(result) = hi(src * y_lo) + lo(src * y_hi) + // IMUL $tmp,EDX,$src + emit_opcode( cbuf, 0x6B ); + emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) ); + emit_d8( cbuf, (int)$src$$constant ); + // MOV EDX,$src + emit_opcode(cbuf, 0xB8 + EDX_enc); + emit_d32( cbuf, (int)$src$$constant ); + // MUL EDX:EAX,EDX + emit_opcode( cbuf, 0xF7 ); + emit_rm( cbuf, 0x3, 0x4, EDX_enc ); + // ADD EDX,ESI + emit_opcode( cbuf, 0x03 ); + emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg ); + %} + + enc_class long_div( eRegL src1, eRegL src2 ) %{ + // PUSH src1.hi + emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) ); + // PUSH src1.lo + emit_opcode(cbuf, 0x50+$src1$$reg ); + // PUSH src2.hi + emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) ); + // PUSH src2.lo + emit_opcode(cbuf, 0x50+$src2$$reg ); + // CALL directly to the runtime + cbuf.set_inst_mark(); + emit_opcode(cbuf,0xE8); // Call into runtime + emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); + // Restore stack + emit_opcode(cbuf, 0x83); // add SP, #framesize + emit_rm(cbuf, 0x3, 0x00, ESP_enc); + emit_d8(cbuf, 4*4); + %} + + enc_class long_mod( eRegL src1, eRegL src2 ) %{ + // PUSH src1.hi + emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) ); + // PUSH src1.lo + emit_opcode(cbuf, 0x50+$src1$$reg ); + // PUSH src2.hi + emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) ); + // PUSH src2.lo + emit_opcode(cbuf, 0x50+$src2$$reg ); + // CALL directly to the runtime + cbuf.set_inst_mark(); + emit_opcode(cbuf,0xE8); // Call into runtime + emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); + // Restore stack + emit_opcode(cbuf, 0x83); // add SP, #framesize + emit_rm(cbuf, 0x3, 0x00, ESP_enc); + emit_d8(cbuf, 4*4); + %} + + enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{ + // MOV $tmp,$src.lo + emit_opcode(cbuf, 0x8B); + emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg); + // OR $tmp,$src.hi + emit_opcode(cbuf, 0x0B); + emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg)); + %} + + enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{ + // CMP $src1.lo,$src2.lo + emit_opcode( cbuf, 0x3B ); + emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg ); + // JNE,s skip + emit_cc(cbuf, 0x70, 0x5); + emit_d8(cbuf,2); + // CMP $src1.hi,$src2.hi + emit_opcode( cbuf, 0x3B ); + emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) ); + %} + + enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{ + // CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits + emit_opcode( cbuf, 0x3B ); + emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg ); + // MOV $tmp,$src1.hi + emit_opcode( cbuf, 0x8B ); + emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) ); + // SBB $tmp,$src2.hi\t! Compute flags for long compare + emit_opcode( cbuf, 0x1B ); + emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) ); + %} + + enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{ + // XOR $tmp,$tmp + emit_opcode(cbuf,0x33); // XOR + emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg); + // CMP $tmp,$src.lo + emit_opcode( cbuf, 0x3B ); + emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg ); + // SBB $tmp,$src.hi + emit_opcode( cbuf, 0x1B ); + emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) ); + %} + + // Sniff, sniff... smells like Gnu Superoptimizer + enc_class neg_long( eRegL dst ) %{ + emit_opcode(cbuf,0xF7); // NEG hi + emit_rm (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg)); + emit_opcode(cbuf,0xF7); // NEG lo + emit_rm (cbuf,0x3, 0x3, $dst$$reg ); + emit_opcode(cbuf,0x83); // SBB hi,0 + emit_rm (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg)); + emit_d8 (cbuf,0 ); + %} + + enc_class movq_ld(regXD dst, memory mem) %{ + MacroAssembler _masm(&cbuf); + Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp); + __ movq(as_XMMRegister($dst$$reg), madr); + %} + + enc_class movq_st(memory mem, regXD src) %{ + MacroAssembler _masm(&cbuf); + Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp); + __ movq(madr, as_XMMRegister($src$$reg)); + %} + + enc_class pshufd_8x8(regX dst, regX src) %{ + MacroAssembler _masm(&cbuf); + + encode_CopyXD(cbuf, $dst$$reg, $src$$reg); + __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg)); + __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00); + %} + + enc_class pshufd_4x16(regX dst, regX src) %{ + MacroAssembler _masm(&cbuf); + + __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00); + %} + + enc_class pshufd(regXD dst, regXD src, int mode) %{ + MacroAssembler _masm(&cbuf); + + __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode); + %} + + enc_class pxor(regXD dst, regXD src) %{ + MacroAssembler _masm(&cbuf); + + __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg)); + %} + + enc_class mov_i2x(regXD dst, eRegI src) %{ + MacroAssembler _masm(&cbuf); + + __ movd(as_XMMRegister($dst$$reg), as_Register($src$$reg)); + %} + + + // Because the transitions from emitted code to the runtime + // monitorenter/exit helper stubs are so slow it's critical that + // we inline both the stack-locking fast-path and the inflated fast path. + // + // See also: cmpFastLock and cmpFastUnlock. + // + // What follows is a specialized inline transliteration of the code + // in slow_enter() and slow_exit(). If we're concerned about I$ bloat + // another option would be to emit TrySlowEnter and TrySlowExit methods + // at startup-time. These methods would accept arguments as + // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure + // indications in the icc.ZFlag. Fast_Lock and Fast_Unlock would simply + // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit. + // In practice, however, the # of lock sites is bounded and is usually small. + // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer + // if the processor uses simple bimodal branch predictors keyed by EIP + // Since the helper routines would be called from multiple synchronization + // sites. + // + // An even better approach would be write "MonitorEnter()" and "MonitorExit()" + // in java - using j.u.c and unsafe - and just bind the lock and unlock sites + // to those specialized methods. That'd give us a mostly platform-independent + // implementation that the JITs could optimize and inline at their pleasure. + // Done correctly, the only time we'd need to cross to native could would be + // to park() or unpark() threads. We'd also need a few more unsafe operators + // to (a) prevent compiler-JIT reordering of non-volatile accesses, and + // (b) explicit barriers or fence operations. + // + // TODO: + // + // * Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr). + // This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals. + // Given TLAB allocation, Self is usually manifested in a register, so passing it into + // the lock operators would typically be faster than reifying Self. + // + // * Ideally I'd define the primitives as: + // fast_lock (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED. + // fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED + // Unfortunately ADLC bugs prevent us from expressing the ideal form. + // Instead, we're stuck with a rather awkward and brittle register assignments below. + // Furthermore the register assignments are overconstrained, possibly resulting in + // sub-optimal code near the synchronization site. + // + // * Eliminate the sp-proximity tests and just use "== Self" tests instead. + // Alternately, use a better sp-proximity test. + // + // * Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value. + // Either one is sufficient to uniquely identify a thread. + // TODO: eliminate use of sp in _owner and use get_thread(tr) instead. + // + // * Intrinsify notify() and notifyAll() for the common cases where the + // object is locked by the calling thread but the waitlist is empty. + // avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll(). + // + // * use jccb and jmpb instead of jcc and jmp to improve code density. + // But beware of excessive branch density on AMD Opterons. + // + // * Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success + // or failure of the fast-path. If the fast-path fails then we pass + // control to the slow-path, typically in C. In Fast_Lock and + // Fast_Unlock we often branch to DONE_LABEL, just to find that C2 + // will emit a conditional branch immediately after the node. + // So we have branches to branches and lots of ICC.ZF games. + // Instead, it might be better to have C2 pass a "FailureLabel" + // into Fast_Lock and Fast_Unlock. In the case of success, control + // will drop through the node. ICC.ZF is undefined at exit. + // In the case of failure, the node will branch directly to the + // FailureLabel + + + // obj: object to lock + // box: on-stack box address (displaced header location) - KILLED + // rax,: tmp -- KILLED + // scr: tmp -- KILLED + enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{ + + Register objReg = as_Register($obj$$reg); + Register boxReg = as_Register($box$$reg); + Register tmpReg = as_Register($tmp$$reg); + Register scrReg = as_Register($scr$$reg); + + // Ensure the register assignents are disjoint + guarantee (objReg != boxReg, "") ; + guarantee (objReg != tmpReg, "") ; + guarantee (objReg != scrReg, "") ; + guarantee (boxReg != tmpReg, "") ; + guarantee (boxReg != scrReg, "") ; + guarantee (tmpReg == as_Register(EAX_enc), "") ; + + MacroAssembler masm(&cbuf); + + if (_counters != NULL) { + masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr())); + } + if (EmitSync & 1) { + // set box->dhw = unused_mark (3) + // Force all sync thru slow-path: slow_enter() and slow_exit() + masm.movl (Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ; + masm.cmpl (rsp, 0) ; + } else + if (EmitSync & 2) { + Label DONE_LABEL ; + if (UseBiasedLocking) { + // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument. + masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters); + } + + masm.movl (tmpReg, Address(objReg, 0)) ; // fetch markword + masm.orl (tmpReg, 0x1); + masm.movl (Address(boxReg, 0), tmpReg); // Anticipate successful CAS + if (os::is_MP()) { masm.lock(); } + masm.cmpxchg(boxReg, Address(objReg, 0)); // Updates tmpReg + masm.jcc(Assembler::equal, DONE_LABEL); + // Recursive locking + masm.subl(tmpReg, rsp); + masm.andl(tmpReg, 0xFFFFF003 ); + masm.movl(Address(boxReg, 0), tmpReg); + masm.bind(DONE_LABEL) ; + } else { + // Possible cases that we'll encounter in fast_lock + // ------------------------------------------------ + // * Inflated + // -- unlocked + // -- Locked + // = by self + // = by other + // * biased + // -- by Self + // -- by other + // * neutral + // * stack-locked + // -- by self + // = sp-proximity test hits + // = sp-proximity test generates false-negative + // -- by other + // + + Label IsInflated, DONE_LABEL, PopDone ; + + // TODO: optimize away redundant LDs of obj->mark and improve the markword triage + // order to reduce the number of conditional branches in the most common cases. + // Beware -- there's a subtle invariant that fetch of the markword + // at [FETCH], below, will never observe a biased encoding (*101b). + // If this invariant is not held we risk exclusion (safety) failure. + if (UseBiasedLocking) { + masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters); + } + + masm.movl (tmpReg, Address(objReg, 0)) ; // [FETCH] + masm.testl (tmpReg, 0x02) ; // Inflated v (Stack-locked or neutral) + masm.jccb (Assembler::notZero, IsInflated) ; + + // Attempt stack-locking ... + masm.orl (tmpReg, 0x1); + masm.movl (Address(boxReg, 0), tmpReg); // Anticipate successful CAS + if (os::is_MP()) { masm.lock(); } + masm.cmpxchg(boxReg, Address(objReg, 0)); // Updates tmpReg + if (_counters != NULL) { + masm.cond_inc32(Assembler::equal, + ExternalAddress((address)_counters->fast_path_entry_count_addr())); + } + masm.jccb (Assembler::equal, DONE_LABEL); + + // Recursive locking + masm.subl(tmpReg, rsp); + masm.andl(tmpReg, 0xFFFFF003 ); + masm.movl(Address(boxReg, 0), tmpReg); + if (_counters != NULL) { + masm.cond_inc32(Assembler::equal, + ExternalAddress((address)_counters->fast_path_entry_count_addr())); + } + masm.jmp (DONE_LABEL) ; + + masm.bind (IsInflated) ; + + // The object is inflated. + // + // TODO-FIXME: eliminate the ugly use of manifest constants: + // Use markOopDesc::monitor_value instead of "2". + // use markOop::unused_mark() instead of "3". + // The tmpReg value is an objectMonitor reference ORed with + // markOopDesc::monitor_value (2). We can either convert tmpReg to an + // objectmonitor pointer by masking off the "2" bit or we can just + // use tmpReg as an objectmonitor pointer but bias the objectmonitor + // field offsets with "-2" to compensate for and annul the low-order tag bit. + // + // I use the latter as it avoids AGI stalls. + // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]" + // instead of "mov r, [tmpReg+OFFSETOF(Owner)]". + // + #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2) + + // boxReg refers to the on-stack BasicLock in the current frame. + // We'd like to write: + // set box->_displaced_header = markOop::unused_mark(). Any non-0 value suffices. + // This is convenient but results a ST-before-CAS penalty. The following CAS suffers + // additional latency as we have another ST in the store buffer that must drain. + + if (EmitSync & 8192) { + masm.movl (Address(boxReg, 0), 3) ; // results in ST-before-CAS penalty + masm.get_thread (scrReg) ; + masm.movl (boxReg, tmpReg); // consider: LEA box, [tmp-2] + masm.movl (tmpReg, 0); // consider: xor vs mov + if (os::is_MP()) { masm.lock(); } + masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; + } else + if ((EmitSync & 128) == 0) { // avoid ST-before-CAS + masm.movl (scrReg, boxReg) ; + masm.movl (boxReg, tmpReg); // consider: LEA box, [tmp-2] + + // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes + if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) { + // prefetchw [eax + Offset(_owner)-2] + masm.emit_raw (0x0F) ; + masm.emit_raw (0x0D) ; + masm.emit_raw (0x48) ; + masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ; + } + + if ((EmitSync & 64) == 0) { + // Optimistic form: consider XORL tmpReg,tmpReg + masm.movl (tmpReg, 0 ) ; + } else { + // Can suffer RTS->RTO upgrades on shared or cold $ lines + // Test-And-CAS instead of CAS + masm.movl (tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; // rax, = m->_owner + masm.testl (tmpReg, tmpReg) ; // Locked ? + masm.jccb (Assembler::notZero, DONE_LABEL) ; + } + + // Appears unlocked - try to swing _owner from null to non-null. + // Ideally, I'd manifest "Self" with get_thread and then attempt + // to CAS the register containing Self into m->Owner. + // But we don't have enough registers, so instead we can either try to CAS + // rsp or the address of the box (in scr) into &m->owner. If the CAS succeeds + // we later store "Self" into m->Owner. Transiently storing a stack address + // (rsp or the address of the box) into m->owner is harmless. + // Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand. + if (os::is_MP()) { masm.lock(); } + masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; + masm.movl (Address(scrReg, 0), 3) ; // box->_displaced_header = 3 + masm.jccb (Assembler::notZero, DONE_LABEL) ; + masm.get_thread (scrReg) ; // beware: clobbers ICCs + masm.movl (Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; + masm.xorl (boxReg, boxReg) ; // set icc.ZFlag = 1 to indicate success + + // If the CAS fails we can either retry or pass control to the slow-path. + // We use the latter tactic. + // Pass the CAS result in the icc.ZFlag into DONE_LABEL + // If the CAS was successful ... + // Self has acquired the lock + // Invariant: m->_recursions should already be 0, so we don't need to explicitly set it. + // Intentional fall-through into DONE_LABEL ... + } else { + masm.movl (Address(boxReg, 0), 3) ; // results in ST-before-CAS penalty + masm.movl (boxReg, tmpReg) ; + + // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes + if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) { + // prefetchw [eax + Offset(_owner)-2] + masm.emit_raw (0x0F) ; + masm.emit_raw (0x0D) ; + masm.emit_raw (0x48) ; + masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ; + } + + if ((EmitSync & 64) == 0) { + // Optimistic form + masm.xorl (tmpReg, tmpReg) ; + } else { + // Can suffer RTS->RTO upgrades on shared or cold $ lines + masm.movl (tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; // rax, = m->_owner + masm.testl (tmpReg, tmpReg) ; // Locked ? + masm.jccb (Assembler::notZero, DONE_LABEL) ; + } + + // Appears unlocked - try to swing _owner from null to non-null. + // Use either "Self" (in scr) or rsp as thread identity in _owner. + // Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand. + masm.get_thread (scrReg) ; + if (os::is_MP()) { masm.lock(); } + masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; + + // If the CAS fails we can either retry or pass control to the slow-path. + // We use the latter tactic. + // Pass the CAS result in the icc.ZFlag into DONE_LABEL + // If the CAS was successful ... + // Self has acquired the lock + // Invariant: m->_recursions should already be 0, so we don't need to explicitly set it. + // Intentional fall-through into DONE_LABEL ... + } + + // DONE_LABEL is a hot target - we'd really like to place it at the + // start of cache line by padding with NOPs. + // See the AMD and Intel software optimization manuals for the + // most efficient "long" NOP encodings. + // Unfortunately none of our alignment mechanisms suffice. + masm.bind(DONE_LABEL); + + // Avoid branch-to-branch on AMD processors + // This appears to be superstition. + if (EmitSync & 32) masm.nop() ; + + + // At DONE_LABEL the icc ZFlag is set as follows ... + // Fast_Unlock uses the same protocol. + // ZFlag == 1 -> Success + // ZFlag == 0 -> Failure - force control through the slow-path + } + %} + + // obj: object to unlock + // box: box address (displaced header location), killed. Must be EAX. + // rbx,: killed tmp; cannot be obj nor box. + // + // Some commentary on balanced locking: + // + // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites. + // Methods that don't have provably balanced locking are forced to run in the + // interpreter - such methods won't be compiled to use fast_lock and fast_unlock. + // The interpreter provides two properties: + // I1: At return-time the interpreter automatically and quietly unlocks any + // objects acquired the current activation (frame). Recall that the + // interpreter maintains an on-stack list of locks currently held by + // a frame. + // I2: If a method attempts to unlock an object that is not held by the + // the frame the interpreter throws IMSX. + // + // Lets say A(), which has provably balanced locking, acquires O and then calls B(). + // B() doesn't have provably balanced locking so it runs in the interpreter. + // Control returns to A() and A() unlocks O. By I1 and I2, above, we know that O + // is still locked by A(). + // + // The only other source of unbalanced locking would be JNI. The "Java Native Interface: + // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter + // should not be unlocked by "normal" java-level locking and vice-versa. The specification + // doesn't specify what will occur if a program engages in such mixed-mode locking, however. + + enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{ + + Register objReg = as_Register($obj$$reg); + Register boxReg = as_Register($box$$reg); + Register tmpReg = as_Register($tmp$$reg); + + guarantee (objReg != boxReg, "") ; + guarantee (objReg != tmpReg, "") ; + guarantee (boxReg != tmpReg, "") ; + guarantee (boxReg == as_Register(EAX_enc), "") ; + MacroAssembler masm(&cbuf); + + if (EmitSync & 4) { + // Disable - inhibit all inlining. Force control through the slow-path + masm.cmpl (rsp, 0) ; + } else + if (EmitSync & 8) { + Label DONE_LABEL ; + if (UseBiasedLocking) { + masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL); + } + // classic stack-locking code ... + masm.movl (tmpReg, Address(boxReg, 0)) ; + masm.testl (tmpReg, tmpReg) ; + masm.jcc (Assembler::zero, DONE_LABEL) ; + if (os::is_MP()) { masm.lock(); } + masm.cmpxchg(tmpReg, Address(objReg, 0)); // Uses EAX which is box + masm.bind(DONE_LABEL); + } else { + Label DONE_LABEL, Stacked, CheckSucc, Inflated ; + + // Critically, the biased locking test must have precedence over + // and appear before the (box->dhw == 0) recursive stack-lock test. + if (UseBiasedLocking) { + masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL); + } + + masm.cmpl (Address(boxReg, 0), 0) ; // Examine the displaced header + masm.movl (tmpReg, Address(objReg, 0)) ; // Examine the object's markword + masm.jccb (Assembler::zero, DONE_LABEL) ; // 0 indicates recursive stack-lock + + masm.testl (tmpReg, 0x02) ; // Inflated? + masm.jccb (Assembler::zero, Stacked) ; + + masm.bind (Inflated) ; + // It's inflated. + // Despite our balanced locking property we still check that m->_owner == Self + // as java routines or native JNI code called by this thread might + // have released the lock. + // Refer to the comments in synchronizer.cpp for how we might encode extra + // state in _succ so we can avoid fetching EntryList|cxq. + // + // I'd like to add more cases in fast_lock() and fast_unlock() -- + // such as recursive enter and exit -- but we have to be wary of + // I$ bloat, T$ effects and BP$ effects. + // + // If there's no contention try a 1-0 exit. That is, exit without + // a costly MEMBAR or CAS. See synchronizer.cpp for details on how + // we detect and recover from the race that the 1-0 exit admits. + // + // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier + // before it STs null into _owner, releasing the lock. Updates + // to data protected by the critical section must be visible before + // we drop the lock (and thus before any other thread could acquire + // the lock and observe the fields protected by the lock). + // IA32's memory-model is SPO, so STs are ordered with respect to + // each other and there's no need for an explicit barrier (fence). + // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html. + + masm.get_thread (boxReg) ; + if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) { + // prefetchw [ebx + Offset(_owner)-2] + masm.emit_raw (0x0F) ; + masm.emit_raw (0x0D) ; + masm.emit_raw (0x4B) ; + masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ; + } + + // Note that we could employ various encoding schemes to reduce + // the number of loads below (currently 4) to just 2 or 3. + // Refer to the comments in synchronizer.cpp. + // In practice the chain of fetches doesn't seem to impact performance, however. + if ((EmitSync & 65536) == 0 && (EmitSync & 256)) { + // Attempt to reduce branch density - AMD's branch predictor. + masm.xorl (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; + masm.orl (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ; + masm.orl (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; + masm.orl (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; + masm.jccb (Assembler::notZero, DONE_LABEL) ; + masm.movl (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; + masm.jmpb (DONE_LABEL) ; + } else { + masm.xorl (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; + masm.orl (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ; + masm.jccb (Assembler::notZero, DONE_LABEL) ; + masm.movl (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; + masm.orl (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; + masm.jccb (Assembler::notZero, CheckSucc) ; + masm.movl (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; + masm.jmpb (DONE_LABEL) ; + } + + // The Following code fragment (EmitSync & 65536) improves the performance of + // contended applications and contended synchronization microbenchmarks. + // Unfortunately the emission of the code - even though not executed - causes regressions + // in scimark and jetstream, evidently because of $ effects. Replacing the code + // with an equal number of never-executed NOPs results in the same regression. + // We leave it off by default. + + if ((EmitSync & 65536) != 0) { + Label LSuccess, LGoSlowPath ; + + masm.bind (CheckSucc) ; + + // Optional pre-test ... it's safe to elide this + if ((EmitSync & 16) == 0) { + masm.cmpl (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; + masm.jccb (Assembler::zero, LGoSlowPath) ; + } + + // We have a classic Dekker-style idiom: + // ST m->_owner = 0 ; MEMBAR; LD m->_succ + // There are a number of ways to implement the barrier: + // (1) lock:andl &m->_owner, 0 + // is fast, but mask doesn't currently support the "ANDL M,IMM32" form. + // LOCK: ANDL [ebx+Offset(_Owner)-2], 0 + // Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8 + // (2) If supported, an explicit MFENCE is appealing. + // In older IA32 processors MFENCE is slower than lock:add or xchg + // particularly if the write-buffer is full as might be the case if + // if stores closely precede the fence or fence-equivalent instruction. + // In more modern implementations MFENCE appears faster, however. + // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack + // The $lines underlying the top-of-stack should be in M-state. + // The locked add instruction is serializing, of course. + // (4) Use xchg, which is serializing + // mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works + // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0. + // The integer condition codes will tell us if succ was 0. + // Since _succ and _owner should reside in the same $line and + // we just stored into _owner, it's likely that the $line + // remains in M-state for the lock:orl. + // + // We currently use (3), although it's likely that switching to (2) + // is correct for the future. + + masm.movl (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; + if (os::is_MP()) { + if (VM_Version::supports_sse2() && 1 == FenceInstruction) { + masm.emit_raw (0x0F) ; // MFENCE ... + masm.emit_raw (0xAE) ; + masm.emit_raw (0xF0) ; + } else { + masm.lock () ; masm.addl (Address(rsp, 0), 0) ; + } + } + // Ratify _succ remains non-null + masm.cmpl (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; + masm.jccb (Assembler::notZero, LSuccess) ; + + masm.xorl (boxReg, boxReg) ; // box is really EAX + if (os::is_MP()) { masm.lock(); } + masm.cmpxchg(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)); + masm.jccb (Assembler::notEqual, LSuccess) ; + // Since we're low on registers we installed rsp as a placeholding in _owner. + // Now install Self over rsp. This is safe as we're transitioning from + // non-null to non=null + masm.get_thread (boxReg) ; + masm.movl (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ; + // Intentional fall-through into LGoSlowPath ... + + masm.bind (LGoSlowPath) ; + masm.orl (boxReg, 1) ; // set ICC.ZF=0 to indicate failure + masm.jmpb (DONE_LABEL) ; + + masm.bind (LSuccess) ; + masm.xorl (boxReg, boxReg) ; // set ICC.ZF=1 to indicate success + masm.jmpb (DONE_LABEL) ; + } + + masm.bind (Stacked) ; + // It's not inflated and it's not recursively stack-locked and it's not biased. + // It must be stack-locked. + // Try to reset the header to displaced header. + // The "box" value on the stack is stable, so we can reload + // and be assured we observe the same value as above. + masm.movl (tmpReg, Address(boxReg, 0)) ; + if (os::is_MP()) { masm.lock(); } + masm.cmpxchg(tmpReg, Address(objReg, 0)); // Uses EAX which is box + // Intention fall-thru into DONE_LABEL + + + // DONE_LABEL is a hot target - we'd really like to place it at the + // start of cache line by padding with NOPs. + // See the AMD and Intel software optimization manuals for the + // most efficient "long" NOP encodings. + // Unfortunately none of our alignment mechanisms suffice. + if ((EmitSync & 65536) == 0) { + masm.bind (CheckSucc) ; + } + masm.bind(DONE_LABEL); + + // Avoid branch to branch on AMD processors + if (EmitSync & 32768) { masm.nop() ; } + } + %} + + enc_class enc_String_Compare() %{ + Label ECX_GOOD_LABEL, LENGTH_DIFF_LABEL, + POP_LABEL, DONE_LABEL, CONT_LABEL, + WHILE_HEAD_LABEL; + MacroAssembler masm(&cbuf); + + // Get the first character position in both strings + // [8] char array, [12] offset, [16] count + int value_offset = java_lang_String::value_offset_in_bytes(); + int offset_offset = java_lang_String::offset_offset_in_bytes(); + int count_offset = java_lang_String::count_offset_in_bytes(); + int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR); + + masm.movl(rax, Address(rsi, value_offset)); + masm.movl(rcx, Address(rsi, offset_offset)); + masm.leal(rax, Address(rax, rcx, Address::times_2, base_offset)); + masm.movl(rbx, Address(rdi, value_offset)); + masm.movl(rcx, Address(rdi, offset_offset)); + masm.leal(rbx, Address(rbx, rcx, Address::times_2, base_offset)); + + // Compute the minimum of the string lengths(rsi) and the + // difference of the string lengths (stack) + + + if (VM_Version::supports_cmov()) { + masm.movl(rdi, Address(rdi, count_offset)); + masm.movl(rsi, Address(rsi, count_offset)); + masm.movl(rcx, rdi); + masm.subl(rdi, rsi); + masm.pushl(rdi); + masm.cmovl(Assembler::lessEqual, rsi, rcx); + } else { + masm.movl(rdi, Address(rdi, count_offset)); + masm.movl(rcx, Address(rsi, count_offset)); + masm.movl(rsi, rdi); + masm.subl(rdi, rcx); + masm.pushl(rdi); + masm.jcc(Assembler::lessEqual, ECX_GOOD_LABEL); + masm.movl(rsi, rcx); + // rsi holds min, rcx is unused + } + + // Is the minimum length zero? + masm.bind(ECX_GOOD_LABEL); + masm.testl(rsi, rsi); + masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL); + + // Load first characters + masm.load_unsigned_word(rcx, Address(rbx, 0)); + masm.load_unsigned_word(rdi, Address(rax, 0)); + + // Compare first characters + masm.subl(rcx, rdi); + masm.jcc(Assembler::notZero, POP_LABEL); + masm.decrement(rsi); + masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL); + + { + // Check after comparing first character to see if strings are equivalent + Label LSkip2; + // Check if the strings start at same location + masm.cmpl(rbx,rax); + masm.jcc(Assembler::notEqual, LSkip2); + + // Check if the length difference is zero (from stack) + masm.cmpl(Address(rsp, 0), 0x0); + masm.jcc(Assembler::equal, LENGTH_DIFF_LABEL); + + // Strings might not be equivalent + masm.bind(LSkip2); + } + + // Shift rax, and rbx, to the end of the arrays, negate min + masm.leal(rax, Address(rax, rsi, Address::times_2, 2)); + masm.leal(rbx, Address(rbx, rsi, Address::times_2, 2)); + masm.negl(rsi); + + // Compare the rest of the characters + masm.bind(WHILE_HEAD_LABEL); + masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0)); + masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0)); + masm.subl(rcx, rdi); + masm.jcc(Assembler::notZero, POP_LABEL); + masm.increment(rsi); + masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL); + + // Strings are equal up to min length. Return the length difference. + masm.bind(LENGTH_DIFF_LABEL); + masm.popl(rcx); + masm.jmp(DONE_LABEL); + + // Discard the stored length difference + masm.bind(POP_LABEL); + masm.addl(rsp, 4); + + // That's it + masm.bind(DONE_LABEL); + %} + + enc_class enc_pop_rdx() %{ + emit_opcode(cbuf,0x5A); + %} + + enc_class enc_rethrow() %{ + cbuf.set_inst_mark(); + emit_opcode(cbuf, 0xE9); // jmp entry + emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4, + runtime_call_Relocation::spec(), RELOC_IMM32 ); + %} + + + // Convert a double to an int. Java semantics require we do complex + // manglelations in the corner cases. So we set the rounding mode to + // 'zero', store the darned double down as an int, and reset the + // rounding mode to 'nearest'. The hardware throws an exception which + // patches up the correct value directly to the stack. + enc_class D2I_encoding( regD src ) %{ + // Flip to round-to-zero mode. We attempted to allow invalid-op + // exceptions here, so that a NAN or other corner-case value will + // thrown an exception (but normal values get converted at full speed). + // However, I2C adapters and other float-stack manglers leave pending + // invalid-op exceptions hanging. We would have to clear them before + // enabling them and that is more expensive than just testing for the + // invalid value Intel stores down in the corner cases. + emit_opcode(cbuf,0xD9); // FLDCW trunc + emit_opcode(cbuf,0x2D); + emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc()); + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,4 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x04); + // Encoding assumes a double has been pushed into FPR0. + // Store down the double as an int, popping the FPU stack + emit_opcode(cbuf,0xDB); // FISTP [ESP] + emit_opcode(cbuf,0x1C); + emit_d8(cbuf,0x24); + // Restore the rounding mode; mask the exception + emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode + emit_opcode(cbuf,0x2D); + emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode() + ? (int)StubRoutines::addr_fpu_cntrl_wrd_24() + : (int)StubRoutines::addr_fpu_cntrl_wrd_std()); + + // Load the converted int; adjust CPU stack + emit_opcode(cbuf,0x58); // POP EAX + emit_opcode(cbuf,0x3D); // CMP EAX,imm + emit_d32 (cbuf,0x80000000); // 0x80000000 + emit_opcode(cbuf,0x75); // JNE around_slow_call + emit_d8 (cbuf,0x07); // Size of slow_call + // Push src onto stack slow-path + emit_opcode(cbuf,0xD9 ); // FLD ST(i) + emit_d8 (cbuf,0xC0-1+$src$$reg ); + // CALL directly to the runtime + cbuf.set_inst_mark(); + emit_opcode(cbuf,0xE8); // Call into runtime + emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); + // Carry on here... + %} + + enc_class D2L_encoding( regD src ) %{ + emit_opcode(cbuf,0xD9); // FLDCW trunc + emit_opcode(cbuf,0x2D); + emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc()); + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,8 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x08); + // Encoding assumes a double has been pushed into FPR0. + // Store down the double as a long, popping the FPU stack + emit_opcode(cbuf,0xDF); // FISTP [ESP] + emit_opcode(cbuf,0x3C); + emit_d8(cbuf,0x24); + // Restore the rounding mode; mask the exception + emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode + emit_opcode(cbuf,0x2D); + emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode() + ? (int)StubRoutines::addr_fpu_cntrl_wrd_24() + : (int)StubRoutines::addr_fpu_cntrl_wrd_std()); + + // Load the converted int; adjust CPU stack + emit_opcode(cbuf,0x58); // POP EAX + emit_opcode(cbuf,0x5A); // POP EDX + emit_opcode(cbuf,0x81); // CMP EDX,imm + emit_d8 (cbuf,0xFA); // rdx + emit_d32 (cbuf,0x80000000); // 0x80000000 + emit_opcode(cbuf,0x75); // JNE around_slow_call + emit_d8 (cbuf,0x07+4); // Size of slow_call + emit_opcode(cbuf,0x85); // TEST EAX,EAX + emit_opcode(cbuf,0xC0); // 2/rax,/rax, + emit_opcode(cbuf,0x75); // JNE around_slow_call + emit_d8 (cbuf,0x07); // Size of slow_call + // Push src onto stack slow-path + emit_opcode(cbuf,0xD9 ); // FLD ST(i) + emit_d8 (cbuf,0xC0-1+$src$$reg ); + // CALL directly to the runtime + cbuf.set_inst_mark(); + emit_opcode(cbuf,0xE8); // Call into runtime + emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); + // Carry on here... + %} + + enc_class X2L_encoding( regX src ) %{ + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,8 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x08); + + emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xD9 ); // FLD_S [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xD9); // FLDCW trunc + emit_opcode(cbuf,0x2D); + emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc()); + + // Encoding assumes a double has been pushed into FPR0. + // Store down the double as a long, popping the FPU stack + emit_opcode(cbuf,0xDF); // FISTP [ESP] + emit_opcode(cbuf,0x3C); + emit_d8(cbuf,0x24); + + // Restore the rounding mode; mask the exception + emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode + emit_opcode(cbuf,0x2D); + emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode() + ? (int)StubRoutines::addr_fpu_cntrl_wrd_24() + : (int)StubRoutines::addr_fpu_cntrl_wrd_std()); + + // Load the converted int; adjust CPU stack + emit_opcode(cbuf,0x58); // POP EAX + + emit_opcode(cbuf,0x5A); // POP EDX + + emit_opcode(cbuf,0x81); // CMP EDX,imm + emit_d8 (cbuf,0xFA); // rdx + emit_d32 (cbuf,0x80000000);// 0x80000000 + + emit_opcode(cbuf,0x75); // JNE around_slow_call + emit_d8 (cbuf,0x13+4); // Size of slow_call + + emit_opcode(cbuf,0x85); // TEST EAX,EAX + emit_opcode(cbuf,0xC0); // 2/rax,/rax, + + emit_opcode(cbuf,0x75); // JNE around_slow_call + emit_d8 (cbuf,0x13); // Size of slow_call + + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,4 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x04); + + emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xD9 ); // FLD_S [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0x83); // ADD ESP,4 + emit_opcode(cbuf,0xC4); + emit_d8(cbuf,0x04); + + // CALL directly to the runtime + cbuf.set_inst_mark(); + emit_opcode(cbuf,0xE8); // Call into runtime + emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); + // Carry on here... + %} + + enc_class XD2L_encoding( regXD src ) %{ + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,8 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x08); + + emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xDD ); // FLD_D [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xD9); // FLDCW trunc + emit_opcode(cbuf,0x2D); + emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc()); + + // Encoding assumes a double has been pushed into FPR0. + // Store down the double as a long, popping the FPU stack + emit_opcode(cbuf,0xDF); // FISTP [ESP] + emit_opcode(cbuf,0x3C); + emit_d8(cbuf,0x24); + + // Restore the rounding mode; mask the exception + emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode + emit_opcode(cbuf,0x2D); + emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode() + ? (int)StubRoutines::addr_fpu_cntrl_wrd_24() + : (int)StubRoutines::addr_fpu_cntrl_wrd_std()); + + // Load the converted int; adjust CPU stack + emit_opcode(cbuf,0x58); // POP EAX + + emit_opcode(cbuf,0x5A); // POP EDX + + emit_opcode(cbuf,0x81); // CMP EDX,imm + emit_d8 (cbuf,0xFA); // rdx + emit_d32 (cbuf,0x80000000); // 0x80000000 + + emit_opcode(cbuf,0x75); // JNE around_slow_call + emit_d8 (cbuf,0x13+4); // Size of slow_call + + emit_opcode(cbuf,0x85); // TEST EAX,EAX + emit_opcode(cbuf,0xC0); // 2/rax,/rax, + + emit_opcode(cbuf,0x75); // JNE around_slow_call + emit_d8 (cbuf,0x13); // Size of slow_call + + // Push src onto stack slow-path + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,8 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x08); + + emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xDD ); // FLD_D [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0x83); // ADD ESP,8 + emit_opcode(cbuf,0xC4); + emit_d8(cbuf,0x08); + + // CALL directly to the runtime + cbuf.set_inst_mark(); + emit_opcode(cbuf,0xE8); // Call into runtime + emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); + // Carry on here... + %} + + enc_class D2X_encoding( regX dst, regD src ) %{ + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,4 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x04); + int pop = 0x02; + if ($src$$reg != FPR1L_enc) { + emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1) + emit_d8( cbuf, 0xC0-1+$src$$reg ); + pop = 0x03; + } + store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST

_S [ESP] + + emit_opcode (cbuf, 0xF3 ); // MOVSS dst(xmm), [ESP] + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x10 ); + encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0x83); // ADD ESP,4 + emit_opcode(cbuf,0xC4); + emit_d8(cbuf,0x04); + // Carry on here... + %} + + enc_class FX2I_encoding( regX src, eRegI dst ) %{ + emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); + + // Compare the result to see if we need to go to the slow path + emit_opcode(cbuf,0x81); // CMP dst,imm + emit_rm (cbuf,0x3,0x7,$dst$$reg); + emit_d32 (cbuf,0x80000000); // 0x80000000 + + emit_opcode(cbuf,0x75); // JNE around_slow_call + emit_d8 (cbuf,0x13); // Size of slow_call + // Store xmm to a temp memory + // location and push it onto stack. + + emit_opcode(cbuf,0x83); // SUB ESP,4 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf, $primary ? 0x8 : 0x4); + + emit_opcode (cbuf, $primary ? 0xF2 : 0xF3 ); // MOVSS [ESP], xmm + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf, $primary ? 0xDD : 0xD9 ); // FLD [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0x83); // ADD ESP,4 + emit_opcode(cbuf,0xC4); + emit_d8(cbuf, $primary ? 0x8 : 0x4); + + // CALL directly to the runtime + cbuf.set_inst_mark(); + emit_opcode(cbuf,0xE8); // Call into runtime + emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); + + // Carry on here... + %} + + enc_class X2D_encoding( regD dst, regX src ) %{ + // Allocate a word + emit_opcode(cbuf,0x83); // SUB ESP,4 + emit_opcode(cbuf,0xEC); + emit_d8(cbuf,0x04); + + emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], xmm + emit_opcode (cbuf, 0x0F ); + emit_opcode (cbuf, 0x11 ); + encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0xD9 ); // FLD_S [ESP] + encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); + + emit_opcode(cbuf,0x83); // ADD ESP,4 + emit_opcode(cbuf,0xC4); + emit_d8(cbuf,0x04); + + // Carry on here... + %} + + enc_class AbsXF_encoding(regX dst) %{ + address signmask_address=(address)float_signmask_pool; + // andpd:\tANDPS $dst,[signconst] + emit_opcode(cbuf, 0x0F); + emit_opcode(cbuf, 0x54); + emit_rm(cbuf, 0x0, $dst$$reg, 0x5); + emit_d32(cbuf, (int)signmask_address); + %} + + enc_class AbsXD_encoding(regXD dst) %{ + address signmask_address=(address)double_signmask_pool; + // andpd:\tANDPD $dst,[signconst] + emit_opcode(cbuf, 0x66); + emit_opcode(cbuf, 0x0F); + emit_opcode(cbuf, 0x54); + emit_rm(cbuf, 0x0, $dst$$reg, 0x5); + emit_d32(cbuf, (int)signmask_address); + %} + + enc_class NegXF_encoding(regX dst) %{ + address signmask_address=(address)float_signflip_pool; + // andpd:\tXORPS $dst,[signconst] + emit_opcode(cbuf, 0x0F); + emit_opcode(cbuf, 0x57); + emit_rm(cbuf, 0x0, $dst$$reg, 0x5); + emit_d32(cbuf, (int)signmask_address); + %} + + enc_class NegXD_encoding(regXD dst) %{ + address signmask_address=(address)double_signflip_pool; + // andpd:\tXORPD $dst,[signconst] + emit_opcode(cbuf, 0x66); + emit_opcode(cbuf, 0x0F); + emit_opcode(cbuf, 0x57); + emit_rm(cbuf, 0x0, $dst$$reg, 0x5); + emit_d32(cbuf, (int)signmask_address); + %} + + enc_class FMul_ST_reg( eRegF src1 ) %{ + // Operand was loaded from memory into fp ST (stack top) + // FMUL ST,$src /* D8 C8+i */ + emit_opcode(cbuf, 0xD8); + emit_opcode(cbuf, 0xC8 + $src1$$reg); + %} + + enc_class FAdd_ST_reg( eRegF src2 ) %{ + // FADDP ST,src2 /* D8 C0+i */ + emit_opcode(cbuf, 0xD8); + emit_opcode(cbuf, 0xC0 + $src2$$reg); + //could use FADDP src2,fpST /* DE C0+i */ + %} + + enc_class FAddP_reg_ST( eRegF src2 ) %{ + // FADDP src2,ST /* DE C0+i */ + emit_opcode(cbuf, 0xDE); + emit_opcode(cbuf, 0xC0 + $src2$$reg); + %} + + enc_class subF_divF_encode( eRegF src1, eRegF src2) %{ + // Operand has been loaded into fp ST (stack top) + // FSUB ST,$src1 + emit_opcode(cbuf, 0xD8); + emit_opcode(cbuf, 0xE0 + $src1$$reg); + + // FDIV + emit_opcode(cbuf, 0xD8); + emit_opcode(cbuf, 0xF0 + $src2$$reg); + %} + + enc_class MulFAddF (eRegF src1, eRegF src2) %{ + // Operand was loaded from memory into fp ST (stack top) + // FADD ST,$src /* D8 C0+i */ + emit_opcode(cbuf, 0xD8); + emit_opcode(cbuf, 0xC0 + $src1$$reg); + + // FMUL ST,src2 /* D8 C*+i */ + emit_opcode(cbuf, 0xD8); + emit_opcode(cbuf, 0xC8 + $src2$$reg); + %} + + + enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{ + // Operand was loaded from memory into fp ST (stack top) + // FADD ST,$src /* D8 C0+i */ + emit_opcode(cbuf, 0xD8); + emit_opcode(cbuf, 0xC0 + $src1$$reg); + + // FMULP src2,ST /* DE C8+i */ + emit_opcode(cbuf, 0xDE); + emit_opcode(cbuf, 0xC8 + $src2$$reg); + %} + + enc_class enc_membar_acquire %{ + // Doug Lea believes this is not needed with current Sparcs and TSO. + // MacroAssembler masm(&cbuf); + // masm.membar(); + %} + + enc_class enc_membar_release %{ + // Doug Lea believes this is not needed with current Sparcs and TSO. + // MacroAssembler masm(&cbuf); + // masm.membar(); + %} + + enc_class enc_membar_volatile %{ + MacroAssembler masm(&cbuf); + masm.membar(); + %} + + // Atomically load the volatile long + enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{ + emit_opcode(cbuf,0xDF); + int rm_byte_opcode = 0x05; + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop); + store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp ); + %} + + enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{ + { // Atomic long load + // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem + emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12); + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); + } + { // MOVSD $dst,$tmp ! atomic long store + emit_opcode(cbuf,0xF2); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x11); + int base = $dst$$base; + int index = $dst$$index; + int scale = $dst$$scale; + int displace = $dst$$disp; + bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); + } + %} + + enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{ + { // Atomic long load + // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem + emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12); + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); + } + { // MOVD $dst.lo,$tmp + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x7E); + emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg); + } + { // PSRLQ $tmp,32 + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x73); + emit_rm(cbuf, 0x3, 0x02, $tmp$$reg); + emit_d8(cbuf, 0x20); + } + { // MOVD $dst.hi,$tmp + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x7E); + emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg)); + } + %} + + // Volatile Store Long. Must be atomic, so move it into + // the FP TOS and then do a 64-bit FIST. Has to probe the + // target address before the store (for null-ptr checks) + // so the memory operand is used twice in the encoding. + enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{ + store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp ); + cbuf.set_inst_mark(); // Mark start of FIST in case $mem has an oop + emit_opcode(cbuf,0xDF); + int rm_byte_opcode = 0x07; + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop); + %} + + enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{ + { // Atomic long load + // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src] + emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12); + int base = $src$$base; + int index = $src$$index; + int scale = $src$$scale; + int displace = $src$$disp; + bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); + } + cbuf.set_inst_mark(); // Mark start of MOVSD in case $mem has an oop + { // MOVSD $mem,$tmp ! atomic long store + emit_opcode(cbuf,0xF2); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x11); + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); + } + %} + + enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{ + { // MOVD $tmp,$src.lo + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x6E); + emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg); + } + { // MOVD $tmp2,$src.hi + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x6E); + emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg)); + } + { // PUNPCKLDQ $tmp,$tmp2 + emit_opcode(cbuf,0x66); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x62); + emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg); + } + cbuf.set_inst_mark(); // Mark start of MOVSD in case $mem has an oop + { // MOVSD $mem,$tmp ! atomic long store + emit_opcode(cbuf,0xF2); + emit_opcode(cbuf,0x0F); + emit_opcode(cbuf,0x11); + int base = $mem$$base; + int index = $mem$$index; + int scale = $mem$$scale; + int displace = $mem$$disp; + bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals + encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); + } + %} + + // Safepoint Poll. This polls the safepoint page, and causes an + // exception if it is not readable. Unfortunately, it kills the condition code + // in the process + // We current use TESTL [spp],EDI + // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0 + + enc_class Safepoint_Poll() %{ + cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0); + emit_opcode(cbuf,0x85); + emit_rm (cbuf, 0x0, 0x7, 0x5); + emit_d32(cbuf, (intptr_t)os::get_polling_page()); + %} +%} + + +//----------FRAME-------------------------------------------------------------- +// Definition of frame structure and management information. +// +// S T A C K L A Y O U T Allocators stack-slot number +// | (to get allocators register number +// G Owned by | | v add OptoReg::stack0()) +// r CALLER | | +// o | +--------+ pad to even-align allocators stack-slot +// w V | pad0 | numbers; owned by CALLER +// t -----------+--------+----> Matcher::_in_arg_limit, unaligned +// h ^ | in | 5 +// | | args | 4 Holes in incoming args owned by SELF +// | | | | 3 +// | | +--------+ +// V | | old out| Empty on Intel, window on Sparc +// | old |preserve| Must be even aligned. +// | SP-+--------+----> Matcher::_old_SP, even aligned +// | | in | 3 area for Intel ret address +// Owned by |preserve| Empty on Sparc. +// SELF +--------+ +// | | pad2 | 2 pad to align old SP +// | +--------+ 1 +// | | locks | 0 +// | +--------+----> OptoReg::stack0(), even aligned +// | | pad1 | 11 pad to align new SP +// | +--------+ +// | | | 10 +// | | spills | 9 spills +// V | | 8 (pad0 slot for callee) +// -----------+--------+----> Matcher::_out_arg_limit, unaligned +// ^ | out | 7 +// | | args | 6 Holes in outgoing args owned by CALLEE +// Owned by +--------+ +// CALLEE | new out| 6 Empty on Intel, window on Sparc +// | new |preserve| Must be even-aligned. +// | SP-+--------+----> Matcher::_new_SP, even aligned +// | | | +// +// Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is +// known from SELF's arguments and the Java calling convention. +// Region 6-7 is determined per call site. +// Note 2: If the calling convention leaves holes in the incoming argument +// area, those holes are owned by SELF. Holes in the outgoing area +// are owned by the CALLEE. Holes should not be nessecary in the +// incoming area, as the Java calling convention is completely under +// the control of the AD file. Doubles can be sorted and packed to +// avoid holes. Holes in the outgoing arguments may be nessecary for +// varargs C calling conventions. +// Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is +// even aligned with pad0 as needed. +// Region 6 is even aligned. Region 6-7 is NOT even aligned; +// region 6-11 is even aligned; it may be padded out more so that +// the region from SP to FP meets the minimum stack alignment. + +frame %{ + // What direction does stack grow in (assumed to be same for C & Java) + stack_direction(TOWARDS_LOW); + + // These three registers define part of the calling convention + // between compiled code and the interpreter. + inline_cache_reg(EAX); // Inline Cache Register + interpreter_method_oop_reg(EBX); // Method Oop Register when calling interpreter + + // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset] + cisc_spilling_operand_name(indOffset32); + + // Number of stack slots consumed by locking an object + sync_stack_slots(1); + + // Compiled code's Frame Pointer + frame_pointer(ESP); + // Interpreter stores its frame pointer in a register which is + // stored to the stack by I2CAdaptors. + // I2CAdaptors convert from interpreted java to compiled java. + interpreter_frame_pointer(EBP); + + // Stack alignment requirement + // Alignment size in bytes (128-bit -> 16 bytes) + stack_alignment(StackAlignmentInBytes); + + // Number of stack slots between incoming argument block and the start of + // a new frame. The PROLOG must add this many slots to the stack. The + // EPILOG must remove this many slots. Intel needs one slot for + // return address and one for rbp, (must save rbp) + in_preserve_stack_slots(2+VerifyStackAtCalls); + + // Number of outgoing stack slots killed above the out_preserve_stack_slots + // for calls to C. Supports the var-args backing area for register parms. + varargs_C_out_slots_killed(0); + + // The after-PROLOG location of the return address. Location of + // return address specifies a type (REG or STACK) and a number + // representing the register number (i.e. - use a register name) or + // stack slot. + // Ret Addr is on stack in slot 0 if no locks or verification or alignment. + // Otherwise, it is above the locks and verification slot and alignment word + return_addr(STACK - 1 + + round_to(1+VerifyStackAtCalls+ + Compile::current()->fixed_slots(), + (StackAlignmentInBytes/wordSize))); + + // Body of function which returns an integer array locating + // arguments either in registers or in stack slots. Passed an array + // of ideal registers called "sig" and a "length" count. Stack-slot + // offsets are based on outgoing arguments, i.e. a CALLER setting up + // arguments for a CALLEE. Incoming stack arguments are + // automatically biased by the preserve_stack_slots field above. + calling_convention %{ + // No difference between ingoing/outgoing just pass false + SharedRuntime::java_calling_convention(sig_bt, regs, length, false); + %} + + + // Body of function which returns an integer array locating + // arguments either in registers or in stack slots. Passed an array + // of ideal registers called "sig" and a "length" count. Stack-slot + // offsets are based on outgoing arguments, i.e. a CALLER setting up + // arguments for a CALLEE. Incoming stack arguments are + // automatically biased by the preserve_stack_slots field above. + c_calling_convention %{ + // This is obviously always outgoing + (void) SharedRuntime::c_calling_convention(sig_bt, regs, length); + %} + + // Location of C & interpreter return values + c_return_value %{ + assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" ); + static int lo[Op_RegL+1] = { 0, 0, EAX_num, EAX_num, FPR1L_num, FPR1L_num, EAX_num }; + static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num }; + + // in SSE2+ mode we want to keep the FPU stack clean so pretend + // that C functions return float and double results in XMM0. + if( ideal_reg == Op_RegD && UseSSE>=2 ) + return OptoRegPair(XMM0b_num,XMM0a_num); + if( ideal_reg == Op_RegF && UseSSE>=2 ) + return OptoRegPair(OptoReg::Bad,XMM0a_num); + + return OptoRegPair(hi[ideal_reg],lo[ideal_reg]); + %} + + // Location of return values + return_value %{ + assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" ); + static int lo[Op_RegL+1] = { 0, 0, EAX_num, EAX_num, FPR1L_num, FPR1L_num, EAX_num }; + static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num }; + if( ideal_reg == Op_RegD && UseSSE>=2 ) + return OptoRegPair(XMM0b_num,XMM0a_num); + if( ideal_reg == Op_RegF && UseSSE>=1 ) + return OptoRegPair(OptoReg::Bad,XMM0a_num); + return OptoRegPair(hi[ideal_reg],lo[ideal_reg]); + %} + +%} + +//----------ATTRIBUTES--------------------------------------------------------- +//----------Operand Attributes------------------------------------------------- +op_attrib op_cost(0); // Required cost attribute + +//----------Instruction Attributes--------------------------------------------- +ins_attrib ins_cost(100); // Required cost attribute +ins_attrib ins_size(8); // Required size attribute (in bits) +ins_attrib ins_pc_relative(0); // Required PC Relative flag +ins_attrib ins_short_branch(0); // Required flag: is this instruction a + // non-matching short branch variant of some + // long branch? +ins_attrib ins_alignment(1); // Required alignment attribute (must be a power of 2) + // specifies the alignment that some part of the instruction (not + // necessarily the start) requires. If > 1, a compute_padding() + // function must be provided for the instruction + +//----------OPERANDS----------------------------------------------------------- +// Operand definitions must precede instruction definitions for correct parsing +// in the ADLC because operands constitute user defined types which are used in +// instruction definitions. + +//----------Simple Operands---------------------------------------------------- +// Immediate Operands +// Integer Immediate +operand immI() %{ + match(ConI); + + op_cost(10); + format %{ %} + interface(CONST_INTER); +%} + +// Constant for test vs zero +operand immI0() %{ + predicate(n->get_int() == 0); + match(ConI); + + op_cost(0); + format %{ %} + interface(CONST_INTER); +%} + +// Constant for increment +operand immI1() %{ + predicate(n->get_int() == 1); + match(ConI); + + op_cost(0); + format %{ %} + interface(CONST_INTER); +%} + +// Constant for decrement +operand immI_M1() %{ + predicate(n->get_int() == -1); + match(ConI); + + op_cost(0); + format %{ %} + interface(CONST_INTER); +%} + +// Valid scale values for addressing modes +operand immI2() %{ + predicate(0 <= n->get_int() && (n->get_int() <= 3)); + match(ConI); + + format %{ %} + interface(CONST_INTER); +%} + +operand immI8() %{ + predicate((-128 <= n->get_int()) && (n->get_int() <= 127)); + match(ConI); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +operand immI16() %{ + predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767)); + match(ConI); + + op_cost(10); + format %{ %} + interface(CONST_INTER); +%} + +// Constant for long shifts +operand immI_32() %{ + predicate( n->get_int() == 32 ); + match(ConI); + + op_cost(0); + format %{ %} + interface(CONST_INTER); +%} + +operand immI_1_31() %{ + predicate( n->get_int() >= 1 && n->get_int() <= 31 ); + match(ConI); + + op_cost(0); + format %{ %} + interface(CONST_INTER); +%} + +operand immI_32_63() %{ + predicate( n->get_int() >= 32 && n->get_int() <= 63 ); + match(ConI); + op_cost(0); + + format %{ %} + interface(CONST_INTER); +%} + +// Pointer Immediate +operand immP() %{ + match(ConP); + + op_cost(10); + format %{ %} + interface(CONST_INTER); +%} + +// NULL Pointer Immediate +operand immP0() %{ + predicate( n->get_ptr() == 0 ); + match(ConP); + op_cost(0); + + format %{ %} + interface(CONST_INTER); +%} + +// Long Immediate +operand immL() %{ + match(ConL); + + op_cost(20); + format %{ %} + interface(CONST_INTER); +%} + +// Long Immediate zero +operand immL0() %{ + predicate( n->get_long() == 0L ); + match(ConL); + op_cost(0); + + format %{ %} + interface(CONST_INTER); +%} + +// Long immediate from 0 to 127. +// Used for a shorter form of long mul by 10. +operand immL_127() %{ + predicate((0 <= n->get_long()) && (n->get_long() <= 127)); + match(ConL); + op_cost(0); + + format %{ %} + interface(CONST_INTER); +%} + +// Long Immediate: low 32-bit mask +operand immL_32bits() %{ + predicate(n->get_long() == 0xFFFFFFFFL); + match(ConL); + op_cost(0); + + format %{ %} + interface(CONST_INTER); +%} + +// Long Immediate: low 32-bit mask +operand immL32() %{ + predicate(n->get_long() == (int)(n->get_long())); + match(ConL); + op_cost(20); + + format %{ %} + interface(CONST_INTER); +%} + +//Double Immediate zero +operand immD0() %{ + // Do additional (and counter-intuitive) test against NaN to work around VC++ + // bug that generates code such that NaNs compare equal to 0.0 + predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) ); + match(ConD); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +// Double Immediate +operand immD1() %{ + predicate( UseSSE<=1 && n->getd() == 1.0 ); + match(ConD); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +// Double Immediate +operand immD() %{ + predicate(UseSSE<=1); + match(ConD); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +operand immXD() %{ + predicate(UseSSE>=2); + match(ConD); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +// Double Immediate zero +operand immXD0() %{ + // Do additional (and counter-intuitive) test against NaN to work around VC++ + // bug that generates code such that NaNs compare equal to 0.0 AND do not + // compare equal to -0.0. + predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 ); + match(ConD); + + format %{ %} + interface(CONST_INTER); +%} + +// Float Immediate zero +operand immF0() %{ + predicate( UseSSE == 0 && n->getf() == 0.0 ); + match(ConF); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +// Float Immediate +operand immF() %{ + predicate( UseSSE == 0 ); + match(ConF); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +// Float Immediate +operand immXF() %{ + predicate(UseSSE >= 1); + match(ConF); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +// Float Immediate zero. Zero and not -0.0 +operand immXF0() %{ + predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 ); + match(ConF); + + op_cost(5); + format %{ %} + interface(CONST_INTER); +%} + +// Immediates for special shifts (sign extend) + +// Constants for increment +operand immI_16() %{ + predicate( n->get_int() == 16 ); + match(ConI); + + format %{ %} + interface(CONST_INTER); +%} + +operand immI_24() %{ + predicate( n->get_int() == 24 ); + match(ConI); + + format %{ %} + interface(CONST_INTER); +%} + +// Constant for byte-wide masking +operand immI_255() %{ + predicate( n->get_int() == 255 ); + match(ConI); + + format %{ %} + interface(CONST_INTER); +%} + +// Register Operands +// Integer Register +operand eRegI() %{ + constraint(ALLOC_IN_RC(e_reg)); + match(RegI); + match(xRegI); + match(eAXRegI); + match(eBXRegI); + match(eCXRegI); + match(eDXRegI); + match(eDIRegI); + match(eSIRegI); + + format %{ %} + interface(REG_INTER); +%} + +// Subset of Integer Register +operand xRegI(eRegI reg) %{ + constraint(ALLOC_IN_RC(x_reg)); + match(reg); + match(eAXRegI); + match(eBXRegI); + match(eCXRegI); + match(eDXRegI); + + format %{ %} + interface(REG_INTER); +%} + +// Special Registers +operand eAXRegI(xRegI reg) %{ + constraint(ALLOC_IN_RC(eax_reg)); + match(reg); + match(eRegI); + + format %{ "EAX" %} + interface(REG_INTER); +%} + +// Special Registers +operand eBXRegI(xRegI reg) %{ + constraint(ALLOC_IN_RC(ebx_reg)); + match(reg); + match(eRegI); + + format %{ "EBX" %} + interface(REG_INTER); +%} + +operand eCXRegI(xRegI reg) %{ + constraint(ALLOC_IN_RC(ecx_reg)); + match(reg); + match(eRegI); + + format %{ "ECX" %} + interface(REG_INTER); +%} + +operand eDXRegI(xRegI reg) %{ + constraint(ALLOC_IN_RC(edx_reg)); + match(reg); + match(eRegI); + + format %{ "EDX" %} + interface(REG_INTER); +%} + +operand eDIRegI(xRegI reg) %{ + constraint(ALLOC_IN_RC(edi_reg)); + match(reg); + match(eRegI); + + format %{ "EDI" %} + interface(REG_INTER); +%} + +operand naxRegI() %{ + constraint(ALLOC_IN_RC(nax_reg)); + match(RegI); + match(eCXRegI); + match(eDXRegI); + match(eSIRegI); + match(eDIRegI); + + format %{ %} + interface(REG_INTER); +%} + +operand nadxRegI() %{ + constraint(ALLOC_IN_RC(nadx_reg)); + match(RegI); + match(eBXRegI); + match(eCXRegI); + match(eSIRegI); + match(eDIRegI); + + format %{ %} + interface(REG_INTER); +%} + +operand ncxRegI() %{ + constraint(ALLOC_IN_RC(ncx_reg)); + match(RegI); + match(eAXRegI); + match(eDXRegI); + match(eSIRegI); + match(eDIRegI); + + format %{ %} + interface(REG_INTER); +%} + +// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg +// // +operand eSIRegI(xRegI reg) %{ + constraint(ALLOC_IN_RC(esi_reg)); + match(reg); + match(eRegI); + + format %{ "ESI" %} + interface(REG_INTER); +%} + +// Pointer Register +operand anyRegP() %{ + constraint(ALLOC_IN_RC(any_reg)); + match(RegP); + match(eAXRegP); + match(eBXRegP); + match(eCXRegP); + match(eDIRegP); + match(eRegP); + + format %{ %} + interface(REG_INTER); +%} + +operand eRegP() %{ + constraint(ALLOC_IN_RC(e_reg)); + match(RegP); + match(eAXRegP); + match(eBXRegP); + match(eCXRegP); + match(eDIRegP); + + format %{ %} + interface(REG_INTER); +%} + +// On windows95, EBP is not safe to use for implicit null tests. +operand eRegP_no_EBP() %{ + constraint(ALLOC_IN_RC(e_reg_no_rbp)); + match(RegP); + match(eAXRegP); + match(eBXRegP); + match(eCXRegP); + match(eDIRegP); + + op_cost(100); + format %{ %} + interface(REG_INTER); +%} + +operand naxRegP() %{ + constraint(ALLOC_IN_RC(nax_reg)); + match(RegP); + match(eBXRegP); + match(eDXRegP); + match(eCXRegP); + match(eSIRegP); + match(eDIRegP); + + format %{ %} + interface(REG_INTER); +%} + +operand nabxRegP() %{ + constraint(ALLOC_IN_RC(nabx_reg)); + match(RegP); + match(eCXRegP); + match(eDXRegP); + match(eSIRegP); + match(eDIRegP); + + format %{ %} + interface(REG_INTER); +%} + +operand pRegP() %{ + constraint(ALLOC_IN_RC(p_reg)); + match(RegP); + match(eBXRegP); + match(eDXRegP); + match(eSIRegP); + match(eDIRegP); + + format %{ %} + interface(REG_INTER); +%} + +// Special Registers +// Return a pointer value +operand eAXRegP(eRegP reg) %{ + constraint(ALLOC_IN_RC(eax_reg)); + match(reg); + format %{ "EAX" %} + interface(REG_INTER); +%} + +// Used in AtomicAdd +operand eBXRegP(eRegP reg) %{ + constraint(ALLOC_IN_RC(ebx_reg)); + match(reg); + format %{ "EBX" %} + interface(REG_INTER); +%} + +// Tail-call (interprocedural jump) to interpreter +operand eCXRegP(eRegP reg) %{ + constraint(ALLOC_IN_RC(ecx_reg)); + match(reg); + format %{ "ECX" %} + interface(REG_INTER); +%} + +operand eSIRegP(eRegP reg) %{ + constraint(ALLOC_IN_RC(esi_reg)); + match(reg); + format %{ "ESI" %} + interface(REG_INTER); +%} + +// Used in rep stosw +operand eDIRegP(eRegP reg) %{ + constraint(ALLOC_IN_RC(edi_reg)); + match(reg); + format %{ "EDI" %} + interface(REG_INTER); +%} + +operand eBPRegP() %{ + constraint(ALLOC_IN_RC(ebp_reg)); + match(RegP); + format %{ "EBP" %} + interface(REG_INTER); +%} + +operand eRegL() %{ + constraint(ALLOC_IN_RC(long_reg)); + match(RegL); + match(eADXRegL); + + format %{ %} + interface(REG_INTER); +%} + +operand eADXRegL( eRegL reg ) %{ + constraint(ALLOC_IN_RC(eadx_reg)); + match(reg); + + format %{ "EDX:EAX" %} + interface(REG_INTER); +%} + +operand eBCXRegL( eRegL reg ) %{ + constraint(ALLOC_IN_RC(ebcx_reg)); + match(reg); + + format %{ "EBX:ECX" %} + interface(REG_INTER); +%} + +// Special case for integer high multiply +operand eADXRegL_low_only() %{ + constraint(ALLOC_IN_RC(eadx_reg)); + match(RegL); + + format %{ "EAX" %} + interface(REG_INTER); +%} + +// Flags register, used as output of compare instructions +operand eFlagsReg() %{ + constraint(ALLOC_IN_RC(int_flags)); + match(RegFlags); + + format %{ "EFLAGS" %} + interface(REG_INTER); +%} + +// Flags register, used as output of FLOATING POINT compare instructions +operand eFlagsRegU() %{ + constraint(ALLOC_IN_RC(int_flags)); + match(RegFlags); + + format %{ "EFLAGS_U" %} + interface(REG_INTER); +%} + +// Condition Code Register used by long compare +operand flagsReg_long_LTGE() %{ + constraint(ALLOC_IN_RC(int_flags)); + match(RegFlags); + format %{ "FLAGS_LTGE" %} + interface(REG_INTER); +%} +operand flagsReg_long_EQNE() %{ + constraint(ALLOC_IN_RC(int_flags)); + match(RegFlags); + format %{ "FLAGS_EQNE" %} + interface(REG_INTER); +%} +operand flagsReg_long_LEGT() %{ + constraint(ALLOC_IN_RC(int_flags)); + match(RegFlags); + format %{ "FLAGS_LEGT" %} + interface(REG_INTER); +%} + +// Float register operands +operand regD() %{ + predicate( UseSSE < 2 ); + constraint(ALLOC_IN_RC(dbl_reg)); + match(RegD); + match(regDPR1); + match(regDPR2); + format %{ %} + interface(REG_INTER); +%} + +operand regDPR1(regD reg) %{ + predicate( UseSSE < 2 ); + constraint(ALLOC_IN_RC(dbl_reg0)); + match(reg); + format %{ "FPR1" %} + interface(REG_INTER); +%} + +operand regDPR2(regD reg) %{ + predicate( UseSSE < 2 ); + constraint(ALLOC_IN_RC(dbl_reg1)); + match(reg); + format %{ "FPR2" %} + interface(REG_INTER); +%} + +operand regnotDPR1(regD reg) %{ + predicate( UseSSE < 2 ); + constraint(ALLOC_IN_RC(dbl_notreg0)); + match(reg); + format %{ %} + interface(REG_INTER); +%} + +// XMM Double register operands +operand regXD() %{ + predicate( UseSSE>=2 ); + constraint(ALLOC_IN_RC(xdb_reg)); + match(RegD); + match(regXD6); + match(regXD7); + format %{ %} + interface(REG_INTER); +%} + +// XMM6 double register operands +operand regXD6(regXD reg) %{ + predicate( UseSSE>=2 ); + constraint(ALLOC_IN_RC(xdb_reg6)); + match(reg); + format %{ "XMM6" %} + interface(REG_INTER); +%} + +// XMM7 double register operands +operand regXD7(regXD reg) %{ + predicate( UseSSE>=2 ); + constraint(ALLOC_IN_RC(xdb_reg7)); + match(reg); + format %{ "XMM7" %} + interface(REG_INTER); +%} + +// Float register operands +operand regF() %{ + predicate( UseSSE < 2 ); + constraint(ALLOC_IN_RC(flt_reg)); + match(RegF); + match(regFPR1); + format %{ %} + interface(REG_INTER); +%} + +// Float register operands +operand regFPR1(regF reg) %{ + predicate( UseSSE < 2 ); + constraint(ALLOC_IN_RC(flt_reg0)); + match(reg); + format %{ "FPR1" %} + interface(REG_INTER); +%} + +// XMM register operands +operand regX() %{ + predicate( UseSSE>=1 ); + constraint(ALLOC_IN_RC(xmm_reg)); + match(RegF); + format %{ %} + interface(REG_INTER); +%} + + +//----------Memory Operands---------------------------------------------------- +// Direct Memory Operand +operand direct(immP addr) %{ + match(addr); + + format %{ "[$addr]" %} + interface(MEMORY_INTER) %{ + base(0xFFFFFFFF); + index(0x4); + scale(0x0); + disp($addr); + %} +%} + +// Indirect Memory Operand +operand indirect(eRegP reg) %{ + constraint(ALLOC_IN_RC(e_reg)); + match(reg); + + format %{ "[$reg]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp(0x0); + %} +%} + +// Indirect Memory Plus Short Offset Operand +operand indOffset8(eRegP reg, immI8 off) %{ + match(AddP reg off); + + format %{ "[$reg + $off]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp($off); + %} +%} + +// Indirect Memory Plus Long Offset Operand +operand indOffset32(eRegP reg, immI off) %{ + match(AddP reg off); + + format %{ "[$reg + $off]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp($off); + %} +%} + +// Indirect Memory Plus Long Offset Operand +operand indOffset32X(eRegI reg, immP off) %{ + match(AddP off reg); + + format %{ "[$reg + $off]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp($off); + %} +%} + +// Indirect Memory Plus Index Register Plus Offset Operand +operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{ + match(AddP (AddP reg ireg) off); + + op_cost(10); + format %{"[$reg + $off + $ireg]" %} + interface(MEMORY_INTER) %{ + base($reg); + index($ireg); + scale(0x0); + disp($off); + %} +%} + +// Indirect Memory Plus Index Register Plus Offset Operand +operand indIndex(eRegP reg, eRegI ireg) %{ + match(AddP reg ireg); + + op_cost(10); + format %{"[$reg + $ireg]" %} + interface(MEMORY_INTER) %{ + base($reg); + index($ireg); + scale(0x0); + disp(0x0); + %} +%} + +// // ------------------------------------------------------------------------- +// // 486 architecture doesn't support "scale * index + offset" with out a base +// // ------------------------------------------------------------------------- +// // Scaled Memory Operands +// // Indirect Memory Times Scale Plus Offset Operand +// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{ +// match(AddP off (LShiftI ireg scale)); +// +// op_cost(10); +// format %{"[$off + $ireg << $scale]" %} +// interface(MEMORY_INTER) %{ +// base(0x4); +// index($ireg); +// scale($scale); +// disp($off); +// %} +// %} + +// Indirect Memory Times Scale Plus Index Register +operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{ + match(AddP reg (LShiftI ireg scale)); + + op_cost(10); + format %{"[$reg + $ireg << $scale]" %} + interface(MEMORY_INTER) %{ + base($reg); + index($ireg); + scale($scale); + disp(0x0); + %} +%} + +// Indirect Memory Times Scale Plus Index Register Plus Offset Operand +operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{ + match(AddP (AddP reg (LShiftI ireg scale)) off); + + op_cost(10); + format %{"[$reg + $off + $ireg << $scale]" %} + interface(MEMORY_INTER) %{ + base($reg); + index($ireg); + scale($scale); + disp($off); + %} +%} + +//----------Load Long Memory Operands------------------------------------------ +// The load-long idiom will use it's address expression again after loading +// the first word of the long. If the load-long destination overlaps with +// registers used in the addressing expression, the 2nd half will be loaded +// from a clobbered address. Fix this by requiring that load-long use +// address registers that do not overlap with the load-long target. + +// load-long support +operand load_long_RegP() %{ + constraint(ALLOC_IN_RC(esi_reg)); + match(RegP); + match(eSIRegP); + op_cost(100); + format %{ %} + interface(REG_INTER); +%} + +// Indirect Memory Operand Long +operand load_long_indirect(load_long_RegP reg) %{ + constraint(ALLOC_IN_RC(esi_reg)); + match(reg); + + format %{ "[$reg]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp(0x0); + %} +%} + +// Indirect Memory Plus Long Offset Operand +operand load_long_indOffset32(load_long_RegP reg, immI off) %{ + match(AddP reg off); + + format %{ "[$reg + $off]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp($off); + %} +%} + +opclass load_long_memory(load_long_indirect, load_long_indOffset32); + + +//----------Special Memory Operands-------------------------------------------- +// Stack Slot Operand - This operand is used for loading and storing temporary +// values on the stack where a match requires a value to +// flow through memory. +operand stackSlotP(sRegP reg) %{ + constraint(ALLOC_IN_RC(stack_slots)); + // No match rule because this operand is only generated in matching + format %{ "[$reg]" %} + interface(MEMORY_INTER) %{ + base(0x4); // ESP + index(0x4); // No Index + scale(0x0); // No Scale + disp($reg); // Stack Offset + %} +%} + +operand stackSlotI(sRegI reg) %{ + constraint(ALLOC_IN_RC(stack_slots)); + // No match rule because this operand is only generated in matching + format %{ "[$reg]" %} + interface(MEMORY_INTER) %{ + base(0x4); // ESP + index(0x4); // No Index + scale(0x0); // No Scale + disp($reg); // Stack Offset + %} +%} + +operand stackSlotF(sRegF reg) %{ + constraint(ALLOC_IN_RC(stack_slots)); + // No match rule because this operand is only generated in matching + format %{ "[$reg]" %} + interface(MEMORY_INTER) %{ + base(0x4); // ESP + index(0x4); // No Index + scale(0x0); // No Scale + disp($reg); // Stack Offset + %} +%} + +operand stackSlotD(sRegD reg) %{ + constraint(ALLOC_IN_RC(stack_slots)); + // No match rule because this operand is only generated in matching + format %{ "[$reg]" %} + interface(MEMORY_INTER) %{ + base(0x4); // ESP + index(0x4); // No Index + scale(0x0); // No Scale + disp($reg); // Stack Offset + %} +%} + +operand stackSlotL(sRegL reg) %{ + constraint(ALLOC_IN_RC(stack_slots)); + // No match rule because this operand is only generated in matching + format %{ "[$reg]" %} + interface(MEMORY_INTER) %{ + base(0x4); // ESP + index(0x4); // No Index + scale(0x0); // No Scale + disp($reg); // Stack Offset + %} +%} + +//----------Memory Operands - Win95 Implicit Null Variants---------------- +// Indirect Memory Operand +operand indirect_win95_safe(eRegP_no_EBP reg) +%{ + constraint(ALLOC_IN_RC(e_reg)); + match(reg); + + op_cost(100); + format %{ "[$reg]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp(0x0); + %} +%} + +// Indirect Memory Plus Short Offset Operand +operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off) +%{ + match(AddP reg off); + + op_cost(100); + format %{ "[$reg + $off]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp($off); + %} +%} + +// Indirect Memory Plus Long Offset Operand +operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off) +%{ + match(AddP reg off); + + op_cost(100); + format %{ "[$reg + $off]" %} + interface(MEMORY_INTER) %{ + base($reg); + index(0x4); + scale(0x0); + disp($off); + %} +%} + +// Indirect Memory Plus Index Register Plus Offset Operand +operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off) +%{ + match(AddP (AddP reg ireg) off); + + op_cost(100); + format %{"[$reg + $off + $ireg]" %} + interface(MEMORY_INTER) %{ + base($reg); + index($ireg); + scale(0x0); + disp($off); + %} +%} + +// Indirect Memory Times Scale Plus Index Register +operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale) +%{ + match(AddP reg (LShiftI ireg scale)); + + op_cost(100); + format %{"[$reg + $ireg << $scale]" %} + interface(MEMORY_INTER) %{ + base($reg); + index($ireg); + scale($scale); + disp(0x0); + %} +%} + +// Indirect Memory Times Scale Plus Index Register Plus Offset Operand +operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale) +%{ + match(AddP (AddP reg (LShiftI ireg scale)) off); + + op_cost(100); + format %{"[$reg + $off + $ireg << $scale]" %} + interface(MEMORY_INTER) %{ + base($reg); + index($ireg); + scale($scale); + disp($off); + %} +%} + +//----------Conditional Branch Operands---------------------------------------- +// Comparison Op - This is the operation of the comparison, and is limited to +// the following set of codes: +// L (<), LE (<=), G (>), GE (>=), E (==), NE (!=) +// +// Other attributes of the comparison, such as unsignedness, are specified +// by the comparison instruction that sets a condition code flags register. +// That result is represented by a flags operand whose subtype is appropriate +// to the unsignedness (etc.) of the comparison. +// +// Later, the instruction which matches both the Comparison Op (a Bool) and +// the flags (produced by the Cmp) specifies the coding of the comparison op +// by matching a specific subtype of Bool operand below, such as cmpOpU. + +// Comparision Code +operand cmpOp() %{ + match(Bool); + + format %{ "" %} + interface(COND_INTER) %{ + equal(0x4); + not_equal(0x5); + less(0xC); + greater_equal(0xD); + less_equal(0xE); + greater(0xF); + %} +%} + +// Comparison Code, unsigned compare. Used by FP also, with +// C2 (unordered) turned into GT or LT already. The other bits +// C0 and C3 are turned into Carry & Zero flags. +operand cmpOpU() %{ + match(Bool); + + format %{ "" %} + interface(COND_INTER) %{ + equal(0x4); + not_equal(0x5); + less(0x2); + greater_equal(0x3); + less_equal(0x6); + greater(0x7); + %} +%} + +// Comparison Code for FP conditional move +operand cmpOp_fcmov() %{ + match(Bool); + + format %{ "" %} + interface(COND_INTER) %{ + equal (0x0C8); + not_equal (0x1C8); + less (0x0C0); + greater_equal(0x1C0); + less_equal (0x0D0); + greater (0x1D0); + %} +%} + +// Comparision Code used in long compares +operand cmpOp_commute() %{ + match(Bool); + + format %{ "" %} + interface(COND_INTER) %{ + equal(0x4); + not_equal(0x5); + less(0xF); + greater_equal(0xE); + less_equal(0xD); + greater(0xC); + %} +%} + +//----------OPERAND CLASSES---------------------------------------------------- +// Operand Classes are groups of operands that are used as to simplify +// instruction definitions by not requiring the AD writer to specify seperate +// instructions for every form of operand when the instruction accepts +// multiple operand types with the same basic encoding and format. The classic +// case of this is memory operands. + +opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset, + indIndex, indIndexScale, indIndexScaleOffset); + +// Long memory operations are encoded in 2 instructions and a +4 offset. +// This means some kind of offset is always required and you cannot use +// an oop as the offset (done when working on static globals). +opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset, + indIndex, indIndexScale, indIndexScaleOffset); + + +//----------PIPELINE----------------------------------------------------------- +// Rules which define the behavior of the target architectures pipeline. +pipeline %{ + +//----------ATTRIBUTES--------------------------------------------------------- +attributes %{ + variable_size_instructions; // Fixed size instructions + max_instructions_per_bundle = 3; // Up to 3 instructions per bundle + instruction_unit_size = 1; // An instruction is 1 bytes long + instruction_fetch_unit_size = 16; // The processor fetches one line + instruction_fetch_units = 1; // of 16 bytes + + // List of nop instructions + nops( MachNop ); +%} + +//----------RESOURCES---------------------------------------------------------- +// Resources are the functional units available to the machine + +// Generic P2/P3 pipeline +// 3 decoders, only D0 handles big operands; a "bundle" is the limit of +// 3 instructions decoded per cycle. +// 2 load/store ops per cycle, 1 branch, 1 FPU, +// 2 ALU op, only ALU0 handles mul/div instructions. +resources( D0, D1, D2, DECODE = D0 | D1 | D2, + MS0, MS1, MEM = MS0 | MS1, + BR, FPU, + ALU0, ALU1, ALU = ALU0 | ALU1 ); + +//----------PIPELINE DESCRIPTION----------------------------------------------- +// Pipeline Description specifies the stages in the machine's pipeline + +// Generic P2/P3 pipeline +pipe_desc(S0, S1, S2, S3, S4, S5); + +//----------PIPELINE CLASSES--------------------------------------------------- +// Pipeline Classes describe the stages in which input and output are +// referenced by the hardware pipeline. + +// Naming convention: ialu or fpu +// Then: _reg +// Then: _reg if there is a 2nd register +// Then: _long if it's a pair of instructions implementing a long +// Then: _fat if it requires the big decoder +// Or: _mem if it requires the big decoder and a memory unit. + +// Integer ALU reg operation +pipe_class ialu_reg(eRegI dst) %{ + single_instruction; + dst : S4(write); + dst : S3(read); + DECODE : S0; // any decoder + ALU : S3; // any alu +%} + +// Long ALU reg operation +pipe_class ialu_reg_long(eRegL dst) %{ + instruction_count(2); + dst : S4(write); + dst : S3(read); + DECODE : S0(2); // any 2 decoders + ALU : S3(2); // both alus +%} + +// Integer ALU reg operation using big decoder +pipe_class ialu_reg_fat(eRegI dst) %{ + single_instruction; + dst : S4(write); + dst : S3(read); + D0 : S0; // big decoder only + ALU : S3; // any alu +%} + +// Long ALU reg operation using big decoder +pipe_class ialu_reg_long_fat(eRegL dst) %{ + instruction_count(2); + dst : S4(write); + dst : S3(read); + D0 : S0(2); // big decoder only; twice + ALU : S3(2); // any 2 alus +%} + +// Integer ALU reg-reg operation +pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{ + single_instruction; + dst : S4(write); + src : S3(read); + DECODE : S0; // any decoder + ALU : S3; // any alu +%} + +// Long ALU reg-reg operation +pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{ + instruction_count(2); + dst : S4(write); + src : S3(read); + DECODE : S0(2); // any 2 decoders + ALU : S3(2); // both alus +%} + +// Integer ALU reg-reg operation +pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{ + single_instruction; + dst : S4(write); + src : S3(read); + D0 : S0; // big decoder only + ALU : S3; // any alu +%} + +// Long ALU reg-reg operation +pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{ + instruction_count(2); + dst : S4(write); + src : S3(read); + D0 : S0(2); // big decoder only; twice + ALU : S3(2); // both alus +%} + +// Integer ALU reg-mem operation +pipe_class ialu_reg_mem(eRegI dst, memory mem) %{ + single_instruction; + dst : S5(write); + mem : S3(read); + D0 : S0; // big decoder only + ALU : S4; // any alu + MEM : S3; // any mem +%} + +// Long ALU reg-mem operation +pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{ + instruction_count(2); + dst : S5(write); + mem : S3(read); + D0 : S0(2); // big decoder only; twice + ALU : S4(2); // any 2 alus + MEM : S3(2); // both mems +%} + +// Integer mem operation (prefetch) +pipe_class ialu_mem(memory mem) +%{ + single_instruction; + mem : S3(read); + D0 : S0; // big decoder only + MEM : S3; // any mem +%} + +// Integer Store to Memory +pipe_class ialu_mem_reg(memory mem, eRegI src) %{ + single_instruction; + mem : S3(read); + src : S5(read); + D0 : S0; // big decoder only + ALU : S4; // any alu + MEM : S3; +%} + +// Long Store to Memory +pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{ + instruction_count(2); + mem : S3(read); + src : S5(read); + D0 : S0(2); // big decoder only; twice + ALU : S4(2); // any 2 alus + MEM : S3(2); // Both mems +%} + +// Integer Store to Memory +pipe_class ialu_mem_imm(memory mem) %{ + single_instruction; + mem : S3(read); + D0 : S0; // big decoder only + ALU : S4; // any alu + MEM : S3; +%} + +// Integer ALU0 reg-reg operation +pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{ + single_instruction; + dst : S4(write); + src : S3(read); + D0 : S0; // Big decoder only + ALU0 : S3; // only alu0 +%} + +// Integer ALU0 reg-mem operation +pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{ + single_instruction; + dst : S5(write); + mem : S3(read); + D0 : S0; // big decoder only + ALU0 : S4; // ALU0 only + MEM : S3; // any mem +%} + +// Integer ALU reg-reg operation +pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{ + single_instruction; + cr : S4(write); + src1 : S3(read); + src2 : S3(read); + DECODE : S0; // any decoder + ALU : S3; // any alu +%} + +// Integer ALU reg-imm operation +pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{ + single_instruction; + cr : S4(write); + src1 : S3(read); + DECODE : S0; // any decoder + ALU : S3; // any alu +%} + +// Integer ALU reg-mem operation +pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{ + single_instruction; + cr : S4(write); + src1 : S3(read); + src2 : S3(read); + D0 : S0; // big decoder only + ALU : S4; // any alu + MEM : S3; +%} + +// Conditional move reg-reg +pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{ + instruction_count(4); + y : S4(read); + q : S3(read); + p : S3(read); + DECODE : S0(4); // any decoder +%} + +// Conditional move reg-reg +pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{ + single_instruction; + dst : S4(write); + src : S3(read); + cr : S3(read); + DECODE : S0; // any decoder +%} + +// Conditional move reg-mem +pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{ + single_instruction; + dst : S4(write); + src : S3(read); + cr : S3(read); + DECODE : S0; // any decoder + MEM : S3; +%} + +// Conditional move reg-reg long +pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{ + single_instruction; + dst : S4(write); + src : S3(read); + cr : S3(read); + DECODE : S0(2); // any 2 decoders +%} + +// Conditional move double reg-reg +pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{ + single_instruction; + dst : S4(write); + src : S3(read); + cr : S3(read); + DECODE : S0; // any decoder +%} + +// Float reg-reg operation +pipe_class fpu_reg(regD dst) %{ + instruction_count(2); + dst : S3(read); + DECODE : S0(2); // any 2 decoders + FPU : S3; +%} + +// Float reg-reg operation +pipe_class fpu_reg_reg(regD dst, regD src) %{ + instruction_count(2); + dst : S4(write); + src : S3(read); + DECODE : S0(2); // any 2 decoders + FPU : S3; +%} + +// Float reg-reg operation +pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{ + instruction_count(3); + dst : S4(write); + src1 : S3(read); + src2 : S3(read); + DECODE : S0(3); // any 3 decoders + FPU : S3(2); +%} + +// Float reg-reg operation +pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{ + instruction_count(4); + dst : S4(write); + src1 : S3(read); + src2 : S3(read); + src3 : S3(read); + DECODE : S0(4); // any 3 decoders + FPU : S3(2); +%} + +// Float reg-reg operation +pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{ + instruction_count(4); + dst : S4(write); + src1 : S3(read); + src2 : S3(read); + src3 : S3(read); + DECODE : S1(3); // any 3 decoders + D0 : S0; // Big decoder only + FPU : S3(2); + MEM : S3; +%} + +// Float reg-mem operation +pipe_class fpu_reg_mem(regD dst, memory mem) %{ + instruction_count(2); + dst : S5(write); + mem : S3(read); + D0 : S0; // big decoder only + DECODE : S1; // any decoder for FPU POP + FPU : S4; + MEM : S3; // any mem +%} + +// Float reg-mem operation +pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{ + instruction_count(3); + dst : S5(write); + src1 : S3(read); + mem : S3(read); + D0 : S0; // big decoder only + DECODE : S1(2); // any decoder for FPU POP + FPU : S4; + MEM : S3; // any mem +%} + +// Float mem-reg operation +pipe_class fpu_mem_reg(memory mem, regD src) %{ + instruction_count(2); + src : S5(read); + mem : S3(read); + DECODE : S0; // any decoder for FPU PUSH + D0 : S1; // big decoder only + FPU : S4; + MEM : S3; // any mem +%} + +pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{ + instruction_count(3); + src1 : S3(read); + src2 : S3(read); + mem : S3(read); + DECODE : S0(2); // any decoder for FPU PUSH + D0 : S1; // big decoder only + FPU : S4; + MEM : S3; // any mem +%} + +pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{ + instruction_count(3); + src1 : S3(read); + src2 : S3(read); + mem : S4(read); + DECODE : S0; // any decoder for FPU PUSH + D0 : S0(2); // big decoder only + FPU : S4; + MEM : S3(2); // any mem +%} + +pipe_class fpu_mem_mem(memory dst, memory src1) %{ + instruction_count(2); + src1 : S3(read); + dst : S4(read); + D0 : S0(2); // big decoder only + MEM : S3(2); // any mem +%} + +pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{ + instruction_count(3); + src1 : S3(read); + src2 : S3(read); + dst : S4(read); + D0 : S0(3); // big decoder only + FPU : S4; + MEM : S3(3); // any mem +%} + +pipe_class fpu_mem_reg_con(memory mem, regD src1) %{ + instruction_count(3); + src1 : S4(read); + mem : S4(read); + DECODE : S0; // any decoder for FPU PUSH + D0 : S0(2); // big decoder only + FPU : S4; + MEM : S3(2); // any mem +%} + +// Float load constant +pipe_class fpu_reg_con(regD dst) %{ + instruction_count(2); + dst : S5(write); + D0 : S0; // big decoder only for the load + DECODE : S1; // any decoder for FPU POP + FPU : S4; + MEM : S3; // any mem +%} + +// Float load constant +pipe_class fpu_reg_reg_con(regD dst, regD src) %{ + instruction_count(3); + dst : S5(write); + src : S3(read); + D0 : S0; // big decoder only for the load + DECODE : S1(2); // any decoder for FPU POP + FPU : S4; + MEM : S3; // any mem +%} + +// UnConditional branch +pipe_class pipe_jmp( label labl ) %{ + single_instruction; + BR : S3; +%} + +// Conditional branch +pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{ + single_instruction; + cr : S1(read); + BR : S3; +%} + +// Allocation idiom +pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{ + instruction_count(1); force_serialization; + fixed_latency(6); + heap_ptr : S3(read); + DECODE : S0(3); + D0 : S2; + MEM : S3; + ALU : S3(2); + dst : S5(write); + BR : S5; +%} + +// Generic big/slow expanded idiom +pipe_class pipe_slow( ) %{ + instruction_count(10); multiple_bundles; force_serialization; + fixed_latency(100); + D0 : S0(2); + MEM : S3(2); +%} + +// The real do-nothing guy +pipe_class empty( ) %{ + instruction_count(0); +%} + +// Define the class for the Nop node +define %{ + MachNop = empty; +%} + +%} + +//----------INSTRUCTIONS------------------------------------------------------- +// +// match -- States which machine-independent subtree may be replaced +// by this instruction. +// ins_cost -- The estimated cost of this instruction is used by instruction +// selection to identify a minimum cost tree of machine +// instructions that matches a tree of machine-independent +// instructions. +// format -- A string providing the disassembly for this instruction. +// The value of an instruction's operand may be inserted +// by referring to it with a '$' prefix. +// opcode -- Three instruction opcodes may be provided. These are referred +// to within an encode class as $primary, $secondary, and $tertiary +// respectively. The primary opcode is commonly used to +// indicate the type of machine instruction, while secondary +// and tertiary are often used for prefix options or addressing +// modes. +// ins_encode -- A list of encode classes with parameters. The encode class +// name must have been defined in an 'enc_class' specification +// in the encode section of the architecture description. + +//----------BSWAP-Instruction-------------------------------------------------- +instruct bytes_reverse_int(eRegI dst) %{ + match(Set dst (ReverseBytesI dst)); + + format %{ "BSWAP $dst" %} + opcode(0x0F, 0xC8); + ins_encode( OpcP, OpcSReg(dst) ); + ins_pipe( ialu_reg ); +%} + +instruct bytes_reverse_long(eRegL dst) %{ + match(Set dst (ReverseBytesL dst)); + + format %{ "BSWAP $dst.lo\n\t" + "BSWAP $dst.hi\n\t" + "XCHG $dst.lo $dst.hi" %} + + ins_cost(125); + ins_encode( bswap_long_bytes(dst) ); + ins_pipe( ialu_reg_reg); +%} + + +//----------Load/Store/Move Instructions--------------------------------------- +//----------Load Instructions-------------------------------------------------- +// Load Byte (8bit signed) +instruct loadB(xRegI dst, memory mem) %{ + match(Set dst (LoadB mem)); + + ins_cost(125); + format %{ "MOVSX8 $dst,$mem" %} + opcode(0xBE, 0x0F); + ins_encode( OpcS, OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + +// Load Byte (8bit UNsigned) +instruct loadUB(xRegI dst, memory mem, immI_255 bytemask) %{ + match(Set dst (AndI (LoadB mem) bytemask)); + + ins_cost(125); + format %{ "MOVZX8 $dst,$mem" %} + opcode(0xB6, 0x0F); + ins_encode( OpcS, OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + +// Load Char (16bit unsigned) +instruct loadC(eRegI dst, memory mem) %{ + match(Set dst (LoadC mem)); + + ins_cost(125); + format %{ "MOVZX $dst,$mem" %} + opcode(0xB7, 0x0F); + ins_encode( OpcS, OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + +// Load Integer +instruct loadI(eRegI dst, memory mem) %{ + match(Set dst (LoadI mem)); + + ins_cost(125); + format %{ "MOV $dst,$mem" %} + opcode(0x8B); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + +// Load Long. Cannot clobber address while loading, so restrict address +// register to ESI +instruct loadL(eRegL dst, load_long_memory mem) %{ + predicate(!((LoadLNode*)n)->require_atomic_access()); + match(Set dst (LoadL mem)); + + ins_cost(250); + format %{ "MOV $dst.lo,$mem\n\t" + "MOV $dst.hi,$mem+4" %} + opcode(0x8B, 0x8B); + ins_encode( OpcP, RegMem(dst,mem), OpcS, RegMem_Hi(dst,mem)); + ins_pipe( ialu_reg_long_mem ); +%} + +// Volatile Load Long. Must be atomic, so do 64-bit FILD +// then store it down to the stack and reload on the int +// side. +instruct loadL_volatile(stackSlotL dst, memory mem) %{ + predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access()); + match(Set dst (LoadL mem)); + + ins_cost(200); + format %{ "FILD $mem\t# Atomic volatile long load\n\t" + "FISTp $dst" %} + ins_encode(enc_loadL_volatile(mem,dst)); + ins_pipe( fpu_reg_mem ); +%} + +instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{ + predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access()); + match(Set dst (LoadL mem)); + effect(TEMP tmp); + ins_cost(180); + format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t" + "MOVSD $dst,$tmp" %} + ins_encode(enc_loadLX_volatile(mem, dst, tmp)); + ins_pipe( pipe_slow ); +%} + +instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{ + predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access()); + match(Set dst (LoadL mem)); + effect(TEMP tmp); + ins_cost(160); + format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t" + "MOVD $dst.lo,$tmp\n\t" + "PSRLQ $tmp,32\n\t" + "MOVD $dst.hi,$tmp" %} + ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp)); + ins_pipe( pipe_slow ); +%} + +// Load Range +instruct loadRange(eRegI dst, memory mem) %{ + match(Set dst (LoadRange mem)); + + ins_cost(125); + format %{ "MOV $dst,$mem" %} + opcode(0x8B); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + + +// Load Pointer +instruct loadP(eRegP dst, memory mem) %{ + match(Set dst (LoadP mem)); + + ins_cost(125); + format %{ "MOV $dst,$mem" %} + opcode(0x8B); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + +// Load Klass Pointer +instruct loadKlass(eRegP dst, memory mem) %{ + match(Set dst (LoadKlass mem)); + + ins_cost(125); + format %{ "MOV $dst,$mem" %} + opcode(0x8B); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + +// Load Short (16bit signed) +instruct loadS(eRegI dst, memory mem) %{ + match(Set dst (LoadS mem)); + + ins_cost(125); + format %{ "MOVSX $dst,$mem" %} + opcode(0xBF, 0x0F); + ins_encode( OpcS, OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + +// Load Double +instruct loadD(regD dst, memory mem) %{ + predicate(UseSSE<=1); + match(Set dst (LoadD mem)); + + ins_cost(150); + format %{ "FLD_D ST,$mem\n\t" + "FSTP $dst" %} + opcode(0xDD); /* DD /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), + Pop_Reg_D(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +// Load Double to XMM +instruct loadXD(regXD dst, memory mem) %{ + predicate(UseSSE>=2 && UseXmmLoadAndClearUpper); + match(Set dst (LoadD mem)); + ins_cost(145); + format %{ "MOVSD $dst,$mem" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +instruct loadXD_partial(regXD dst, memory mem) %{ + predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper); + match(Set dst (LoadD mem)); + ins_cost(145); + format %{ "MOVLPD $dst,$mem" %} + ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +// Load to XMM register (single-precision floating point) +// MOVSS instruction +instruct loadX(regX dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (LoadF mem)); + ins_cost(145); + format %{ "MOVSS $dst,$mem" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +// Load Float +instruct loadF(regF dst, memory mem) %{ + predicate(UseSSE==0); + match(Set dst (LoadF mem)); + + ins_cost(150); + format %{ "FLD_S ST,$mem\n\t" + "FSTP $dst" %} + opcode(0xD9); /* D9 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), + Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +// Load Aligned Packed Byte to XMM register +instruct loadA8B(regXD dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (Load8B mem)); + ins_cost(125); + format %{ "MOVQ $dst,$mem\t! packed8B" %} + ins_encode( movq_ld(dst, mem)); + ins_pipe( pipe_slow ); +%} + +// Load Aligned Packed Short to XMM register +instruct loadA4S(regXD dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (Load4S mem)); + ins_cost(125); + format %{ "MOVQ $dst,$mem\t! packed4S" %} + ins_encode( movq_ld(dst, mem)); + ins_pipe( pipe_slow ); +%} + +// Load Aligned Packed Char to XMM register +instruct loadA4C(regXD dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (Load4C mem)); + ins_cost(125); + format %{ "MOVQ $dst,$mem\t! packed4C" %} + ins_encode( movq_ld(dst, mem)); + ins_pipe( pipe_slow ); +%} + +// Load Aligned Packed Integer to XMM register +instruct load2IU(regXD dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (Load2I mem)); + ins_cost(125); + format %{ "MOVQ $dst,$mem\t! packed2I" %} + ins_encode( movq_ld(dst, mem)); + ins_pipe( pipe_slow ); +%} + +// Load Aligned Packed Single to XMM +instruct loadA2F(regXD dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (Load2F mem)); + ins_cost(145); + format %{ "MOVQ $dst,$mem\t! packed2F" %} + ins_encode( movq_ld(dst, mem)); + ins_pipe( pipe_slow ); +%} + +// Load Effective Address +instruct leaP8(eRegP dst, indOffset8 mem) %{ + match(Set dst mem); + + ins_cost(110); + format %{ "LEA $dst,$mem" %} + opcode(0x8D); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_reg_fat ); +%} + +instruct leaP32(eRegP dst, indOffset32 mem) %{ + match(Set dst mem); + + ins_cost(110); + format %{ "LEA $dst,$mem" %} + opcode(0x8D); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_reg_fat ); +%} + +instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{ + match(Set dst mem); + + ins_cost(110); + format %{ "LEA $dst,$mem" %} + opcode(0x8D); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_reg_fat ); +%} + +instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{ + match(Set dst mem); + + ins_cost(110); + format %{ "LEA $dst,$mem" %} + opcode(0x8D); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_reg_fat ); +%} + +instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{ + match(Set dst mem); + + ins_cost(110); + format %{ "LEA $dst,$mem" %} + opcode(0x8D); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_reg_fat ); +%} + +// Load Constant +instruct loadConI(eRegI dst, immI src) %{ + match(Set dst src); + + format %{ "MOV $dst,$src" %} + ins_encode( LdImmI(dst, src) ); + ins_pipe( ialu_reg_fat ); +%} + +// Load Constant zero +instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{ + match(Set dst src); + effect(KILL cr); + + ins_cost(50); + format %{ "XOR $dst,$dst" %} + opcode(0x33); /* + rd */ + ins_encode( OpcP, RegReg( dst, dst ) ); + ins_pipe( ialu_reg ); +%} + +instruct loadConP(eRegP dst, immP src) %{ + match(Set dst src); + + format %{ "MOV $dst,$src" %} + opcode(0xB8); /* + rd */ + ins_encode( LdImmP(dst, src) ); + ins_pipe( ialu_reg_fat ); +%} + +instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{ + match(Set dst src); + effect(KILL cr); + ins_cost(200); + format %{ "MOV $dst.lo,$src.lo\n\t" + "MOV $dst.hi,$src.hi" %} + opcode(0xB8); + ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) ); + ins_pipe( ialu_reg_long_fat ); +%} + +instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{ + match(Set dst src); + effect(KILL cr); + ins_cost(150); + format %{ "XOR $dst.lo,$dst.lo\n\t" + "XOR $dst.hi,$dst.hi" %} + opcode(0x33,0x33); + ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) ); + ins_pipe( ialu_reg_long ); +%} + +// The instruction usage is guarded by predicate in operand immF(). +instruct loadConF(regF dst, immF src) %{ + match(Set dst src); + ins_cost(125); + + format %{ "FLD_S ST,$src\n\t" + "FSTP $dst" %} + opcode(0xD9, 0x00); /* D9 /0 */ + ins_encode(LdImmF(src), Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_con ); +%} + +// The instruction usage is guarded by predicate in operand immXF(). +instruct loadConX(regX dst, immXF con) %{ + match(Set dst con); + ins_cost(125); + format %{ "MOVSS $dst,[$con]" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con)); + ins_pipe( pipe_slow ); +%} + +// The instruction usage is guarded by predicate in operand immXF0(). +instruct loadConX0(regX dst, immXF0 src) %{ + match(Set dst src); + ins_cost(100); + format %{ "XORPS $dst,$dst\t# float 0.0" %} + ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst)); + ins_pipe( pipe_slow ); +%} + +// The instruction usage is guarded by predicate in operand immD(). +instruct loadConD(regD dst, immD src) %{ + match(Set dst src); + ins_cost(125); + + format %{ "FLD_D ST,$src\n\t" + "FSTP $dst" %} + ins_encode(LdImmD(src), Pop_Reg_D(dst) ); + ins_pipe( fpu_reg_con ); +%} + +// The instruction usage is guarded by predicate in operand immXD(). +instruct loadConXD(regXD dst, immXD con) %{ + match(Set dst con); + ins_cost(125); + format %{ "MOVSD $dst,[$con]" %} + ins_encode(load_conXD(dst, con)); + ins_pipe( pipe_slow ); +%} + +// The instruction usage is guarded by predicate in operand immXD0(). +instruct loadConXD0(regXD dst, immXD0 src) %{ + match(Set dst src); + ins_cost(100); + format %{ "XORPD $dst,$dst\t# double 0.0" %} + ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst)); + ins_pipe( pipe_slow ); +%} + +// Load Stack Slot +instruct loadSSI(eRegI dst, stackSlotI src) %{ + match(Set dst src); + ins_cost(125); + + format %{ "MOV $dst,$src" %} + opcode(0x8B); + ins_encode( OpcP, RegMem(dst,src)); + ins_pipe( ialu_reg_mem ); +%} + +instruct loadSSL(eRegL dst, stackSlotL src) %{ + match(Set dst src); + + ins_cost(200); + format %{ "MOV $dst,$src.lo\n\t" + "MOV $dst+4,$src.hi" %} + opcode(0x8B, 0x8B); + ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) ); + ins_pipe( ialu_mem_long_reg ); +%} + +// Load Stack Slot +instruct loadSSP(eRegP dst, stackSlotP src) %{ + match(Set dst src); + ins_cost(125); + + format %{ "MOV $dst,$src" %} + opcode(0x8B); + ins_encode( OpcP, RegMem(dst,src)); + ins_pipe( ialu_reg_mem ); +%} + +// Load Stack Slot +instruct loadSSF(regF dst, stackSlotF src) %{ + match(Set dst src); + ins_cost(125); + + format %{ "FLD_S $src\n\t" + "FSTP $dst" %} + opcode(0xD9); /* D9 /0, FLD m32real */ + ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src), + Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +// Load Stack Slot +instruct loadSSD(regD dst, stackSlotD src) %{ + match(Set dst src); + ins_cost(125); + + format %{ "FLD_D $src\n\t" + "FSTP $dst" %} + opcode(0xDD); /* DD /0, FLD m64real */ + ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src), + Pop_Reg_D(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +// Prefetch instructions. +// Must be safe to execute with invalid address (cannot fault). + +instruct prefetchr0( memory mem ) %{ + predicate(UseSSE==0 && !VM_Version::supports_3dnow()); + match(PrefetchRead mem); + ins_cost(0); + size(0); + format %{ "PREFETCHR (non-SSE is empty encoding)" %} + ins_encode(); + ins_pipe(empty); +%} + +instruct prefetchr( memory mem ) %{ + predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3); + match(PrefetchRead mem); + ins_cost(100); + + format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %} + opcode(0x0F, 0x0d); /* Opcode 0F 0d /0 */ + ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem)); + ins_pipe(ialu_mem); +%} + +instruct prefetchrNTA( memory mem ) %{ + predicate(UseSSE>=1 && ReadPrefetchInstr==0); + match(PrefetchRead mem); + ins_cost(100); + + format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %} + opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */ + ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem)); + ins_pipe(ialu_mem); +%} + +instruct prefetchrT0( memory mem ) %{ + predicate(UseSSE>=1 && ReadPrefetchInstr==1); + match(PrefetchRead mem); + ins_cost(100); + + format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %} + opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */ + ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem)); + ins_pipe(ialu_mem); +%} + +instruct prefetchrT2( memory mem ) %{ + predicate(UseSSE>=1 && ReadPrefetchInstr==2); + match(PrefetchRead mem); + ins_cost(100); + + format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %} + opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */ + ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem)); + ins_pipe(ialu_mem); +%} + +instruct prefetchw0( memory mem ) %{ + predicate(UseSSE==0 && !VM_Version::supports_3dnow()); + match(PrefetchWrite mem); + ins_cost(0); + size(0); + format %{ "Prefetch (non-SSE is empty encoding)" %} + ins_encode(); + ins_pipe(empty); +%} + +instruct prefetchw( memory mem ) %{ + predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3); + match( PrefetchWrite mem ); + ins_cost(100); + + format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %} + opcode(0x0F, 0x0D); /* Opcode 0F 0D /1 */ + ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem)); + ins_pipe(ialu_mem); +%} + +instruct prefetchwNTA( memory mem ) %{ + predicate(UseSSE>=1 && AllocatePrefetchInstr==0); + match(PrefetchWrite mem); + ins_cost(100); + + format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %} + opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */ + ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem)); + ins_pipe(ialu_mem); +%} + +instruct prefetchwT0( memory mem ) %{ + predicate(UseSSE>=1 && AllocatePrefetchInstr==1); + match(PrefetchWrite mem); + ins_cost(100); + + format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %} + opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */ + ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem)); + ins_pipe(ialu_mem); +%} + +instruct prefetchwT2( memory mem ) %{ + predicate(UseSSE>=1 && AllocatePrefetchInstr==2); + match(PrefetchWrite mem); + ins_cost(100); + + format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %} + opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */ + ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem)); + ins_pipe(ialu_mem); +%} + +//----------Store Instructions------------------------------------------------- + +// Store Byte +instruct storeB(memory mem, xRegI src) %{ + match(Set mem (StoreB mem src)); + + ins_cost(125); + format %{ "MOV8 $mem,$src" %} + opcode(0x88); + ins_encode( OpcP, RegMem( src, mem ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Store Char/Short +instruct storeC(memory mem, eRegI src) %{ + match(Set mem (StoreC mem src)); + + ins_cost(125); + format %{ "MOV16 $mem,$src" %} + opcode(0x89, 0x66); + ins_encode( OpcS, OpcP, RegMem( src, mem ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Store Integer +instruct storeI(memory mem, eRegI src) %{ + match(Set mem (StoreI mem src)); + + ins_cost(125); + format %{ "MOV $mem,$src" %} + opcode(0x89); + ins_encode( OpcP, RegMem( src, mem ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Store Long +instruct storeL(long_memory mem, eRegL src) %{ + predicate(!((StoreLNode*)n)->require_atomic_access()); + match(Set mem (StoreL mem src)); + + ins_cost(200); + format %{ "MOV $mem,$src.lo\n\t" + "MOV $mem+4,$src.hi" %} + opcode(0x89, 0x89); + ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) ); + ins_pipe( ialu_mem_long_reg ); +%} + +// Volatile Store Long. Must be atomic, so move it into +// the FP TOS and then do a 64-bit FIST. Has to probe the +// target address before the store (for null-ptr checks) +// so the memory operand is used twice in the encoding. +instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{ + predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access()); + match(Set mem (StoreL mem src)); + effect( KILL cr ); + ins_cost(400); + format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t" + "FILD $src\n\t" + "FISTp $mem\t # 64-bit atomic volatile long store" %} + opcode(0x3B); + ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src)); + ins_pipe( fpu_reg_mem ); +%} + +instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{ + predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access()); + match(Set mem (StoreL mem src)); + effect( TEMP tmp, KILL cr ); + ins_cost(380); + format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t" + "MOVSD $tmp,$src\n\t" + "MOVSD $mem,$tmp\t # 64-bit atomic volatile long store" %} + opcode(0x3B); + ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp)); + ins_pipe( pipe_slow ); +%} + +instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{ + predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access()); + match(Set mem (StoreL mem src)); + effect( TEMP tmp2 , TEMP tmp, KILL cr ); + ins_cost(360); + format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t" + "MOVD $tmp,$src.lo\n\t" + "MOVD $tmp2,$src.hi\n\t" + "PUNPCKLDQ $tmp,$tmp2\n\t" + "MOVSD $mem,$tmp\t # 64-bit atomic volatile long store" %} + opcode(0x3B); + ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2)); + ins_pipe( pipe_slow ); +%} + +// Store Pointer; for storing unknown oops and raw pointers +instruct storeP(memory mem, anyRegP src) %{ + match(Set mem (StoreP mem src)); + + ins_cost(125); + format %{ "MOV $mem,$src" %} + opcode(0x89); + ins_encode( OpcP, RegMem( src, mem ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Store Integer Immediate +instruct storeImmI(memory mem, immI src) %{ + match(Set mem (StoreI mem src)); + + ins_cost(150); + format %{ "MOV $mem,$src" %} + opcode(0xC7); /* C7 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32( src )); + ins_pipe( ialu_mem_imm ); +%} + +// Store Short/Char Immediate +instruct storeImmI16(memory mem, immI16 src) %{ + predicate(UseStoreImmI16); + match(Set mem (StoreC mem src)); + + ins_cost(150); + format %{ "MOV16 $mem,$src" %} + opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */ + ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem), Con16( src )); + ins_pipe( ialu_mem_imm ); +%} + +// Store Pointer Immediate; null pointers or constant oops that do not +// need card-mark barriers. +instruct storeImmP(memory mem, immP src) %{ + match(Set mem (StoreP mem src)); + + ins_cost(150); + format %{ "MOV $mem,$src" %} + opcode(0xC7); /* C7 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32( src )); + ins_pipe( ialu_mem_imm ); +%} + +// Store Byte Immediate +instruct storeImmB(memory mem, immI8 src) %{ + match(Set mem (StoreB mem src)); + + ins_cost(150); + format %{ "MOV8 $mem,$src" %} + opcode(0xC6); /* C6 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), Con8or32( src )); + ins_pipe( ialu_mem_imm ); +%} + +// Store Aligned Packed Byte XMM register to memory +instruct storeA8B(memory mem, regXD src) %{ + predicate(UseSSE>=1); + match(Set mem (Store8B mem src)); + ins_cost(145); + format %{ "MOVQ $mem,$src\t! packed8B" %} + ins_encode( movq_st(mem, src)); + ins_pipe( pipe_slow ); +%} + +// Store Aligned Packed Char/Short XMM register to memory +instruct storeA4C(memory mem, regXD src) %{ + predicate(UseSSE>=1); + match(Set mem (Store4C mem src)); + ins_cost(145); + format %{ "MOVQ $mem,$src\t! packed4C" %} + ins_encode( movq_st(mem, src)); + ins_pipe( pipe_slow ); +%} + +// Store Aligned Packed Integer XMM register to memory +instruct storeA2I(memory mem, regXD src) %{ + predicate(UseSSE>=1); + match(Set mem (Store2I mem src)); + ins_cost(145); + format %{ "MOVQ $mem,$src\t! packed2I" %} + ins_encode( movq_st(mem, src)); + ins_pipe( pipe_slow ); +%} + +// Store CMS card-mark Immediate +instruct storeImmCM(memory mem, immI8 src) %{ + match(Set mem (StoreCM mem src)); + + ins_cost(150); + format %{ "MOV8 $mem,$src\t! CMS card-mark imm0" %} + opcode(0xC6); /* C6 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), Con8or32( src )); + ins_pipe( ialu_mem_imm ); +%} + +// Store Double +instruct storeD( memory mem, regDPR1 src) %{ + predicate(UseSSE<=1); + match(Set mem (StoreD mem src)); + + ins_cost(100); + format %{ "FST_D $mem,$src" %} + opcode(0xDD); /* DD /2 */ + ins_encode( enc_FP_store(mem,src) ); + ins_pipe( fpu_mem_reg ); +%} + +// Store double does rounding on x86 +instruct storeD_rounded( memory mem, regDPR1 src) %{ + predicate(UseSSE<=1); + match(Set mem (StoreD mem (RoundDouble src))); + + ins_cost(100); + format %{ "FST_D $mem,$src\t# round" %} + opcode(0xDD); /* DD /2 */ + ins_encode( enc_FP_store(mem,src) ); + ins_pipe( fpu_mem_reg ); +%} + +// Store XMM register to memory (double-precision floating points) +// MOVSD instruction +instruct storeXD(memory mem, regXD src) %{ + predicate(UseSSE>=2); + match(Set mem (StoreD mem src)); + ins_cost(95); + format %{ "MOVSD $mem,$src" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem)); + ins_pipe( pipe_slow ); +%} + +// Store XMM register to memory (single-precision floating point) +// MOVSS instruction +instruct storeX(memory mem, regX src) %{ + predicate(UseSSE>=1); + match(Set mem (StoreF mem src)); + ins_cost(95); + format %{ "MOVSS $mem,$src" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem)); + ins_pipe( pipe_slow ); +%} + +// Store Aligned Packed Single Float XMM register to memory +instruct storeA2F(memory mem, regXD src) %{ + predicate(UseSSE>=1); + match(Set mem (Store2F mem src)); + ins_cost(145); + format %{ "MOVQ $mem,$src\t! packed2F" %} + ins_encode( movq_st(mem, src)); + ins_pipe( pipe_slow ); +%} + +// Store Float +instruct storeF( memory mem, regFPR1 src) %{ + predicate(UseSSE==0); + match(Set mem (StoreF mem src)); + + ins_cost(100); + format %{ "FST_S $mem,$src" %} + opcode(0xD9); /* D9 /2 */ + ins_encode( enc_FP_store(mem,src) ); + ins_pipe( fpu_mem_reg ); +%} + +// Store Float does rounding on x86 +instruct storeF_rounded( memory mem, regFPR1 src) %{ + predicate(UseSSE==0); + match(Set mem (StoreF mem (RoundFloat src))); + + ins_cost(100); + format %{ "FST_S $mem,$src\t# round" %} + opcode(0xD9); /* D9 /2 */ + ins_encode( enc_FP_store(mem,src) ); + ins_pipe( fpu_mem_reg ); +%} + +// Store Float does rounding on x86 +instruct storeF_Drounded( memory mem, regDPR1 src) %{ + predicate(UseSSE<=1); + match(Set mem (StoreF mem (ConvD2F src))); + + ins_cost(100); + format %{ "FST_S $mem,$src\t# D-round" %} + opcode(0xD9); /* D9 /2 */ + ins_encode( enc_FP_store(mem,src) ); + ins_pipe( fpu_mem_reg ); +%} + +// Store immediate Float value (it is faster than store from FPU register) +// The instruction usage is guarded by predicate in operand immF(). +instruct storeF_imm( memory mem, immF src) %{ + match(Set mem (StoreF mem src)); + + ins_cost(50); + format %{ "MOV $mem,$src\t# store float" %} + opcode(0xC7); /* C7 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32F_as_bits( src )); + ins_pipe( ialu_mem_imm ); +%} + +// Store immediate Float value (it is faster than store from XMM register) +// The instruction usage is guarded by predicate in operand immXF(). +instruct storeX_imm( memory mem, immXF src) %{ + match(Set mem (StoreF mem src)); + + ins_cost(50); + format %{ "MOV $mem,$src\t# store float" %} + opcode(0xC7); /* C7 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32XF_as_bits( src )); + ins_pipe( ialu_mem_imm ); +%} + +// Store Integer to stack slot +instruct storeSSI(stackSlotI dst, eRegI src) %{ + match(Set dst src); + + ins_cost(100); + format %{ "MOV $dst,$src" %} + opcode(0x89); + ins_encode( OpcPRegSS( dst, src ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Store Integer to stack slot +instruct storeSSP(stackSlotP dst, eRegP src) %{ + match(Set dst src); + + ins_cost(100); + format %{ "MOV $dst,$src" %} + opcode(0x89); + ins_encode( OpcPRegSS( dst, src ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Store Long to stack slot +instruct storeSSL(stackSlotL dst, eRegL src) %{ + match(Set dst src); + + ins_cost(200); + format %{ "MOV $dst,$src.lo\n\t" + "MOV $dst+4,$src.hi" %} + opcode(0x89, 0x89); + ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) ); + ins_pipe( ialu_mem_long_reg ); +%} + +//----------MemBar Instructions----------------------------------------------- +// Memory barrier flavors + +instruct membar_acquire() %{ + match(MemBarAcquire); + ins_cost(400); + + size(0); + format %{ "MEMBAR-acquire" %} + ins_encode( enc_membar_acquire ); + ins_pipe(pipe_slow); +%} + +instruct membar_acquire_lock() %{ + match(MemBarAcquire); + predicate(Matcher::prior_fast_lock(n)); + ins_cost(0); + + size(0); + format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %} + ins_encode( ); + ins_pipe(empty); +%} + +instruct membar_release() %{ + match(MemBarRelease); + ins_cost(400); + + size(0); + format %{ "MEMBAR-release" %} + ins_encode( enc_membar_release ); + ins_pipe(pipe_slow); +%} + +instruct membar_release_lock() %{ + match(MemBarRelease); + predicate(Matcher::post_fast_unlock(n)); + ins_cost(0); + + size(0); + format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %} + ins_encode( ); + ins_pipe(empty); +%} + +instruct membar_volatile() %{ + match(MemBarVolatile); + ins_cost(400); + + format %{ "MEMBAR-volatile" %} + ins_encode( enc_membar_volatile ); + ins_pipe(pipe_slow); +%} + +instruct unnecessary_membar_volatile() %{ + match(MemBarVolatile); + predicate(Matcher::post_store_load_barrier(n)); + ins_cost(0); + + size(0); + format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %} + ins_encode( ); + ins_pipe(empty); +%} + +//----------Move Instructions-------------------------------------------------- +instruct castX2P(eAXRegP dst, eAXRegI src) %{ + match(Set dst (CastX2P src)); + format %{ "# X2P $dst, $src" %} + ins_encode( /*empty encoding*/ ); + ins_cost(0); + ins_pipe(empty); +%} + +instruct castP2X(eRegI dst, eRegP src ) %{ + match(Set dst (CastP2X src)); + ins_cost(50); + format %{ "MOV $dst, $src\t# CastP2X" %} + ins_encode( enc_Copy( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +//----------Conditional Move--------------------------------------------------- +// Conditional move +instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{ + predicate(VM_Version::supports_cmov() ); + match(Set dst (CMoveI (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cop $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cop), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +instruct cmovI_regU( eRegI dst, eRegI src, eFlagsRegU cr, cmpOpU cop ) %{ + predicate(VM_Version::supports_cmov() ); + match(Set dst (CMoveI (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cop $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cop), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +// Conditional move +instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{ + predicate(VM_Version::supports_cmov() ); + match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src)))); + ins_cost(250); + format %{ "CMOV$cop $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cop), RegMem( dst, src ) ); + ins_pipe( pipe_cmov_mem ); +%} + +// Conditional move +instruct cmovI_memu(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{ + predicate(VM_Version::supports_cmov() ); + match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src)))); + ins_cost(250); + format %{ "CMOV$cop $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cop), RegMem( dst, src ) ); + ins_pipe( pipe_cmov_mem ); +%} + +// Conditional move +instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{ + predicate(VM_Version::supports_cmov() ); + match(Set dst (CMoveP (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cop $dst,$src\t# ptr" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cop), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +// Conditional move (non-P6 version) +// Note: a CMoveP is generated for stubs and native wrappers +// regardless of whether we are on a P6, so we +// emulate a cmov here +instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{ + match(Set dst (CMoveP (Binary cop cr) (Binary dst src))); + ins_cost(300); + format %{ "Jn$cop skip\n\t" + "MOV $dst,$src\t# pointer\n" + "skip:" %} + opcode(0x8b); + ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src)); + ins_pipe( pipe_cmov_reg ); +%} + +// Conditional move +instruct cmovP_regU(eRegP dst, eRegP src, eFlagsRegU cr, cmpOpU cop ) %{ + predicate(VM_Version::supports_cmov() ); + match(Set dst (CMoveP (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cop $dst,$src\t# ptr" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cop), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +// DISABLED: Requires the ADLC to emit a bottom_type call that +// correctly meets the two pointer arguments; one is an incoming +// register but the other is a memory operand. ALSO appears to +// be buggy with implicit null checks. +// +//// Conditional move +//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{ +// predicate(VM_Version::supports_cmov() ); +// match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src)))); +// ins_cost(250); +// format %{ "CMOV$cop $dst,$src\t# ptr" %} +// opcode(0x0F,0x40); +// ins_encode( enc_cmov(cop), RegMem( dst, src ) ); +// ins_pipe( pipe_cmov_mem ); +//%} +// +//// Conditional move +//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{ +// predicate(VM_Version::supports_cmov() ); +// match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src)))); +// ins_cost(250); +// format %{ "CMOV$cop $dst,$src\t# ptr" %} +// opcode(0x0F,0x40); +// ins_encode( enc_cmov(cop), RegMem( dst, src ) ); +// ins_pipe( pipe_cmov_mem ); +//%} + +// Conditional move +instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{ + predicate(UseSSE<=1); + match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "FCMOV$cop $dst,$src\t# double" %} + opcode(0xDA); + ins_encode( enc_cmov_d(cop,src) ); + ins_pipe( pipe_cmovD_reg ); +%} + +// Conditional move +instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{ + predicate(UseSSE==0); + match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "FCMOV$cop $dst,$src\t# float" %} + opcode(0xDA); + ins_encode( enc_cmov_d(cop,src) ); + ins_pipe( pipe_cmovD_reg ); +%} + +// Float CMOV on Intel doesn't handle *signed* compares, only unsigned. +instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{ + predicate(UseSSE<=1); + match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "Jn$cop skip\n\t" + "MOV $dst,$src\t# double\n" + "skip:" %} + opcode (0xdd, 0x3); /* DD D8+i or DD /3 */ + ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) ); + ins_pipe( pipe_cmovD_reg ); +%} + +// Float CMOV on Intel doesn't handle *signed* compares, only unsigned. +instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{ + predicate(UseSSE==0); + match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "Jn$cop skip\n\t" + "MOV $dst,$src\t# float\n" + "skip:" %} + opcode (0xdd, 0x3); /* DD D8+i or DD /3 */ + ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) ); + ins_pipe( pipe_cmovD_reg ); +%} + +// No CMOVE with SSE/SSE2 +instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{ + predicate (UseSSE>=1); + match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "Jn$cop skip\n\t" + "MOVSS $dst,$src\t# float\n" + "skip:" %} + ins_encode %{ + Label skip; + // Invert sense of branch from sense of CMOV + __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip); + __ movflt($dst$$XMMRegister, $src$$XMMRegister); + __ bind(skip); + %} + ins_pipe( pipe_slow ); +%} + +// No CMOVE with SSE/SSE2 +instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{ + predicate (UseSSE>=2); + match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "Jn$cop skip\n\t" + "MOVSD $dst,$src\t# float\n" + "skip:" %} + ins_encode %{ + Label skip; + // Invert sense of branch from sense of CMOV + __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip); + __ movdbl($dst$$XMMRegister, $src$$XMMRegister); + __ bind(skip); + %} + ins_pipe( pipe_slow ); +%} + +// unsigned version +instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{ + predicate (UseSSE>=1); + match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "Jn$cop skip\n\t" + "MOVSS $dst,$src\t# float\n" + "skip:" %} + ins_encode %{ + Label skip; + // Invert sense of branch from sense of CMOV + __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip); + __ movflt($dst$$XMMRegister, $src$$XMMRegister); + __ bind(skip); + %} + ins_pipe( pipe_slow ); +%} + +// unsigned version +instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{ + predicate (UseSSE>=2); + match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "Jn$cop skip\n\t" + "MOVSD $dst,$src\t# float\n" + "skip:" %} + ins_encode %{ + Label skip; + // Invert sense of branch from sense of CMOV + __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip); + __ movdbl($dst$$XMMRegister, $src$$XMMRegister); + __ bind(skip); + %} + ins_pipe( pipe_slow ); +%} + +instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{ + predicate(VM_Version::supports_cmov() ); + match(Set dst (CMoveL (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cop $dst.lo,$src.lo\n\t" + "CMOV$cop $dst.hi,$src.hi" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) ); + ins_pipe( pipe_cmov_reg_long ); +%} + +instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{ + predicate(VM_Version::supports_cmov() ); + match(Set dst (CMoveL (Binary cop cr) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cop $dst.lo,$src.lo\n\t" + "CMOV$cop $dst.hi,$src.hi" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) ); + ins_pipe( pipe_cmov_reg_long ); +%} + +//----------Arithmetic Instructions-------------------------------------------- +//----------Addition Instructions---------------------------------------------- +// Integer Addition Instructions +instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (AddI dst src)); + effect(KILL cr); + + size(2); + format %{ "ADD $dst,$src" %} + opcode(0x03); + ins_encode( OpcP, RegReg( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ + match(Set dst (AddI dst src)); + effect(KILL cr); + + format %{ "ADD $dst,$src" %} + opcode(0x81, 0x00); /* /0 id */ + ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); + ins_pipe( ialu_reg ); +%} + +instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{ + predicate(UseIncDec); + match(Set dst (AddI dst src)); + effect(KILL cr); + + size(1); + format %{ "INC $dst" %} + opcode(0x40); /* */ + ins_encode( Opc_plus( primary, dst ) ); + ins_pipe( ialu_reg ); +%} + +instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{ + match(Set dst (AddI src0 src1)); + ins_cost(110); + + format %{ "LEA $dst,[$src0 + $src1]" %} + opcode(0x8D); /* 0x8D /r */ + ins_encode( OpcP, RegLea( dst, src0, src1 ) ); + ins_pipe( ialu_reg_reg ); +%} + +instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{ + match(Set dst (AddP src0 src1)); + ins_cost(110); + + format %{ "LEA $dst,[$src0 + $src1]\t# ptr" %} + opcode(0x8D); /* 0x8D /r */ + ins_encode( OpcP, RegLea( dst, src0, src1 ) ); + ins_pipe( ialu_reg_reg ); +%} + +instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{ + predicate(UseIncDec); + match(Set dst (AddI dst src)); + effect(KILL cr); + + size(1); + format %{ "DEC $dst" %} + opcode(0x48); /* */ + ins_encode( Opc_plus( primary, dst ) ); + ins_pipe( ialu_reg ); +%} + +instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (AddP dst src)); + effect(KILL cr); + + size(2); + format %{ "ADD $dst,$src" %} + opcode(0x03); + ins_encode( OpcP, RegReg( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{ + match(Set dst (AddP dst src)); + effect(KILL cr); + + format %{ "ADD $dst,$src" %} + opcode(0x81,0x00); /* Opcode 81 /0 id */ + // ins_encode( RegImm( dst, src) ); + ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); + ins_pipe( ialu_reg ); +%} + +instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ + match(Set dst (AddI dst (LoadI src))); + effect(KILL cr); + + ins_cost(125); + format %{ "ADD $dst,$src" %} + opcode(0x03); + ins_encode( OpcP, RegMem( dst, src) ); + ins_pipe( ialu_reg_mem ); +%} + +instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (AddI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(150); + format %{ "ADD $dst,$src" %} + opcode(0x01); /* Opcode 01 /r */ + ins_encode( OpcP, RegMem( src, dst ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Add Memory with Immediate +instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (AddI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(125); + format %{ "ADD $dst,$src" %} + opcode(0x81); /* Opcode 81 /0 id */ + ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) ); + ins_pipe( ialu_mem_imm ); +%} + +instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (AddI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(125); + format %{ "INC $dst" %} + opcode(0xFF); /* Opcode FF /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,dst)); + ins_pipe( ialu_mem_imm ); +%} + +instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (AddI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(125); + format %{ "DEC $dst" %} + opcode(0xFF); /* Opcode FF /1 */ + ins_encode( OpcP, RMopc_Mem(0x01,dst)); + ins_pipe( ialu_mem_imm ); +%} + + +instruct checkCastPP( eRegP dst ) %{ + match(Set dst (CheckCastPP dst)); + + size(0); + format %{ "#checkcastPP of $dst" %} + ins_encode( /*empty encoding*/ ); + ins_pipe( empty ); +%} + +instruct castPP( eRegP dst ) %{ + match(Set dst (CastPP dst)); + format %{ "#castPP of $dst" %} + ins_encode( /*empty encoding*/ ); + ins_pipe( empty ); +%} + +instruct castII( eRegI dst ) %{ + match(Set dst (CastII dst)); + format %{ "#castII of $dst" %} + ins_encode( /*empty encoding*/ ); + ins_cost(0); + ins_pipe( empty ); +%} + + +// Load-locked - same as a regular pointer load when used with compare-swap +instruct loadPLocked(eRegP dst, memory mem) %{ + match(Set dst (LoadPLocked mem)); + + ins_cost(125); + format %{ "MOV $dst,$mem\t# Load ptr. locked" %} + opcode(0x8B); + ins_encode( OpcP, RegMem(dst,mem)); + ins_pipe( ialu_reg_mem ); +%} + +// LoadLong-locked - same as a volatile long load when used with compare-swap +instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{ + predicate(UseSSE<=1); + match(Set dst (LoadLLocked mem)); + + ins_cost(200); + format %{ "FILD $mem\t# Atomic volatile long load\n\t" + "FISTp $dst" %} + ins_encode(enc_loadL_volatile(mem,dst)); + ins_pipe( fpu_reg_mem ); +%} + +instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{ + predicate(UseSSE>=2); + match(Set dst (LoadLLocked mem)); + effect(TEMP tmp); + ins_cost(180); + format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t" + "MOVSD $dst,$tmp" %} + ins_encode(enc_loadLX_volatile(mem, dst, tmp)); + ins_pipe( pipe_slow ); +%} + +instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{ + predicate(UseSSE>=2); + match(Set dst (LoadLLocked mem)); + effect(TEMP tmp); + ins_cost(160); + format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t" + "MOVD $dst.lo,$tmp\n\t" + "PSRLQ $tmp,32\n\t" + "MOVD $dst.hi,$tmp" %} + ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp)); + ins_pipe( pipe_slow ); +%} + +// Conditional-store of the updated heap-top. +// Used during allocation of the shared heap. +// Sets flags (EQ) on success. Implemented with a CMPXCHG on Intel. +instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{ + match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval))); + // EAX is killed if there is contention, but then it's also unused. + // In the common case of no contention, EAX holds the new oop address. + format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %} + ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) ); + ins_pipe( pipe_cmpxchg ); +%} + +// Conditional-store of a long value +// Returns a boolean value (0/1) on success. Implemented with a CMPXCHG8 on Intel. +// mem_ptr can actually be in either ESI or EDI +instruct storeLConditional( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{ + match(Set res (StoreLConditional mem_ptr (Binary oldval newval))); + effect(KILL cr); + // EDX:EAX is killed if there is contention, but then it's also unused. + // In the common case of no contention, EDX:EAX holds the new oop address. + format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" + "MOV $res,0\n\t" + "JNE,s fail\n\t" + "MOV $res,1\n" + "fail:" %} + ins_encode( enc_cmpxchg8(mem_ptr), + enc_flags_ne_to_boolean(res) ); + ins_pipe( pipe_cmpxchg ); +%} + +// Conditional-store of a long value +// ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG8 on Intel. +// mem_ptr can actually be in either ESI or EDI +instruct storeLConditional_flags( eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr, immI0 zero ) %{ + match(Set cr (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero)); + // EDX:EAX is killed if there is contention, but then it's also unused. + // In the common case of no contention, EDX:EAX holds the new oop address. + format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" %} + ins_encode( enc_cmpxchg8(mem_ptr) ); + ins_pipe( pipe_cmpxchg ); +%} + +// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them + +instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{ + match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval))); + effect(KILL cr, KILL oldval); + format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" + "MOV $res,0\n\t" + "JNE,s fail\n\t" + "MOV $res,1\n" + "fail:" %} + ins_encode( enc_cmpxchg8(mem_ptr), + enc_flags_ne_to_boolean(res) ); + ins_pipe( pipe_cmpxchg ); +%} + +instruct compareAndSwapP( eRegI res, pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{ + match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval))); + effect(KILL cr, KILL oldval); + format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" + "MOV $res,0\n\t" + "JNE,s fail\n\t" + "MOV $res,1\n" + "fail:" %} + ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) ); + ins_pipe( pipe_cmpxchg ); +%} + +instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{ + match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval))); + effect(KILL cr, KILL oldval); + format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" + "MOV $res,0\n\t" + "JNE,s fail\n\t" + "MOV $res,1\n" + "fail:" %} + ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) ); + ins_pipe( pipe_cmpxchg ); +%} + +//----------Subtraction Instructions------------------------------------------- +// Integer Subtraction Instructions +instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (SubI dst src)); + effect(KILL cr); + + size(2); + format %{ "SUB $dst,$src" %} + opcode(0x2B); + ins_encode( OpcP, RegReg( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ + match(Set dst (SubI dst src)); + effect(KILL cr); + + format %{ "SUB $dst,$src" %} + opcode(0x81,0x05); /* Opcode 81 /5 */ + // ins_encode( RegImm( dst, src) ); + ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); + ins_pipe( ialu_reg ); +%} + +instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ + match(Set dst (SubI dst (LoadI src))); + effect(KILL cr); + + ins_cost(125); + format %{ "SUB $dst,$src" %} + opcode(0x2B); + ins_encode( OpcP, RegMem( dst, src) ); + ins_pipe( ialu_reg_mem ); +%} + +instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (SubI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(150); + format %{ "SUB $dst,$src" %} + opcode(0x29); /* Opcode 29 /r */ + ins_encode( OpcP, RegMem( src, dst ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Subtract from a pointer +instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{ + match(Set dst (AddP dst (SubI zero src))); + effect(KILL cr); + + size(2); + format %{ "SUB $dst,$src" %} + opcode(0x2B); + ins_encode( OpcP, RegReg( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{ + match(Set dst (SubI zero dst)); + effect(KILL cr); + + size(2); + format %{ "NEG $dst" %} + opcode(0xF7,0x03); // Opcode F7 /3 + ins_encode( OpcP, RegOpc( dst ) ); + ins_pipe( ialu_reg ); +%} + + +//----------Multiplication/Division Instructions------------------------------- +// Integer Multiplication Instructions +// Multiply Register +instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (MulI dst src)); + effect(KILL cr); + + size(3); + ins_cost(300); + format %{ "IMUL $dst,$src" %} + opcode(0xAF, 0x0F); + ins_encode( OpcS, OpcP, RegReg( dst, src) ); + ins_pipe( ialu_reg_reg_alu0 ); +%} + +// Multiply 32-bit Immediate +instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{ + match(Set dst (MulI src imm)); + effect(KILL cr); + + ins_cost(300); + format %{ "IMUL $dst,$src,$imm" %} + opcode(0x69); /* 69 /r id */ + ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) ); + ins_pipe( ialu_reg_reg_alu0 ); +%} + +instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{ + match(Set dst src); + effect(KILL cr); + + // Note that this is artificially increased to make it more expensive than loadConL + ins_cost(250); + format %{ "MOV EAX,$src\t// low word only" %} + opcode(0xB8); + ins_encode( LdImmL_Lo(dst, src) ); + ins_pipe( ialu_reg_fat ); +%} + +// Multiply by 32-bit Immediate, taking the shifted high order results +// (special case for shift by 32) +instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{ + match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt))); + predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL && + _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint && + _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint ); + effect(USE src1, KILL cr); + + // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only + ins_cost(0*100 + 1*400 - 150); + format %{ "IMUL EDX:EAX,$src1" %} + ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) ); + ins_pipe( pipe_slow ); +%} + +// Multiply by 32-bit Immediate, taking the shifted high order results +instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{ + match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt))); + predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL && + _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint && + _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint ); + effect(USE src1, KILL cr); + + // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only + ins_cost(1*100 + 1*400 - 150); + format %{ "IMUL EDX:EAX,$src1\n\t" + "SAR EDX,$cnt-32" %} + ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) ); + ins_pipe( pipe_slow ); +%} + +// Multiply Memory 32-bit Immediate +instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{ + match(Set dst (MulI (LoadI src) imm)); + effect(KILL cr); + + ins_cost(300); + format %{ "IMUL $dst,$src,$imm" %} + opcode(0x69); /* 69 /r id */ + ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) ); + ins_pipe( ialu_reg_mem_alu0 ); +%} + +// Multiply Memory +instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{ + match(Set dst (MulI dst (LoadI src))); + effect(KILL cr); + + ins_cost(350); + format %{ "IMUL $dst,$src" %} + opcode(0xAF, 0x0F); + ins_encode( OpcS, OpcP, RegMem( dst, src) ); + ins_pipe( ialu_reg_mem_alu0 ); +%} + +// Multiply Register Int to Long +instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{ + // Basic Idea: long = (long)int * (long)int + match(Set dst (MulL (ConvI2L src) (ConvI2L src1))); + effect(DEF dst, USE src, USE src1, KILL flags); + + ins_cost(300); + format %{ "IMUL $dst,$src1" %} + + ins_encode( long_int_multiply( dst, src1 ) ); + ins_pipe( ialu_reg_reg_alu0 ); +%} + +instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{ + // Basic Idea: long = (int & 0xffffffffL) * (int & 0xffffffffL) + match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask))); + effect(KILL flags); + + ins_cost(300); + format %{ "MUL $dst,$src1" %} + + ins_encode( long_uint_multiply(dst, src1) ); + ins_pipe( ialu_reg_reg_alu0 ); +%} + +// Multiply Register Long +instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{ + match(Set dst (MulL dst src)); + effect(KILL cr, TEMP tmp); + ins_cost(4*100+3*400); +// Basic idea: lo(result) = lo(x_lo * y_lo) +// hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) + format %{ "MOV $tmp,$src.lo\n\t" + "IMUL $tmp,EDX\n\t" + "MOV EDX,$src.hi\n\t" + "IMUL EDX,EAX\n\t" + "ADD $tmp,EDX\n\t" + "MUL EDX:EAX,$src.lo\n\t" + "ADD EDX,$tmp" %} + ins_encode( long_multiply( dst, src, tmp ) ); + ins_pipe( pipe_slow ); +%} + +// Multiply Register Long by small constant +instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{ + match(Set dst (MulL dst src)); + effect(KILL cr, TEMP tmp); + ins_cost(2*100+2*400); + size(12); +// Basic idea: lo(result) = lo(src * EAX) +// hi(result) = hi(src * EAX) + lo(src * EDX) + format %{ "IMUL $tmp,EDX,$src\n\t" + "MOV EDX,$src\n\t" + "MUL EDX\t# EDX*EAX -> EDX:EAX\n\t" + "ADD EDX,$tmp" %} + ins_encode( long_multiply_con( dst, src, tmp ) ); + ins_pipe( pipe_slow ); +%} + +// Integer DIV with Register +instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{ + match(Set rax (DivI rax div)); + effect(KILL rdx, KILL cr); + size(26); + ins_cost(30*100+10*100); + format %{ "CMP EAX,0x80000000\n\t" + "JNE,s normal\n\t" + "XOR EDX,EDX\n\t" + "CMP ECX,-1\n\t" + "JE,s done\n" + "normal: CDQ\n\t" + "IDIV $div\n\t" + "done:" %} + opcode(0xF7, 0x7); /* Opcode F7 /7 */ + ins_encode( cdq_enc, OpcP, RegOpc(div) ); + ins_pipe( ialu_reg_reg_alu0 ); +%} + +// Divide Register Long +instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{ + match(Set dst (DivL src1 src2)); + effect( KILL cr, KILL cx, KILL bx ); + ins_cost(10000); + format %{ "PUSH $src1.hi\n\t" + "PUSH $src1.lo\n\t" + "PUSH $src2.hi\n\t" + "PUSH $src2.lo\n\t" + "CALL SharedRuntime::ldiv\n\t" + "ADD ESP,16" %} + ins_encode( long_div(src1,src2) ); + ins_pipe( pipe_slow ); +%} + +// Integer DIVMOD with Register, both quotient and mod results +instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{ + match(DivModI rax div); + effect(KILL cr); + size(26); + ins_cost(30*100+10*100); + format %{ "CMP EAX,0x80000000\n\t" + "JNE,s normal\n\t" + "XOR EDX,EDX\n\t" + "CMP ECX,-1\n\t" + "JE,s done\n" + "normal: CDQ\n\t" + "IDIV $div\n\t" + "done:" %} + opcode(0xF7, 0x7); /* Opcode F7 /7 */ + ins_encode( cdq_enc, OpcP, RegOpc(div) ); + ins_pipe( pipe_slow ); +%} + +// Integer MOD with Register +instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{ + match(Set rdx (ModI rax div)); + effect(KILL rax, KILL cr); + + size(26); + ins_cost(300); + format %{ "CDQ\n\t" + "IDIV $div" %} + opcode(0xF7, 0x7); /* Opcode F7 /7 */ + ins_encode( cdq_enc, OpcP, RegOpc(div) ); + ins_pipe( ialu_reg_reg_alu0 ); +%} + +// Remainder Register Long +instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{ + match(Set dst (ModL src1 src2)); + effect( KILL cr, KILL cx, KILL bx ); + ins_cost(10000); + format %{ "PUSH $src1.hi\n\t" + "PUSH $src1.lo\n\t" + "PUSH $src2.hi\n\t" + "PUSH $src2.lo\n\t" + "CALL SharedRuntime::lrem\n\t" + "ADD ESP,16" %} + ins_encode( long_mod(src1,src2) ); + ins_pipe( pipe_slow ); +%} + +// Integer Shift Instructions +// Shift Left by one +instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{ + match(Set dst (LShiftI dst shift)); + effect(KILL cr); + + size(2); + format %{ "SHL $dst,$shift" %} + opcode(0xD1, 0x4); /* D1 /4 */ + ins_encode( OpcP, RegOpc( dst ) ); + ins_pipe( ialu_reg ); +%} + +// Shift Left by 8-bit immediate +instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{ + match(Set dst (LShiftI dst shift)); + effect(KILL cr); + + size(3); + format %{ "SHL $dst,$shift" %} + opcode(0xC1, 0x4); /* C1 /4 ib */ + ins_encode( RegOpcImm( dst, shift) ); + ins_pipe( ialu_reg ); +%} + +// Shift Left by variable +instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{ + match(Set dst (LShiftI dst shift)); + effect(KILL cr); + + size(2); + format %{ "SHL $dst,$shift" %} + opcode(0xD3, 0x4); /* D3 /4 */ + ins_encode( OpcP, RegOpc( dst ) ); + ins_pipe( ialu_reg_reg ); +%} + +// Arithmetic shift right by one +instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{ + match(Set dst (RShiftI dst shift)); + effect(KILL cr); + + size(2); + format %{ "SAR $dst,$shift" %} + opcode(0xD1, 0x7); /* D1 /7 */ + ins_encode( OpcP, RegOpc( dst ) ); + ins_pipe( ialu_reg ); +%} + +// Arithmetic shift right by one +instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{ + match(Set dst (StoreI dst (RShiftI (LoadI dst) shift))); + effect(KILL cr); + format %{ "SAR $dst,$shift" %} + opcode(0xD1, 0x7); /* D1 /7 */ + ins_encode( OpcP, RMopc_Mem(secondary,dst) ); + ins_pipe( ialu_mem_imm ); +%} + +// Arithmetic Shift Right by 8-bit immediate +instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{ + match(Set dst (RShiftI dst shift)); + effect(KILL cr); + + size(3); + format %{ "SAR $dst,$shift" %} + opcode(0xC1, 0x7); /* C1 /7 ib */ + ins_encode( RegOpcImm( dst, shift ) ); + ins_pipe( ialu_mem_imm ); +%} + +// Arithmetic Shift Right by 8-bit immediate +instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{ + match(Set dst (StoreI dst (RShiftI (LoadI dst) shift))); + effect(KILL cr); + + format %{ "SAR $dst,$shift" %} + opcode(0xC1, 0x7); /* C1 /7 ib */ + ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) ); + ins_pipe( ialu_mem_imm ); +%} + +// Arithmetic Shift Right by variable +instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{ + match(Set dst (RShiftI dst shift)); + effect(KILL cr); + + size(2); + format %{ "SAR $dst,$shift" %} + opcode(0xD3, 0x7); /* D3 /7 */ + ins_encode( OpcP, RegOpc( dst ) ); + ins_pipe( ialu_reg_reg ); +%} + +// Logical shift right by one +instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{ + match(Set dst (URShiftI dst shift)); + effect(KILL cr); + + size(2); + format %{ "SHR $dst,$shift" %} + opcode(0xD1, 0x5); /* D1 /5 */ + ins_encode( OpcP, RegOpc( dst ) ); + ins_pipe( ialu_reg ); +%} + +// Logical Shift Right by 8-bit immediate +instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{ + match(Set dst (URShiftI dst shift)); + effect(KILL cr); + + size(3); + format %{ "SHR $dst,$shift" %} + opcode(0xC1, 0x5); /* C1 /5 ib */ + ins_encode( RegOpcImm( dst, shift) ); + ins_pipe( ialu_reg ); +%} + +// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24. +// This idiom is used by the compiler for the i2b bytecode. +instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour, eFlagsReg cr) %{ + match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour)); + effect(KILL cr); + + size(3); + format %{ "MOVSX $dst,$src :8" %} + opcode(0xBE, 0x0F); + ins_encode( OpcS, OpcP, RegReg( dst, src)); + ins_pipe( ialu_reg_reg ); +%} + +// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16. +// This idiom is used by the compiler the i2s bytecode. +instruct i2s(eRegI dst, xRegI src, immI_16 sixteen, eFlagsReg cr) %{ + match(Set dst (RShiftI (LShiftI src sixteen) sixteen)); + effect(KILL cr); + + size(3); + format %{ "MOVSX $dst,$src :16" %} + opcode(0xBF, 0x0F); + ins_encode( OpcS, OpcP, RegReg( dst, src)); + ins_pipe( ialu_reg_reg ); +%} + + +// Logical Shift Right by variable +instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{ + match(Set dst (URShiftI dst shift)); + effect(KILL cr); + + size(2); + format %{ "SHR $dst,$shift" %} + opcode(0xD3, 0x5); /* D3 /5 */ + ins_encode( OpcP, RegOpc( dst ) ); + ins_pipe( ialu_reg_reg ); +%} + + +//----------Logical Instructions----------------------------------------------- +//----------Integer Logical Instructions--------------------------------------- +// And Instructions +// And Register with Register +instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (AndI dst src)); + effect(KILL cr); + + size(2); + format %{ "AND $dst,$src" %} + opcode(0x23); + ins_encode( OpcP, RegReg( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +// And Register with Immediate +instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ + match(Set dst (AndI dst src)); + effect(KILL cr); + + format %{ "AND $dst,$src" %} + opcode(0x81,0x04); /* Opcode 81 /4 */ + // ins_encode( RegImm( dst, src) ); + ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); + ins_pipe( ialu_reg ); +%} + +// And Register with Memory +instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ + match(Set dst (AndI dst (LoadI src))); + effect(KILL cr); + + ins_cost(125); + format %{ "AND $dst,$src" %} + opcode(0x23); + ins_encode( OpcP, RegMem( dst, src) ); + ins_pipe( ialu_reg_mem ); +%} + +// And Memory with Register +instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (AndI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(150); + format %{ "AND $dst,$src" %} + opcode(0x21); /* Opcode 21 /r */ + ins_encode( OpcP, RegMem( src, dst ) ); + ins_pipe( ialu_mem_reg ); +%} + +// And Memory with Immediate +instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (AndI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(125); + format %{ "AND $dst,$src" %} + opcode(0x81, 0x4); /* Opcode 81 /4 id */ + // ins_encode( MemImm( dst, src) ); + ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) ); + ins_pipe( ialu_mem_imm ); +%} + +// Or Instructions +// Or Register with Register +instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (OrI dst src)); + effect(KILL cr); + + size(2); + format %{ "OR $dst,$src" %} + opcode(0x0B); + ins_encode( OpcP, RegReg( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +// Or Register with Immediate +instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ + match(Set dst (OrI dst src)); + effect(KILL cr); + + format %{ "OR $dst,$src" %} + opcode(0x81,0x01); /* Opcode 81 /1 id */ + // ins_encode( RegImm( dst, src) ); + ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); + ins_pipe( ialu_reg ); +%} + +// Or Register with Memory +instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ + match(Set dst (OrI dst (LoadI src))); + effect(KILL cr); + + ins_cost(125); + format %{ "OR $dst,$src" %} + opcode(0x0B); + ins_encode( OpcP, RegMem( dst, src) ); + ins_pipe( ialu_reg_mem ); +%} + +// Or Memory with Register +instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (OrI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(150); + format %{ "OR $dst,$src" %} + opcode(0x09); /* Opcode 09 /r */ + ins_encode( OpcP, RegMem( src, dst ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Or Memory with Immediate +instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (OrI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(125); + format %{ "OR $dst,$src" %} + opcode(0x81,0x1); /* Opcode 81 /1 id */ + // ins_encode( MemImm( dst, src) ); + ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) ); + ins_pipe( ialu_mem_imm ); +%} + +// ROL/ROR +// ROL expand +instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{ + effect(USE_DEF dst, USE shift, KILL cr); + + format %{ "ROL $dst, $shift" %} + opcode(0xD1, 0x0); /* Opcode D1 /0 */ + ins_encode( OpcP, RegOpc( dst )); + ins_pipe( ialu_reg ); +%} + +instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{ + effect(USE_DEF dst, USE shift, KILL cr); + + format %{ "ROL $dst, $shift" %} + opcode(0xC1, 0x0); /*Opcode /C1 /0 */ + ins_encode( RegOpcImm(dst, shift) ); + ins_pipe(ialu_reg); +%} + +instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{ + effect(USE_DEF dst, USE shift, KILL cr); + + format %{ "ROL $dst, $shift" %} + opcode(0xD3, 0x0); /* Opcode D3 /0 */ + ins_encode(OpcP, RegOpc(dst)); + ins_pipe( ialu_reg_reg ); +%} +// end of ROL expand + +// ROL 32bit by one once +instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{ + match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift))); + + expand %{ + rolI_eReg_imm1(dst, lshift, cr); + %} +%} + +// ROL 32bit var by imm8 once +instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{ + predicate( 0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f)); + match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift))); + + expand %{ + rolI_eReg_imm8(dst, lshift, cr); + %} +%} + +// ROL 32bit var by var once +instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{ + match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift)))); + + expand %{ + rolI_eReg_CL(dst, shift, cr); + %} +%} + +// ROL 32bit var by var once +instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{ + match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift)))); + + expand %{ + rolI_eReg_CL(dst, shift, cr); + %} +%} + +// ROR expand +instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{ + effect(USE_DEF dst, USE shift, KILL cr); + + format %{ "ROR $dst, $shift" %} + opcode(0xD1,0x1); /* Opcode D1 /1 */ + ins_encode( OpcP, RegOpc( dst ) ); + ins_pipe( ialu_reg ); +%} + +instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{ + effect (USE_DEF dst, USE shift, KILL cr); + + format %{ "ROR $dst, $shift" %} + opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */ + ins_encode( RegOpcImm(dst, shift) ); + ins_pipe( ialu_reg ); +%} + +instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{ + effect(USE_DEF dst, USE shift, KILL cr); + + format %{ "ROR $dst, $shift" %} + opcode(0xD3, 0x1); /* Opcode D3 /1 */ + ins_encode(OpcP, RegOpc(dst)); + ins_pipe( ialu_reg_reg ); +%} +// end of ROR expand + +// ROR right once +instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{ + match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift))); + + expand %{ + rorI_eReg_imm1(dst, rshift, cr); + %} +%} + +// ROR 32bit by immI8 once +instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{ + predicate( 0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f)); + match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift))); + + expand %{ + rorI_eReg_imm8(dst, rshift, cr); + %} +%} + +// ROR 32bit var by var once +instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{ + match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift)))); + + expand %{ + rorI_eReg_CL(dst, shift, cr); + %} +%} + +// ROR 32bit var by var once +instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{ + match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift)))); + + expand %{ + rorI_eReg_CL(dst, shift, cr); + %} +%} + +// Xor Instructions +// Xor Register with Register +instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (XorI dst src)); + effect(KILL cr); + + size(2); + format %{ "XOR $dst,$src" %} + opcode(0x33); + ins_encode( OpcP, RegReg( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +// Xor Register with Immediate +instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ + match(Set dst (XorI dst src)); + effect(KILL cr); + + format %{ "XOR $dst,$src" %} + opcode(0x81,0x06); /* Opcode 81 /6 id */ + // ins_encode( RegImm( dst, src) ); + ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); + ins_pipe( ialu_reg ); +%} + +// Xor Register with Memory +instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ + match(Set dst (XorI dst (LoadI src))); + effect(KILL cr); + + ins_cost(125); + format %{ "XOR $dst,$src" %} + opcode(0x33); + ins_encode( OpcP, RegMem(dst, src) ); + ins_pipe( ialu_reg_mem ); +%} + +// Xor Memory with Register +instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (XorI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(150); + format %{ "XOR $dst,$src" %} + opcode(0x31); /* Opcode 31 /r */ + ins_encode( OpcP, RegMem( src, dst ) ); + ins_pipe( ialu_mem_reg ); +%} + +// Xor Memory with Immediate +instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{ + match(Set dst (StoreI dst (XorI (LoadI dst) src))); + effect(KILL cr); + + ins_cost(125); + format %{ "XOR $dst,$src" %} + opcode(0x81,0x6); /* Opcode 81 /6 id */ + ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) ); + ins_pipe( ialu_mem_imm ); +%} + +//----------Convert Int to Boolean--------------------------------------------- + +instruct movI_nocopy(eRegI dst, eRegI src) %{ + effect( DEF dst, USE src ); + format %{ "MOV $dst,$src" %} + ins_encode( enc_Copy( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{ + effect( USE_DEF dst, USE src, KILL cr ); + + size(4); + format %{ "NEG $dst\n\t" + "ADC $dst,$src" %} + ins_encode( neg_reg(dst), + OpcRegReg(0x13,dst,src) ); + ins_pipe( ialu_reg_reg_long ); +%} + +instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{ + match(Set dst (Conv2B src)); + + expand %{ + movI_nocopy(dst,src); + ci2b(dst,src,cr); + %} +%} + +instruct movP_nocopy(eRegI dst, eRegP src) %{ + effect( DEF dst, USE src ); + format %{ "MOV $dst,$src" %} + ins_encode( enc_Copy( dst, src) ); + ins_pipe( ialu_reg_reg ); +%} + +instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{ + effect( USE_DEF dst, USE src, KILL cr ); + format %{ "NEG $dst\n\t" + "ADC $dst,$src" %} + ins_encode( neg_reg(dst), + OpcRegReg(0x13,dst,src) ); + ins_pipe( ialu_reg_reg_long ); +%} + +instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{ + match(Set dst (Conv2B src)); + + expand %{ + movP_nocopy(dst,src); + cp2b(dst,src,cr); + %} +%} + +instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{ + match(Set dst (CmpLTMask p q)); + effect( KILL cr ); + ins_cost(400); + + // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination + format %{ "XOR $dst,$dst\n\t" + "CMP $p,$q\n\t" + "SETlt $dst\n\t" + "NEG $dst" %} + ins_encode( OpcRegReg(0x33,dst,dst), + OpcRegReg(0x3B,p,q), + setLT_reg(dst), neg_reg(dst) ); + ins_pipe( pipe_slow ); +%} + +instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{ + match(Set dst (CmpLTMask dst zero)); + effect( DEF dst, KILL cr ); + ins_cost(100); + + format %{ "SAR $dst,31" %} + opcode(0xC1, 0x7); /* C1 /7 ib */ + ins_encode( RegOpcImm( dst, 0x1F ) ); + ins_pipe( ialu_reg ); +%} + + +instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{ + match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q))); + effect( KILL tmp, KILL cr ); + ins_cost(400); + // annoyingly, $tmp has no edges so you cant ask for it in + // any format or encoding + format %{ "SUB $p,$q\n\t" + "SBB ECX,ECX\n\t" + "AND ECX,$y\n\t" + "ADD $p,ECX" %} + ins_encode( enc_cmpLTP(p,q,y,tmp) ); + ins_pipe( pipe_cmplt ); +%} + +/* If I enable this, I encourage spilling in the inner loop of compress. +instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{ + match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q))); + effect( USE_KILL tmp, KILL cr ); + ins_cost(400); + + format %{ "SUB $p,$q\n\t" + "SBB ECX,ECX\n\t" + "AND ECX,$y\n\t" + "ADD $p,ECX" %} + ins_encode( enc_cmpLTP_mem(p,q,y,tmp) ); +%} +*/ + +//----------Long Instructions------------------------------------------------ +// Add Long Register with Register +instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ + match(Set dst (AddL dst src)); + effect(KILL cr); + ins_cost(200); + format %{ "ADD $dst.lo,$src.lo\n\t" + "ADC $dst.hi,$src.hi" %} + opcode(0x03, 0x13); + ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// Add Long Register with Immediate +instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ + match(Set dst (AddL dst src)); + effect(KILL cr); + format %{ "ADD $dst.lo,$src.lo\n\t" + "ADC $dst.hi,$src.hi" %} + opcode(0x81,0x00,0x02); /* Opcode 81 /0, 81 /2 */ + ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); + ins_pipe( ialu_reg_long ); +%} + +// Add Long Register with Memory +instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ + match(Set dst (AddL dst (LoadL mem))); + effect(KILL cr); + ins_cost(125); + format %{ "ADD $dst.lo,$mem\n\t" + "ADC $dst.hi,$mem+4" %} + opcode(0x03, 0x13); + ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); + ins_pipe( ialu_reg_long_mem ); +%} + +// Subtract Long Register with Register. +instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ + match(Set dst (SubL dst src)); + effect(KILL cr); + ins_cost(200); + format %{ "SUB $dst.lo,$src.lo\n\t" + "SBB $dst.hi,$src.hi" %} + opcode(0x2B, 0x1B); + ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// Subtract Long Register with Immediate +instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ + match(Set dst (SubL dst src)); + effect(KILL cr); + format %{ "SUB $dst.lo,$src.lo\n\t" + "SBB $dst.hi,$src.hi" %} + opcode(0x81,0x05,0x03); /* Opcode 81 /5, 81 /3 */ + ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); + ins_pipe( ialu_reg_long ); +%} + +// Subtract Long Register with Memory +instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ + match(Set dst (SubL dst (LoadL mem))); + effect(KILL cr); + ins_cost(125); + format %{ "SUB $dst.lo,$mem\n\t" + "SBB $dst.hi,$mem+4" %} + opcode(0x2B, 0x1B); + ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); + ins_pipe( ialu_reg_long_mem ); +%} + +instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{ + match(Set dst (SubL zero dst)); + effect(KILL cr); + ins_cost(300); + format %{ "NEG $dst.hi\n\tNEG $dst.lo\n\tSBB $dst.hi,0" %} + ins_encode( neg_long(dst) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// And Long Register with Register +instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ + match(Set dst (AndL dst src)); + effect(KILL cr); + format %{ "AND $dst.lo,$src.lo\n\t" + "AND $dst.hi,$src.hi" %} + opcode(0x23,0x23); + ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// And Long Register with Immediate +instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ + match(Set dst (AndL dst src)); + effect(KILL cr); + format %{ "AND $dst.lo,$src.lo\n\t" + "AND $dst.hi,$src.hi" %} + opcode(0x81,0x04,0x04); /* Opcode 81 /4, 81 /4 */ + ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); + ins_pipe( ialu_reg_long ); +%} + +// And Long Register with Memory +instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ + match(Set dst (AndL dst (LoadL mem))); + effect(KILL cr); + ins_cost(125); + format %{ "AND $dst.lo,$mem\n\t" + "AND $dst.hi,$mem+4" %} + opcode(0x23, 0x23); + ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); + ins_pipe( ialu_reg_long_mem ); +%} + +// Or Long Register with Register +instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ + match(Set dst (OrL dst src)); + effect(KILL cr); + format %{ "OR $dst.lo,$src.lo\n\t" + "OR $dst.hi,$src.hi" %} + opcode(0x0B,0x0B); + ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// Or Long Register with Immediate +instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ + match(Set dst (OrL dst src)); + effect(KILL cr); + format %{ "OR $dst.lo,$src.lo\n\t" + "OR $dst.hi,$src.hi" %} + opcode(0x81,0x01,0x01); /* Opcode 81 /1, 81 /1 */ + ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); + ins_pipe( ialu_reg_long ); +%} + +// Or Long Register with Memory +instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ + match(Set dst (OrL dst (LoadL mem))); + effect(KILL cr); + ins_cost(125); + format %{ "OR $dst.lo,$mem\n\t" + "OR $dst.hi,$mem+4" %} + opcode(0x0B,0x0B); + ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); + ins_pipe( ialu_reg_long_mem ); +%} + +// Xor Long Register with Register +instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ + match(Set dst (XorL dst src)); + effect(KILL cr); + format %{ "XOR $dst.lo,$src.lo\n\t" + "XOR $dst.hi,$src.hi" %} + opcode(0x33,0x33); + ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// Xor Long Register with Immediate +instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ + match(Set dst (XorL dst src)); + effect(KILL cr); + format %{ "XOR $dst.lo,$src.lo\n\t" + "XOR $dst.hi,$src.hi" %} + opcode(0x81,0x06,0x06); /* Opcode 81 /6, 81 /6 */ + ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); + ins_pipe( ialu_reg_long ); +%} + +// Xor Long Register with Memory +instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ + match(Set dst (XorL dst (LoadL mem))); + effect(KILL cr); + ins_cost(125); + format %{ "XOR $dst.lo,$mem\n\t" + "XOR $dst.hi,$mem+4" %} + opcode(0x33,0x33); + ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); + ins_pipe( ialu_reg_long_mem ); +%} + +// Shift Left Long by 1-31 +instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{ + match(Set dst (LShiftL dst cnt)); + effect(KILL cr); + ins_cost(200); + format %{ "SHLD $dst.hi,$dst.lo,$cnt\n\t" + "SHL $dst.lo,$cnt" %} + opcode(0xC1, 0x4, 0xA4); /* 0F/A4, then C1 /4 ib */ + ins_encode( move_long_small_shift(dst,cnt) ); + ins_pipe( ialu_reg_long ); +%} + +// Shift Left Long by 32-63 +instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{ + match(Set dst (LShiftL dst cnt)); + effect(KILL cr); + ins_cost(300); + format %{ "MOV $dst.hi,$dst.lo\n" + "\tSHL $dst.hi,$cnt-32\n" + "\tXOR $dst.lo,$dst.lo" %} + opcode(0xC1, 0x4); /* C1 /4 ib */ + ins_encode( move_long_big_shift_clr(dst,cnt) ); + ins_pipe( ialu_reg_long ); +%} + +// Shift Left Long by variable +instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{ + match(Set dst (LShiftL dst shift)); + effect(KILL cr); + ins_cost(500+200); + size(17); + format %{ "TEST $shift,32\n\t" + "JEQ,s small\n\t" + "MOV $dst.hi,$dst.lo\n\t" + "XOR $dst.lo,$dst.lo\n" + "small:\tSHLD $dst.hi,$dst.lo,$shift\n\t" + "SHL $dst.lo,$shift" %} + ins_encode( shift_left_long( dst, shift ) ); + ins_pipe( pipe_slow ); +%} + +// Shift Right Long by 1-31 +instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{ + match(Set dst (URShiftL dst cnt)); + effect(KILL cr); + ins_cost(200); + format %{ "SHRD $dst.lo,$dst.hi,$cnt\n\t" + "SHR $dst.hi,$cnt" %} + opcode(0xC1, 0x5, 0xAC); /* 0F/AC, then C1 /5 ib */ + ins_encode( move_long_small_shift(dst,cnt) ); + ins_pipe( ialu_reg_long ); +%} + +// Shift Right Long by 32-63 +instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{ + match(Set dst (URShiftL dst cnt)); + effect(KILL cr); + ins_cost(300); + format %{ "MOV $dst.lo,$dst.hi\n" + "\tSHR $dst.lo,$cnt-32\n" + "\tXOR $dst.hi,$dst.hi" %} + opcode(0xC1, 0x5); /* C1 /5 ib */ + ins_encode( move_long_big_shift_clr(dst,cnt) ); + ins_pipe( ialu_reg_long ); +%} + +// Shift Right Long by variable +instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{ + match(Set dst (URShiftL dst shift)); + effect(KILL cr); + ins_cost(600); + size(17); + format %{ "TEST $shift,32\n\t" + "JEQ,s small\n\t" + "MOV $dst.lo,$dst.hi\n\t" + "XOR $dst.hi,$dst.hi\n" + "small:\tSHRD $dst.lo,$dst.hi,$shift\n\t" + "SHR $dst.hi,$shift" %} + ins_encode( shift_right_long( dst, shift ) ); + ins_pipe( pipe_slow ); +%} + +// Shift Right Long by 1-31 +instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{ + match(Set dst (RShiftL dst cnt)); + effect(KILL cr); + ins_cost(200); + format %{ "SHRD $dst.lo,$dst.hi,$cnt\n\t" + "SAR $dst.hi,$cnt" %} + opcode(0xC1, 0x7, 0xAC); /* 0F/AC, then C1 /7 ib */ + ins_encode( move_long_small_shift(dst,cnt) ); + ins_pipe( ialu_reg_long ); +%} + +// Shift Right Long by 32-63 +instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{ + match(Set dst (RShiftL dst cnt)); + effect(KILL cr); + ins_cost(300); + format %{ "MOV $dst.lo,$dst.hi\n" + "\tSAR $dst.lo,$cnt-32\n" + "\tSAR $dst.hi,31" %} + opcode(0xC1, 0x7); /* C1 /7 ib */ + ins_encode( move_long_big_shift_sign(dst,cnt) ); + ins_pipe( ialu_reg_long ); +%} + +// Shift Right arithmetic Long by variable +instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{ + match(Set dst (RShiftL dst shift)); + effect(KILL cr); + ins_cost(600); + size(18); + format %{ "TEST $shift,32\n\t" + "JEQ,s small\n\t" + "MOV $dst.lo,$dst.hi\n\t" + "SAR $dst.hi,31\n" + "small:\tSHRD $dst.lo,$dst.hi,$shift\n\t" + "SAR $dst.hi,$shift" %} + ins_encode( shift_right_arith_long( dst, shift ) ); + ins_pipe( pipe_slow ); +%} + + +//----------Double Instructions------------------------------------------------ +// Double Math + +// Compare & branch + +// P6 version of float compare, sets condition codes in EFLAGS +instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{ + predicate(VM_Version::supports_cmov() && UseSSE <=1); + match(Set cr (CmpD src1 src2)); + effect(KILL rax); + ins_cost(150); + format %{ "FLD $src1\n\t" + "FUCOMIP ST,$src2 // P6 instruction\n\t" + "JNP exit\n\t" + "MOV ah,1 // saw a NaN, set CF\n\t" + "SAHF\n" + "exit:\tNOP // avoid branch to branch" %} + opcode(0xDF, 0x05); /* DF E8+i or DF /5 */ + ins_encode( Push_Reg_D(src1), + OpcP, RegOpc(src2), + cmpF_P6_fixup ); + ins_pipe( pipe_slow ); +%} + +// Compare & branch +instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{ + predicate(UseSSE<=1); + match(Set cr (CmpD src1 src2)); + effect(KILL rax); + ins_cost(200); + format %{ "FLD $src1\n\t" + "FCOMp $src2\n\t" + "FNSTSW AX\n\t" + "TEST AX,0x400\n\t" + "JZ,s flags\n\t" + "MOV AH,1\t# unordered treat as LT\n" + "flags:\tSAHF" %} + opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */ + ins_encode( Push_Reg_D(src1), + OpcP, RegOpc(src2), + fpu_flags); + ins_pipe( pipe_slow ); +%} + +// Compare vs zero into -1,0,1 +instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{ + predicate(UseSSE<=1); + match(Set dst (CmpD3 src1 zero)); + effect(KILL cr, KILL rax); + ins_cost(280); + format %{ "FTSTD $dst,$src1" %} + opcode(0xE4, 0xD9); + ins_encode( Push_Reg_D(src1), + OpcS, OpcP, PopFPU, + CmpF_Result(dst)); + ins_pipe( pipe_slow ); +%} + +// Compare into -1,0,1 +instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{ + predicate(UseSSE<=1); + match(Set dst (CmpD3 src1 src2)); + effect(KILL cr, KILL rax); + ins_cost(300); + format %{ "FCMPD $dst,$src1,$src2" %} + opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */ + ins_encode( Push_Reg_D(src1), + OpcP, RegOpc(src2), + CmpF_Result(dst)); + ins_pipe( pipe_slow ); +%} + +// float compare and set condition codes in EFLAGS by XMM regs +instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{ + predicate(UseSSE>=2); + match(Set cr (CmpD dst src)); + effect(KILL rax); + ins_cost(125); + format %{ "COMISD $dst,$src\n" + "\tJNP exit\n" + "\tMOV ah,1 // saw a NaN, set CF\n" + "\tSAHF\n" + "exit:\tNOP // avoid branch to branch" %} + opcode(0x66, 0x0F, 0x2F); + ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup); + ins_pipe( pipe_slow ); +%} + +// float compare and set condition codes in EFLAGS by XMM regs +instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{ + predicate(UseSSE>=2); + match(Set cr (CmpD dst (LoadD src))); + effect(KILL rax); + ins_cost(145); + format %{ "COMISD $dst,$src\n" + "\tJNP exit\n" + "\tMOV ah,1 // saw a NaN, set CF\n" + "\tSAHF\n" + "exit:\tNOP // avoid branch to branch" %} + opcode(0x66, 0x0F, 0x2F); + ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup); + ins_pipe( pipe_slow ); +%} + +// Compare into -1,0,1 in XMM +instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{ + predicate(UseSSE>=2); + match(Set dst (CmpD3 src1 src2)); + effect(KILL cr); + ins_cost(255); + format %{ "XOR $dst,$dst\n" + "\tCOMISD $src1,$src2\n" + "\tJP,s nan\n" + "\tJEQ,s exit\n" + "\tJA,s inc\n" + "nan:\tDEC $dst\n" + "\tJMP,s exit\n" + "inc:\tINC $dst\n" + "exit:" + %} + opcode(0x66, 0x0F, 0x2F); + ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2), + CmpX_Result(dst)); + ins_pipe( pipe_slow ); +%} + +// Compare into -1,0,1 in XMM and memory +instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{ + predicate(UseSSE>=2); + match(Set dst (CmpD3 src1 (LoadD mem))); + effect(KILL cr); + ins_cost(275); + format %{ "COMISD $src1,$mem\n" + "\tMOV $dst,0\t\t# do not blow flags\n" + "\tJP,s nan\n" + "\tJEQ,s exit\n" + "\tJA,s inc\n" + "nan:\tDEC $dst\n" + "\tJMP,s exit\n" + "inc:\tINC $dst\n" + "exit:" + %} + opcode(0x66, 0x0F, 0x2F); + ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem), + LdImmI(dst,0x0), CmpX_Result(dst)); + ins_pipe( pipe_slow ); +%} + + +instruct subD_reg(regD dst, regD src) %{ + predicate (UseSSE <=1); + match(Set dst (SubD dst src)); + + format %{ "FLD $src\n\t" + "DSUBp $dst,ST" %} + opcode(0xDE, 0x5); /* DE E8+i or DE /5 */ + ins_cost(150); + ins_encode( Push_Reg_D(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_reg ); +%} + +instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{ + predicate (UseSSE <=1); + match(Set dst (RoundDouble (SubD src1 src2))); + ins_cost(250); + + format %{ "FLD $src2\n\t" + "DSUB ST,$src1\n\t" + "FSTP_D $dst\t# D-round" %} + opcode(0xD8, 0x5); + ins_encode( Push_Reg_D(src2), + OpcP, RegOpc(src1), Pop_Mem_D(dst) ); + ins_pipe( fpu_mem_reg_reg ); +%} + + +instruct subD_reg_mem(regD dst, memory src) %{ + predicate (UseSSE <=1); + match(Set dst (SubD dst (LoadD src))); + ins_cost(150); + + format %{ "FLD $src\n\t" + "DSUBp $dst,ST" %} + opcode(0xDE, 0x5, 0xDD); /* DE C0+i */ /* LoadD DD /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +instruct absD_reg(regDPR1 dst, regDPR1 src) %{ + predicate (UseSSE<=1); + match(Set dst (AbsD src)); + ins_cost(100); + format %{ "FABS" %} + opcode(0xE1, 0xD9); + ins_encode( OpcS, OpcP ); + ins_pipe( fpu_reg_reg ); +%} + +instruct absXD_reg( regXD dst ) %{ + predicate(UseSSE>=2); + match(Set dst (AbsD dst)); + format %{ "ANDPD $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %} + ins_encode( AbsXD_encoding(dst)); + ins_pipe( pipe_slow ); +%} + +instruct negD_reg(regDPR1 dst, regDPR1 src) %{ + predicate(UseSSE<=1); + match(Set dst (NegD src)); + ins_cost(100); + format %{ "FCHS" %} + opcode(0xE0, 0xD9); + ins_encode( OpcS, OpcP ); + ins_pipe( fpu_reg_reg ); +%} + +instruct negXD_reg( regXD dst ) %{ + predicate(UseSSE>=2); + match(Set dst (NegD dst)); + format %{ "XORPD $dst,[0x8000000000000000]\t# CHS D by sign flipping" %} + ins_encode %{ + __ xorpd($dst$$XMMRegister, + ExternalAddress((address)double_signflip_pool)); + %} + ins_pipe( pipe_slow ); +%} + +instruct addD_reg(regD dst, regD src) %{ + predicate(UseSSE<=1); + match(Set dst (AddD dst src)); + format %{ "FLD $src\n\t" + "DADD $dst,ST" %} + size(4); + ins_cost(150); + opcode(0xDE, 0x0); /* DE C0+i or DE /0*/ + ins_encode( Push_Reg_D(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_reg ); +%} + + +instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{ + predicate(UseSSE<=1); + match(Set dst (RoundDouble (AddD src1 src2))); + ins_cost(250); + + format %{ "FLD $src2\n\t" + "DADD ST,$src1\n\t" + "FSTP_D $dst\t# D-round" %} + opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/ + ins_encode( Push_Reg_D(src2), + OpcP, RegOpc(src1), Pop_Mem_D(dst) ); + ins_pipe( fpu_mem_reg_reg ); +%} + + +instruct addD_reg_mem(regD dst, memory src) %{ + predicate(UseSSE<=1); + match(Set dst (AddD dst (LoadD src))); + ins_cost(150); + + format %{ "FLD $src\n\t" + "DADDp $dst,ST" %} + opcode(0xDE, 0x0, 0xDD); /* DE C0+i */ /* LoadD DD /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +// add-to-memory +instruct addD_mem_reg(memory dst, regD src) %{ + predicate(UseSSE<=1); + match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src)))); + ins_cost(150); + + format %{ "FLD_D $dst\n\t" + "DADD ST,$src\n\t" + "FST_D $dst" %} + opcode(0xDD, 0x0); + ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst), + Opcode(0xD8), RegOpc(src), + set_instruction_start, + Opcode(0xDD), RMopc_Mem(0x03,dst) ); + ins_pipe( fpu_reg_mem ); +%} + +instruct addD_reg_imm1(regD dst, immD1 src) %{ + predicate(UseSSE<=1); + match(Set dst (AddD dst src)); + ins_cost(125); + format %{ "FLD1\n\t" + "DADDp $dst,ST" %} + opcode(0xDE, 0x00); + ins_encode( LdImmD(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg ); +%} + +instruct addD_reg_imm(regD dst, immD src) %{ + predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 ); + match(Set dst (AddD dst src)); + ins_cost(200); + format %{ "FLD_D [$src]\n\t" + "DADDp $dst,ST" %} + opcode(0xDE, 0x00); /* DE /0 */ + ins_encode( LdImmD(src), + OpcP, RegOpc(dst)); + ins_pipe( fpu_reg_mem ); +%} + +instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{ + predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 ); + match(Set dst (RoundDouble (AddD src con))); + ins_cost(200); + format %{ "FLD_D [$con]\n\t" + "DADD ST,$src\n\t" + "FSTP_D $dst\t# D-round" %} + opcode(0xD8, 0x00); /* D8 /0 */ + ins_encode( LdImmD(con), + OpcP, RegOpc(src), Pop_Mem_D(dst)); + ins_pipe( fpu_mem_reg_con ); +%} + +// Add two double precision floating point values in xmm +instruct addXD_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (AddD dst src)); + format %{ "ADDSD $dst,$src" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct addXD_imm(regXD dst, immXD con) %{ + predicate(UseSSE>=2); + match(Set dst (AddD dst con)); + format %{ "ADDSD $dst,[$con]" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) ); + ins_pipe( pipe_slow ); +%} + +instruct addXD_mem(regXD dst, memory mem) %{ + predicate(UseSSE>=2); + match(Set dst (AddD dst (LoadD mem))); + format %{ "ADDSD $dst,$mem" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +// Sub two double precision floating point values in xmm +instruct subXD_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (SubD dst src)); + format %{ "SUBSD $dst,$src" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct subXD_imm(regXD dst, immXD con) %{ + predicate(UseSSE>=2); + match(Set dst (SubD dst con)); + format %{ "SUBSD $dst,[$con]" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) ); + ins_pipe( pipe_slow ); +%} + +instruct subXD_mem(regXD dst, memory mem) %{ + predicate(UseSSE>=2); + match(Set dst (SubD dst (LoadD mem))); + format %{ "SUBSD $dst,$mem" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +// Mul two double precision floating point values in xmm +instruct mulXD_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (MulD dst src)); + format %{ "MULSD $dst,$src" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct mulXD_imm(regXD dst, immXD con) %{ + predicate(UseSSE>=2); + match(Set dst (MulD dst con)); + format %{ "MULSD $dst,[$con]" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) ); + ins_pipe( pipe_slow ); +%} + +instruct mulXD_mem(regXD dst, memory mem) %{ + predicate(UseSSE>=2); + match(Set dst (MulD dst (LoadD mem))); + format %{ "MULSD $dst,$mem" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +// Div two double precision floating point values in xmm +instruct divXD_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (DivD dst src)); + format %{ "DIVSD $dst,$src" %} + opcode(0xF2, 0x0F, 0x5E); + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct divXD_imm(regXD dst, immXD con) %{ + predicate(UseSSE>=2); + match(Set dst (DivD dst con)); + format %{ "DIVSD $dst,[$con]" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con)); + ins_pipe( pipe_slow ); +%} + +instruct divXD_mem(regXD dst, memory mem) %{ + predicate(UseSSE>=2); + match(Set dst (DivD dst (LoadD mem))); + format %{ "DIVSD $dst,$mem" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + + +instruct mulD_reg(regD dst, regD src) %{ + predicate(UseSSE<=1); + match(Set dst (MulD dst src)); + format %{ "FLD $src\n\t" + "DMULp $dst,ST" %} + opcode(0xDE, 0x1); /* DE C8+i or DE /1*/ + ins_cost(150); + ins_encode( Push_Reg_D(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_reg ); +%} + +// Strict FP instruction biases argument before multiply then +// biases result to avoid double rounding of subnormals. +// +// scale arg1 by multiplying arg1 by 2^(-15360) +// load arg2 +// multiply scaled arg1 by arg2 +// rescale product by 2^(15360) +// +instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{ + predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() ); + match(Set dst (MulD dst src)); + ins_cost(1); // Select this instruction for all strict FP double multiplies + + format %{ "FLD StubRoutines::_fpu_subnormal_bias1\n\t" + "DMULp $dst,ST\n\t" + "FLD $src\n\t" + "DMULp $dst,ST\n\t" + "FLD StubRoutines::_fpu_subnormal_bias2\n\t" + "DMULp $dst,ST\n\t" %} + opcode(0xDE, 0x1); /* DE C8+i or DE /1*/ + ins_encode( strictfp_bias1(dst), + Push_Reg_D(src), + OpcP, RegOpc(dst), + strictfp_bias2(dst) ); + ins_pipe( fpu_reg_reg ); +%} + +instruct mulD_reg_imm(regD dst, immD src) %{ + predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 ); + match(Set dst (MulD dst src)); + ins_cost(200); + format %{ "FLD_D [$src]\n\t" + "DMULp $dst,ST" %} + opcode(0xDE, 0x1); /* DE /1 */ + ins_encode( LdImmD(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_mem ); +%} + + +instruct mulD_reg_mem(regD dst, memory src) %{ + predicate( UseSSE<=1 ); + match(Set dst (MulD dst (LoadD src))); + ins_cost(200); + format %{ "FLD_D $src\n\t" + "DMULp $dst,ST" %} + opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/ /* LoadD DD /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +// +// Cisc-alternate to reg-reg multiply +instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{ + predicate( UseSSE<=1 ); + match(Set dst (MulD src (LoadD mem))); + ins_cost(250); + format %{ "FLD_D $mem\n\t" + "DMUL ST,$src\n\t" + "FSTP_D $dst" %} + opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */ /* LoadD D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem), + OpcReg_F(src), + Pop_Reg_D(dst) ); + ins_pipe( fpu_reg_reg_mem ); +%} + + +// MACRO3 -- addD a mulD +// This instruction is a '2-address' instruction in that the result goes +// back to src2. This eliminates a move from the macro; possibly the +// register allocator will have to add it back (and maybe not). +instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{ + predicate( UseSSE<=1 ); + match(Set src2 (AddD (MulD src0 src1) src2)); + format %{ "FLD $src0\t# ===MACRO3d===\n\t" + "DMUL ST,$src1\n\t" + "DADDp $src2,ST" %} + ins_cost(250); + opcode(0xDD); /* LoadD DD /0 */ + ins_encode( Push_Reg_F(src0), + FMul_ST_reg(src1), + FAddP_reg_ST(src2) ); + ins_pipe( fpu_reg_reg_reg ); +%} + + +// MACRO3 -- subD a mulD +instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{ + predicate( UseSSE<=1 ); + match(Set src2 (SubD (MulD src0 src1) src2)); + format %{ "FLD $src0\t# ===MACRO3d===\n\t" + "DMUL ST,$src1\n\t" + "DSUBRp $src2,ST" %} + ins_cost(250); + ins_encode( Push_Reg_F(src0), + FMul_ST_reg(src1), + Opcode(0xDE), Opc_plus(0xE0,src2)); + ins_pipe( fpu_reg_reg_reg ); +%} + + +instruct divD_reg(regD dst, regD src) %{ + predicate( UseSSE<=1 ); + match(Set dst (DivD dst src)); + + format %{ "FLD $src\n\t" + "FDIVp $dst,ST" %} + opcode(0xDE, 0x7); /* DE F8+i or DE /7*/ + ins_cost(150); + ins_encode( Push_Reg_D(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_reg ); +%} + +// Strict FP instruction biases argument before division then +// biases result, to avoid double rounding of subnormals. +// +// scale dividend by multiplying dividend by 2^(-15360) +// load divisor +// divide scaled dividend by divisor +// rescale quotient by 2^(15360) +// +instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{ + predicate (UseSSE<=1); + match(Set dst (DivD dst src)); + predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() ); + ins_cost(01); + + format %{ "FLD StubRoutines::_fpu_subnormal_bias1\n\t" + "DMULp $dst,ST\n\t" + "FLD $src\n\t" + "FDIVp $dst,ST\n\t" + "FLD StubRoutines::_fpu_subnormal_bias2\n\t" + "DMULp $dst,ST\n\t" %} + opcode(0xDE, 0x7); /* DE F8+i or DE /7*/ + ins_encode( strictfp_bias1(dst), + Push_Reg_D(src), + OpcP, RegOpc(dst), + strictfp_bias2(dst) ); + ins_pipe( fpu_reg_reg ); +%} + +instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{ + predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) ); + match(Set dst (RoundDouble (DivD src1 src2))); + + format %{ "FLD $src1\n\t" + "FDIV ST,$src2\n\t" + "FSTP_D $dst\t# D-round" %} + opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */ + ins_encode( Push_Reg_D(src1), + OpcP, RegOpc(src2), Pop_Mem_D(dst) ); + ins_pipe( fpu_mem_reg_reg ); +%} + + +instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{ + predicate(UseSSE<=1); + match(Set dst (ModD dst src)); + effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS + + format %{ "DMOD $dst,$src" %} + ins_cost(250); + ins_encode(Push_Reg_Mod_D(dst, src), + emitModD(), + Push_Result_Mod_D(src), + Pop_Reg_D(dst)); + ins_pipe( pipe_slow ); +%} + +instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{ + predicate(UseSSE>=2); + match(Set dst (ModD src0 src1)); + effect(KILL rax, KILL cr); + + format %{ "SUB ESP,8\t # DMOD\n" + "\tMOVSD [ESP+0],$src1\n" + "\tFLD_D [ESP+0]\n" + "\tMOVSD [ESP+0],$src0\n" + "\tFLD_D [ESP+0]\n" + "loop:\tFPREM\n" + "\tFWAIT\n" + "\tFNSTSW AX\n" + "\tSAHF\n" + "\tJP loop\n" + "\tFSTP_D [ESP+0]\n" + "\tMOVSD $dst,[ESP+0]\n" + "\tADD ESP,8\n" + "\tFSTP ST0\t # Restore FPU Stack" + %} + ins_cost(250); + ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU); + ins_pipe( pipe_slow ); +%} + +instruct sinD_reg(regDPR1 dst, regDPR1 src) %{ + predicate (UseSSE<=1); + match(Set dst (SinD src)); + ins_cost(1800); + format %{ "DSIN $dst" %} + opcode(0xD9, 0xFE); + ins_encode( OpcP, OpcS ); + ins_pipe( pipe_slow ); +%} + +instruct sinXD_reg(regXD dst, eFlagsReg cr) %{ + predicate (UseSSE>=2); + match(Set dst (SinD dst)); + effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8" + ins_cost(1800); + format %{ "DSIN $dst" %} + opcode(0xD9, 0xFE); + ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) ); + ins_pipe( pipe_slow ); +%} + +instruct cosD_reg(regDPR1 dst, regDPR1 src) %{ + predicate (UseSSE<=1); + match(Set dst (CosD src)); + ins_cost(1800); + format %{ "DCOS $dst" %} + opcode(0xD9, 0xFF); + ins_encode( OpcP, OpcS ); + ins_pipe( pipe_slow ); +%} + +instruct cosXD_reg(regXD dst, eFlagsReg cr) %{ + predicate (UseSSE>=2); + match(Set dst (CosD dst)); + effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8" + ins_cost(1800); + format %{ "DCOS $dst" %} + opcode(0xD9, 0xFF); + ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) ); + ins_pipe( pipe_slow ); +%} + +instruct tanD_reg(regDPR1 dst, regDPR1 src) %{ + predicate (UseSSE<=1); + match(Set dst(TanD src)); + format %{ "DTAN $dst" %} + ins_encode( Opcode(0xD9), Opcode(0xF2), // fptan + Opcode(0xDD), Opcode(0xD8)); // fstp st + ins_pipe( pipe_slow ); +%} + +instruct tanXD_reg(regXD dst, eFlagsReg cr) %{ + predicate (UseSSE>=2); + match(Set dst(TanD dst)); + effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8" + format %{ "DTAN $dst" %} + ins_encode( Push_SrcXD(dst), + Opcode(0xD9), Opcode(0xF2), // fptan + Opcode(0xDD), Opcode(0xD8), // fstp st + Push_ResultXD(dst) ); + ins_pipe( pipe_slow ); +%} + +instruct atanD_reg(regD dst, regD src) %{ + predicate (UseSSE<=1); + match(Set dst(AtanD dst src)); + format %{ "DATA $dst,$src" %} + opcode(0xD9, 0xF3); + ins_encode( Push_Reg_D(src), + OpcP, OpcS, RegOpc(dst) ); + ins_pipe( pipe_slow ); +%} + +instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{ + predicate (UseSSE>=2); + match(Set dst(AtanD dst src)); + effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8" + format %{ "DATA $dst,$src" %} + opcode(0xD9, 0xF3); + ins_encode( Push_SrcXD(src), + OpcP, OpcS, Push_ResultXD(dst) ); + ins_pipe( pipe_slow ); +%} + +instruct sqrtD_reg(regD dst, regD src) %{ + predicate (UseSSE<=1); + match(Set dst (SqrtD src)); + format %{ "DSQRT $dst,$src" %} + opcode(0xFA, 0xD9); + ins_encode( Push_Reg_D(src), + OpcS, OpcP, Pop_Reg_D(dst) ); + ins_pipe( pipe_slow ); +%} + +instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{ + predicate (UseSSE<=1); + match(Set Y (PowD X Y)); // Raise X to the Yth power + effect(KILL rax, KILL rbx, KILL rcx); + format %{ "SUB ESP,8\t\t# Fast-path POW encoding\n\t" + "FLD_D $X\n\t" + "FYL2X \t\t\t# Q=Y*ln2(X)\n\t" + + "FDUP \t\t\t# Q Q\n\t" + "FRNDINT\t\t\t# int(Q) Q\n\t" + "FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t" + "FISTP dword [ESP]\n\t" + "F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t" + "FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t" + "FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead + "MOV EAX,[ESP]\t# Pick up int(Q)\n\t" + "MOV ECX,0xFFFFF800\t# Overflow mask\n\t" + "ADD EAX,1023\t\t# Double exponent bias\n\t" + "MOV EBX,EAX\t\t# Preshifted biased expo\n\t" + "SHL EAX,20\t\t# Shift exponent into place\n\t" + "TEST EBX,ECX\t\t# Check for overflow\n\t" + "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t" + "MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t" + "MOV [ESP+0],0\n\t" + "FMUL ST(0),[ESP+0]\t# Scale\n\t" + + "ADD ESP,8" + %} + ins_encode( push_stack_temp_qword, + Push_Reg_D(X), + Opcode(0xD9), Opcode(0xF1), // fyl2x + pow_exp_core_encoding, + pop_stack_temp_qword); + ins_pipe( pipe_slow ); +%} + +instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{ + predicate (UseSSE>=2); + match(Set dst (PowD src0 src1)); // Raise src0 to the src1'th power + effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx ); + format %{ "SUB ESP,8\t\t# Fast-path POW encoding\n\t" + "MOVSD [ESP],$src1\n\t" + "FLD FPR1,$src1\n\t" + "MOVSD [ESP],$src0\n\t" + "FLD FPR1,$src0\n\t" + "FYL2X \t\t\t# Q=Y*ln2(X)\n\t" + + "FDUP \t\t\t# Q Q\n\t" + "FRNDINT\t\t\t# int(Q) Q\n\t" + "FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t" + "FISTP dword [ESP]\n\t" + "F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t" + "FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t" + "FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead + "MOV EAX,[ESP]\t# Pick up int(Q)\n\t" + "MOV ECX,0xFFFFF800\t# Overflow mask\n\t" + "ADD EAX,1023\t\t# Double exponent bias\n\t" + "MOV EBX,EAX\t\t# Preshifted biased expo\n\t" + "SHL EAX,20\t\t# Shift exponent into place\n\t" + "TEST EBX,ECX\t\t# Check for overflow\n\t" + "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t" + "MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t" + "MOV [ESP+0],0\n\t" + "FMUL ST(0),[ESP+0]\t# Scale\n\t" + + "FST_D [ESP]\n\t" + "MOVSD $dst,[ESP]\n\t" + "ADD ESP,8" + %} + ins_encode( push_stack_temp_qword, + push_xmm_to_fpr1(src1), + push_xmm_to_fpr1(src0), + Opcode(0xD9), Opcode(0xF1), // fyl2x + pow_exp_core_encoding, + Push_ResultXD(dst) ); + ins_pipe( pipe_slow ); +%} + + +instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{ + predicate (UseSSE<=1); + match(Set dpr1 (ExpD dpr1)); + effect(KILL rax, KILL rbx, KILL rcx); + format %{ "SUB ESP,8\t\t# Fast-path EXP encoding" + "FLDL2E \t\t\t# Ld log2(e) X\n\t" + "FMULP \t\t\t# Q=X*log2(e)\n\t" + + "FDUP \t\t\t# Q Q\n\t" + "FRNDINT\t\t\t# int(Q) Q\n\t" + "FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t" + "FISTP dword [ESP]\n\t" + "F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t" + "FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t" + "FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead + "MOV EAX,[ESP]\t# Pick up int(Q)\n\t" + "MOV ECX,0xFFFFF800\t# Overflow mask\n\t" + "ADD EAX,1023\t\t# Double exponent bias\n\t" + "MOV EBX,EAX\t\t# Preshifted biased expo\n\t" + "SHL EAX,20\t\t# Shift exponent into place\n\t" + "TEST EBX,ECX\t\t# Check for overflow\n\t" + "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t" + "MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t" + "MOV [ESP+0],0\n\t" + "FMUL ST(0),[ESP+0]\t# Scale\n\t" + + "ADD ESP,8" + %} + ins_encode( push_stack_temp_qword, + Opcode(0xD9), Opcode(0xEA), // fldl2e + Opcode(0xDE), Opcode(0xC9), // fmulp + pow_exp_core_encoding, + pop_stack_temp_qword); + ins_pipe( pipe_slow ); +%} + +instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{ + predicate (UseSSE>=2); + match(Set dst (ExpD src)); + effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx); + format %{ "SUB ESP,8\t\t# Fast-path EXP encoding\n\t" + "MOVSD [ESP],$src\n\t" + "FLDL2E \t\t\t# Ld log2(e) X\n\t" + "FMULP \t\t\t# Q=X*log2(e) X\n\t" + + "FDUP \t\t\t# Q Q\n\t" + "FRNDINT\t\t\t# int(Q) Q\n\t" + "FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t" + "FISTP dword [ESP]\n\t" + "F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t" + "FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t" + "FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead + "MOV EAX,[ESP]\t# Pick up int(Q)\n\t" + "MOV ECX,0xFFFFF800\t# Overflow mask\n\t" + "ADD EAX,1023\t\t# Double exponent bias\n\t" + "MOV EBX,EAX\t\t# Preshifted biased expo\n\t" + "SHL EAX,20\t\t# Shift exponent into place\n\t" + "TEST EBX,ECX\t\t# Check for overflow\n\t" + "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t" + "MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t" + "MOV [ESP+0],0\n\t" + "FMUL ST(0),[ESP+0]\t# Scale\n\t" + + "FST_D [ESP]\n\t" + "MOVSD $dst,[ESP]\n\t" + "ADD ESP,8" + %} + ins_encode( Push_SrcXD(src), + Opcode(0xD9), Opcode(0xEA), // fldl2e + Opcode(0xDE), Opcode(0xC9), // fmulp + pow_exp_core_encoding, + Push_ResultXD(dst) ); + ins_pipe( pipe_slow ); +%} + + + +instruct log10D_reg(regDPR1 dst, regDPR1 src) %{ + predicate (UseSSE<=1); + // The source Double operand on FPU stack + match(Set dst (Log10D src)); + // fldlg2 ; push log_10(2) on the FPU stack; full 80-bit number + // fxch ; swap ST(0) with ST(1) + // fyl2x ; compute log_10(2) * log_2(x) + format %{ "FLDLG2 \t\t\t#Log10\n\t" + "FXCH \n\t" + "FYL2X \t\t\t# Q=Log10*Log_2(x)" + %} + ins_encode( Opcode(0xD9), Opcode(0xEC), // fldlg2 + Opcode(0xD9), Opcode(0xC9), // fxch + Opcode(0xD9), Opcode(0xF1)); // fyl2x + + ins_pipe( pipe_slow ); +%} + +instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{ + predicate (UseSSE>=2); + effect(KILL cr); + match(Set dst (Log10D src)); + // fldlg2 ; push log_10(2) on the FPU stack; full 80-bit number + // fyl2x ; compute log_10(2) * log_2(x) + format %{ "FLDLG2 \t\t\t#Log10\n\t" + "FYL2X \t\t\t# Q=Log10*Log_2(x)" + %} + ins_encode( Opcode(0xD9), Opcode(0xEC), // fldlg2 + Push_SrcXD(src), + Opcode(0xD9), Opcode(0xF1), // fyl2x + Push_ResultXD(dst)); + + ins_pipe( pipe_slow ); +%} + +instruct logD_reg(regDPR1 dst, regDPR1 src) %{ + predicate (UseSSE<=1); + // The source Double operand on FPU stack + match(Set dst (LogD src)); + // fldln2 ; push log_e(2) on the FPU stack; full 80-bit number + // fxch ; swap ST(0) with ST(1) + // fyl2x ; compute log_e(2) * log_2(x) + format %{ "FLDLN2 \t\t\t#Log_e\n\t" + "FXCH \n\t" + "FYL2X \t\t\t# Q=Log_e*Log_2(x)" + %} + ins_encode( Opcode(0xD9), Opcode(0xED), // fldln2 + Opcode(0xD9), Opcode(0xC9), // fxch + Opcode(0xD9), Opcode(0xF1)); // fyl2x + + ins_pipe( pipe_slow ); +%} + +instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{ + predicate (UseSSE>=2); + effect(KILL cr); + // The source and result Double operands in XMM registers + match(Set dst (LogD src)); + // fldln2 ; push log_e(2) on the FPU stack; full 80-bit number + // fyl2x ; compute log_e(2) * log_2(x) + format %{ "FLDLN2 \t\t\t#Log_e\n\t" + "FYL2X \t\t\t# Q=Log_e*Log_2(x)" + %} + ins_encode( Opcode(0xD9), Opcode(0xED), // fldln2 + Push_SrcXD(src), + Opcode(0xD9), Opcode(0xF1), // fyl2x + Push_ResultXD(dst)); + ins_pipe( pipe_slow ); +%} + +//-------------Float Instructions------------------------------- +// Float Math + +// Code for float compare: +// fcompp(); +// fwait(); fnstsw_ax(); +// sahf(); +// movl(dst, unordered_result); +// jcc(Assembler::parity, exit); +// movl(dst, less_result); +// jcc(Assembler::below, exit); +// movl(dst, equal_result); +// jcc(Assembler::equal, exit); +// movl(dst, greater_result); +// exit: + +// P6 version of float compare, sets condition codes in EFLAGS +instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{ + predicate(VM_Version::supports_cmov() && UseSSE == 0); + match(Set cr (CmpF src1 src2)); + effect(KILL rax); + ins_cost(150); + format %{ "FLD $src1\n\t" + "FUCOMIP ST,$src2 // P6 instruction\n\t" + "JNP exit\n\t" + "MOV ah,1 // saw a NaN, set CF (treat as LT)\n\t" + "SAHF\n" + "exit:\tNOP // avoid branch to branch" %} + opcode(0xDF, 0x05); /* DF E8+i or DF /5 */ + ins_encode( Push_Reg_D(src1), + OpcP, RegOpc(src2), + cmpF_P6_fixup ); + ins_pipe( pipe_slow ); +%} + + +// Compare & branch +instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{ + predicate(UseSSE == 0); + match(Set cr (CmpF src1 src2)); + effect(KILL rax); + ins_cost(200); + format %{ "FLD $src1\n\t" + "FCOMp $src2\n\t" + "FNSTSW AX\n\t" + "TEST AX,0x400\n\t" + "JZ,s flags\n\t" + "MOV AH,1\t# unordered treat as LT\n" + "flags:\tSAHF" %} + opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */ + ins_encode( Push_Reg_D(src1), + OpcP, RegOpc(src2), + fpu_flags); + ins_pipe( pipe_slow ); +%} + +// Compare vs zero into -1,0,1 +instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{ + predicate(UseSSE == 0); + match(Set dst (CmpF3 src1 zero)); + effect(KILL cr, KILL rax); + ins_cost(280); + format %{ "FTSTF $dst,$src1" %} + opcode(0xE4, 0xD9); + ins_encode( Push_Reg_D(src1), + OpcS, OpcP, PopFPU, + CmpF_Result(dst)); + ins_pipe( pipe_slow ); +%} + +// Compare into -1,0,1 +instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{ + predicate(UseSSE == 0); + match(Set dst (CmpF3 src1 src2)); + effect(KILL cr, KILL rax); + ins_cost(300); + format %{ "FCMPF $dst,$src1,$src2" %} + opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */ + ins_encode( Push_Reg_D(src1), + OpcP, RegOpc(src2), + CmpF_Result(dst)); + ins_pipe( pipe_slow ); +%} + +// float compare and set condition codes in EFLAGS by XMM regs +instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{ + predicate(UseSSE>=1); + match(Set cr (CmpF dst src)); + effect(KILL rax); + ins_cost(145); + format %{ "COMISS $dst,$src\n" + "\tJNP exit\n" + "\tMOV ah,1 // saw a NaN, set CF\n" + "\tSAHF\n" + "exit:\tNOP // avoid branch to branch" %} + opcode(0x0F, 0x2F); + ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup); + ins_pipe( pipe_slow ); +%} + +// float compare and set condition codes in EFLAGS by XMM regs +instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{ + predicate(UseSSE>=1); + match(Set cr (CmpF dst (LoadF src))); + effect(KILL rax); + ins_cost(165); + format %{ "COMISS $dst,$src\n" + "\tJNP exit\n" + "\tMOV ah,1 // saw a NaN, set CF\n" + "\tSAHF\n" + "exit:\tNOP // avoid branch to branch" %} + opcode(0x0F, 0x2F); + ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup); + ins_pipe( pipe_slow ); +%} + +// Compare into -1,0,1 in XMM +instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{ + predicate(UseSSE>=1); + match(Set dst (CmpF3 src1 src2)); + effect(KILL cr); + ins_cost(255); + format %{ "XOR $dst,$dst\n" + "\tCOMISS $src1,$src2\n" + "\tJP,s nan\n" + "\tJEQ,s exit\n" + "\tJA,s inc\n" + "nan:\tDEC $dst\n" + "\tJMP,s exit\n" + "inc:\tINC $dst\n" + "exit:" + %} + opcode(0x0F, 0x2F); + ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst)); + ins_pipe( pipe_slow ); +%} + +// Compare into -1,0,1 in XMM and memory +instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{ + predicate(UseSSE>=1); + match(Set dst (CmpF3 src1 (LoadF mem))); + effect(KILL cr); + ins_cost(275); + format %{ "COMISS $src1,$mem\n" + "\tMOV $dst,0\t\t# do not blow flags\n" + "\tJP,s nan\n" + "\tJEQ,s exit\n" + "\tJA,s inc\n" + "nan:\tDEC $dst\n" + "\tJMP,s exit\n" + "inc:\tINC $dst\n" + "exit:" + %} + opcode(0x0F, 0x2F); + ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst)); + ins_pipe( pipe_slow ); +%} + +// Spill to obtain 24-bit precision +instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (SubF src1 src2)); + + format %{ "FSUB $dst,$src1 - $src2" %} + opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */ + ins_encode( Push_Reg_F(src1), + OpcReg_F(src2), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_reg_reg ); +%} +// +// This instruction does not round to 24-bits +instruct subF_reg(regF dst, regF src) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (SubF dst src)); + + format %{ "FSUB $dst,$src" %} + opcode(0xDE, 0x5); /* DE E8+i or DE /5 */ + ins_encode( Push_Reg_F(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_reg ); +%} + +// Spill to obtain 24-bit precision +instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (AddF src1 src2)); + + format %{ "FADD $dst,$src1,$src2" %} + opcode(0xD8, 0x0); /* D8 C0+i */ + ins_encode( Push_Reg_F(src2), + OpcReg_F(src1), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_reg_reg ); +%} +// +// This instruction does not round to 24-bits +instruct addF_reg(regF dst, regF src) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (AddF dst src)); + + format %{ "FLD $src\n\t" + "FADDp $dst,ST" %} + opcode(0xDE, 0x0); /* DE C0+i or DE /0*/ + ins_encode( Push_Reg_F(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_reg ); +%} + +// Add two single precision floating point values in xmm +instruct addX_reg(regX dst, regX src) %{ + predicate(UseSSE>=1); + match(Set dst (AddF dst src)); + format %{ "ADDSS $dst,$src" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct addX_imm(regX dst, immXF con) %{ + predicate(UseSSE>=1); + match(Set dst (AddF dst con)); + format %{ "ADDSS $dst,[$con]" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) ); + ins_pipe( pipe_slow ); +%} + +instruct addX_mem(regX dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (AddF dst (LoadF mem))); + format %{ "ADDSS $dst,$mem" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem)); + ins_pipe( pipe_slow ); +%} + +// Subtract two single precision floating point values in xmm +instruct subX_reg(regX dst, regX src) %{ + predicate(UseSSE>=1); + match(Set dst (SubF dst src)); + format %{ "SUBSS $dst,$src" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct subX_imm(regX dst, immXF con) %{ + predicate(UseSSE>=1); + match(Set dst (SubF dst con)); + format %{ "SUBSS $dst,[$con]" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) ); + ins_pipe( pipe_slow ); +%} + +instruct subX_mem(regX dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (SubF dst (LoadF mem))); + format %{ "SUBSS $dst,$mem" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +// Multiply two single precision floating point values in xmm +instruct mulX_reg(regX dst, regX src) %{ + predicate(UseSSE>=1); + match(Set dst (MulF dst src)); + format %{ "MULSS $dst,$src" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct mulX_imm(regX dst, immXF con) %{ + predicate(UseSSE>=1); + match(Set dst (MulF dst con)); + format %{ "MULSS $dst,[$con]" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) ); + ins_pipe( pipe_slow ); +%} + +instruct mulX_mem(regX dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (MulF dst (LoadF mem))); + format %{ "MULSS $dst,$mem" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +// Divide two single precision floating point values in xmm +instruct divX_reg(regX dst, regX src) %{ + predicate(UseSSE>=1); + match(Set dst (DivF dst src)); + format %{ "DIVSS $dst,$src" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct divX_imm(regX dst, immXF con) %{ + predicate(UseSSE>=1); + match(Set dst (DivF dst con)); + format %{ "DIVSS $dst,[$con]" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) ); + ins_pipe( pipe_slow ); +%} + +instruct divX_mem(regX dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (DivF dst (LoadF mem))); + format %{ "DIVSS $dst,$mem" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem)); + ins_pipe( pipe_slow ); +%} + +// Get the square root of a single precision floating point values in xmm +instruct sqrtX_reg(regX dst, regX src) %{ + predicate(UseSSE>=1); + match(Set dst (ConvD2F (SqrtD (ConvF2D src)))); + format %{ "SQRTSS $dst,$src" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct sqrtX_mem(regX dst, memory mem) %{ + predicate(UseSSE>=1); + match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem))))); + format %{ "SQRTSS $dst,$mem" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem)); + ins_pipe( pipe_slow ); +%} + +// Get the square root of a double precision floating point values in xmm +instruct sqrtXD_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (SqrtD src)); + format %{ "SQRTSD $dst,$src" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct sqrtXD_mem(regXD dst, memory mem) %{ + predicate(UseSSE>=2); + match(Set dst (SqrtD (LoadD mem))); + format %{ "SQRTSD $dst,$mem" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem)); + ins_pipe( pipe_slow ); +%} + +instruct absF_reg(regFPR1 dst, regFPR1 src) %{ + predicate(UseSSE==0); + match(Set dst (AbsF src)); + ins_cost(100); + format %{ "FABS" %} + opcode(0xE1, 0xD9); + ins_encode( OpcS, OpcP ); + ins_pipe( fpu_reg_reg ); +%} + +instruct absX_reg(regX dst ) %{ + predicate(UseSSE>=1); + match(Set dst (AbsF dst)); + format %{ "ANDPS $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %} + ins_encode( AbsXF_encoding(dst)); + ins_pipe( pipe_slow ); +%} + +instruct negF_reg(regFPR1 dst, regFPR1 src) %{ + predicate(UseSSE==0); + match(Set dst (NegF src)); + ins_cost(100); + format %{ "FCHS" %} + opcode(0xE0, 0xD9); + ins_encode( OpcS, OpcP ); + ins_pipe( fpu_reg_reg ); +%} + +instruct negX_reg( regX dst ) %{ + predicate(UseSSE>=1); + match(Set dst (NegF dst)); + format %{ "XORPS $dst,[0x80000000]\t# CHS F by sign flipping" %} + ins_encode( NegXF_encoding(dst)); + ins_pipe( pipe_slow ); +%} + +// Cisc-alternate to addF_reg +// Spill to obtain 24-bit precision +instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (AddF src1 (LoadF src2))); + + format %{ "FLD $src2\n\t" + "FADD ST,$src1\n\t" + "FSTP_S $dst" %} + opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), + OpcReg_F(src1), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_reg_mem ); +%} +// +// Cisc-alternate to addF_reg +// This instruction does not round to 24-bits +instruct addF_reg_mem(regF dst, memory src) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (AddF dst (LoadF src))); + + format %{ "FADD $dst,$src" %} + opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +// // Following two instructions for _222_mpegaudio +// Spill to obtain 24-bit precision +instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (AddF src1 src2)); + + format %{ "FADD $dst,$src1,$src2" %} + opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1), + OpcReg_F(src2), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_reg_mem ); +%} + +// Cisc-spill variant +// Spill to obtain 24-bit precision +instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (AddF src1 (LoadF src2))); + + format %{ "FADD $dst,$src1,$src2 cisc" %} + opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), + set_instruction_start, + OpcP, RMopc_Mem(secondary,src1), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_mem_mem ); +%} + +// Spill to obtain 24-bit precision +instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (AddF src1 src2)); + + format %{ "FADD $dst,$src1,$src2" %} + opcode(0xD8, 0x0, 0xD9); /* D8 /0 */ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), + set_instruction_start, + OpcP, RMopc_Mem(secondary,src1), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_mem_mem ); +%} + + +// Spill to obtain 24-bit precision +instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (AddF src1 src2)); + format %{ "FLD $src1\n\t" + "FADD $src2\n\t" + "FSTP_S $dst" %} + opcode(0xD8, 0x00); /* D8 /0 */ + ins_encode( Push_Reg_F(src1), + Opc_MemImm_F(src2), + Pop_Mem_F(dst)); + ins_pipe( fpu_mem_reg_con ); +%} +// +// This instruction does not round to 24-bits +instruct addF_reg_imm(regF dst, regF src1, immF src2) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (AddF src1 src2)); + format %{ "FLD $src1\n\t" + "FADD $src2\n\t" + "FSTP_S $dst" %} + opcode(0xD8, 0x00); /* D8 /0 */ + ins_encode( Push_Reg_F(src1), + Opc_MemImm_F(src2), + Pop_Reg_F(dst)); + ins_pipe( fpu_reg_reg_con ); +%} + +// Spill to obtain 24-bit precision +instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (MulF src1 src2)); + + format %{ "FLD $src1\n\t" + "FMUL $src2\n\t" + "FSTP_S $dst" %} + opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */ + ins_encode( Push_Reg_F(src1), + OpcReg_F(src2), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_reg_reg ); +%} +// +// This instruction does not round to 24-bits +instruct mulF_reg(regF dst, regF src1, regF src2) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (MulF src1 src2)); + + format %{ "FLD $src1\n\t" + "FMUL $src2\n\t" + "FSTP_S $dst" %} + opcode(0xD8, 0x1); /* D8 C8+i */ + ins_encode( Push_Reg_F(src2), + OpcReg_F(src1), + Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_reg_reg ); +%} + + +// Spill to obtain 24-bit precision +// Cisc-alternate to reg-reg multiply +instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (MulF src1 (LoadF src2))); + + format %{ "FLD_S $src2\n\t" + "FMUL $src1\n\t" + "FSTP_S $dst" %} + opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), + OpcReg_F(src1), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_reg_mem ); +%} +// +// This instruction does not round to 24-bits +// Cisc-alternate to reg-reg multiply +instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (MulF src1 (LoadF src2))); + + format %{ "FMUL $dst,$src1,$src2" %} + opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), + OpcReg_F(src1), + Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_reg_mem ); +%} + +// Spill to obtain 24-bit precision +instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (MulF src1 src2)); + + format %{ "FMUL $dst,$src1,$src2" %} + opcode(0xD8, 0x1, 0xD9); /* D8 /1 */ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), + set_instruction_start, + OpcP, RMopc_Mem(secondary,src1), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_mem_mem ); +%} + +// Spill to obtain 24-bit precision +instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (MulF src1 src2)); + + format %{ "FMULc $dst,$src1,$src2" %} + opcode(0xD8, 0x1); /* D8 /1*/ + ins_encode( Push_Reg_F(src1), + Opc_MemImm_F(src2), + Pop_Mem_F(dst)); + ins_pipe( fpu_mem_reg_con ); +%} +// +// This instruction does not round to 24-bits +instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (MulF src1 src2)); + + format %{ "FMULc $dst. $src1, $src2" %} + opcode(0xD8, 0x1); /* D8 /1*/ + ins_encode( Push_Reg_F(src1), + Opc_MemImm_F(src2), + Pop_Reg_F(dst)); + ins_pipe( fpu_reg_reg_con ); +%} + + +// +// MACRO1 -- subsume unshared load into mulF +// This instruction does not round to 24-bits +instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (MulF (LoadF mem1) src)); + + format %{ "FLD $mem1 ===MACRO1===\n\t" + "FMUL ST,$src\n\t" + "FSTP $dst" %} + opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */ /* LoadF D9 /0 */ + ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1), + OpcReg_F(src), + Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_reg_mem ); +%} +// +// MACRO2 -- addF a mulF which subsumed an unshared load +// This instruction does not round to 24-bits +instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (AddF (MulF (LoadF mem1) src1) src2)); + ins_cost(95); + + format %{ "FLD $mem1 ===MACRO2===\n\t" + "FMUL ST,$src1 subsume mulF left load\n\t" + "FADD ST,$src2\n\t" + "FSTP $dst" %} + opcode(0xD9); /* LoadF D9 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem1), + FMul_ST_reg(src1), + FAdd_ST_reg(src2), + Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_mem_reg_reg ); +%} + +// MACRO3 -- addF a mulF +// This instruction does not round to 24-bits. It is a '2-address' +// instruction in that the result goes back to src2. This eliminates +// a move from the macro; possibly the register allocator will have +// to add it back (and maybe not). +instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set src2 (AddF (MulF src0 src1) src2)); + + format %{ "FLD $src0 ===MACRO3===\n\t" + "FMUL ST,$src1\n\t" + "FADDP $src2,ST" %} + opcode(0xD9); /* LoadF D9 /0 */ + ins_encode( Push_Reg_F(src0), + FMul_ST_reg(src1), + FAddP_reg_ST(src2) ); + ins_pipe( fpu_reg_reg_reg ); +%} + +// MACRO4 -- divF subF +// This instruction does not round to 24-bits +instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (DivF (SubF src2 src1) src3)); + + format %{ "FLD $src2 ===MACRO4===\n\t" + "FSUB ST,$src1\n\t" + "FDIV ST,$src3\n\t" + "FSTP $dst" %} + opcode(0xDE, 0x7); /* DE F8+i or DE /7*/ + ins_encode( Push_Reg_F(src2), + subF_divF_encode(src1,src3), + Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_reg_reg_reg ); +%} + +// Spill to obtain 24-bit precision +instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{ + predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (DivF src1 src2)); + + format %{ "FDIV $dst,$src1,$src2" %} + opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/ + ins_encode( Push_Reg_F(src1), + OpcReg_F(src2), + Pop_Mem_F(dst) ); + ins_pipe( fpu_mem_reg_reg ); +%} +// +// This instruction does not round to 24-bits +instruct divF_reg(regF dst, regF src) %{ + predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (DivF dst src)); + + format %{ "FDIV $dst,$src" %} + opcode(0xDE, 0x7); /* DE F8+i or DE /7*/ + ins_encode( Push_Reg_F(src), + OpcP, RegOpc(dst) ); + ins_pipe( fpu_reg_reg ); +%} + + +// Spill to obtain 24-bit precision +instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{ + predicate( UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (ModF src1 src2)); + effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS + + format %{ "FMOD $dst,$src1,$src2" %} + ins_encode( Push_Reg_Mod_D(src1, src2), + emitModD(), + Push_Result_Mod_D(src2), + Pop_Mem_F(dst)); + ins_pipe( pipe_slow ); +%} +// +// This instruction does not round to 24-bits +instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{ + predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (ModF dst src)); + effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS + + format %{ "FMOD $dst,$src" %} + ins_encode(Push_Reg_Mod_D(dst, src), + emitModD(), + Push_Result_Mod_D(src), + Pop_Reg_F(dst)); + ins_pipe( pipe_slow ); +%} + +instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{ + predicate(UseSSE>=1); + match(Set dst (ModF src0 src1)); + effect(KILL rax, KILL cr); + format %{ "SUB ESP,4\t # FMOD\n" + "\tMOVSS [ESP+0],$src1\n" + "\tFLD_S [ESP+0]\n" + "\tMOVSS [ESP+0],$src0\n" + "\tFLD_S [ESP+0]\n" + "loop:\tFPREM\n" + "\tFWAIT\n" + "\tFNSTSW AX\n" + "\tSAHF\n" + "\tJP loop\n" + "\tFSTP_S [ESP+0]\n" + "\tMOVSS $dst,[ESP+0]\n" + "\tADD ESP,4\n" + "\tFSTP ST0\t # Restore FPU Stack" + %} + ins_cost(250); + ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU); + ins_pipe( pipe_slow ); +%} + + +//----------Arithmetic Conversion Instructions--------------------------------- +// The conversions operations are all Alpha sorted. Please keep it that way! + +instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{ + predicate(UseSSE==0); + match(Set dst (RoundFloat src)); + ins_cost(125); + format %{ "FST_S $dst,$src\t# F-round" %} + ins_encode( Pop_Mem_Reg_F(dst, src) ); + ins_pipe( fpu_mem_reg ); +%} + +instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{ + predicate(UseSSE<=1); + match(Set dst (RoundDouble src)); + ins_cost(125); + format %{ "FST_D $dst,$src\t# D-round" %} + ins_encode( Pop_Mem_Reg_D(dst, src) ); + ins_pipe( fpu_mem_reg ); +%} + +// Force rounding to 24-bit precision and 6-bit exponent +instruct convD2F_reg(stackSlotF dst, regD src) %{ + predicate(UseSSE==0); + match(Set dst (ConvD2F src)); + format %{ "FST_S $dst,$src\t# F-round" %} + expand %{ + roundFloat_mem_reg(dst,src); + %} +%} + +// Force rounding to 24-bit precision and 6-bit exponent +instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{ + predicate(UseSSE==1); + match(Set dst (ConvD2F src)); + effect( KILL cr ); + format %{ "SUB ESP,4\n\t" + "FST_S [ESP],$src\t# F-round\n\t" + "MOVSS $dst,[ESP]\n\t" + "ADD ESP,4" %} + ins_encode( D2X_encoding(dst, src) ); + ins_pipe( pipe_slow ); +%} + +// Force rounding double precision to single precision +instruct convXD2X_reg(regX dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (ConvD2F src)); + format %{ "CVTSD2SS $dst,$src\t# F-round" %} + opcode(0xF2, 0x0F, 0x5A); + ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct convF2D_reg_reg(regD dst, regF src) %{ + predicate(UseSSE==0); + match(Set dst (ConvF2D src)); + format %{ "FST_S $dst,$src\t# D-round" %} + ins_encode( Pop_Reg_Reg_D(dst, src)); + ins_pipe( fpu_reg_reg ); +%} + +instruct convF2D_reg(stackSlotD dst, regF src) %{ + predicate(UseSSE==1); + match(Set dst (ConvF2D src)); + format %{ "FST_D $dst,$src\t# D-round" %} + expand %{ + roundDouble_mem_reg(dst,src); + %} +%} + +instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{ + predicate(UseSSE==1); + match(Set dst (ConvF2D src)); + effect( KILL cr ); + format %{ "SUB ESP,4\n\t" + "MOVSS [ESP] $src\n\t" + "FLD_S [ESP]\n\t" + "ADD ESP,4\n\t" + "FSTP $dst\t# D-round" %} + ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst)); + ins_pipe( pipe_slow ); +%} + +instruct convX2XD_reg(regXD dst, regX src) %{ + predicate(UseSSE>=2); + match(Set dst (ConvF2D src)); + format %{ "CVTSS2SD $dst,$src\t# D-round" %} + opcode(0xF3, 0x0F, 0x5A); + ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +// Convert a double to an int. If the double is a NAN, stuff a zero in instead. +instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{ + predicate(UseSSE<=1); + match(Set dst (ConvD2I src)); + effect( KILL tmp, KILL cr ); + format %{ "FLD $src\t# Convert double to int \n\t" + "FLDCW trunc mode\n\t" + "SUB ESP,4\n\t" + "FISTp [ESP + #0]\n\t" + "FLDCW std/24-bit mode\n\t" + "POP EAX\n\t" + "CMP EAX,0x80000000\n\t" + "JNE,s fast\n\t" + "FLD_D $src\n\t" + "CALL d2i_wrapper\n" + "fast:" %} + ins_encode( Push_Reg_D(src), D2I_encoding(src) ); + ins_pipe( pipe_slow ); +%} + +// Convert a double to an int. If the double is a NAN, stuff a zero in instead. +instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{ + predicate(UseSSE>=2); + match(Set dst (ConvD2I src)); + effect( KILL tmp, KILL cr ); + format %{ "CVTTSD2SI $dst, $src\n\t" + "CMP $dst,0x80000000\n\t" + "JNE,s fast\n\t" + "SUB ESP, 8\n\t" + "MOVSD [ESP], $src\n\t" + "FLD_D [ESP]\n\t" + "ADD ESP, 8\n\t" + "CALL d2i_wrapper\n" + "fast:" %} + opcode(0x1); // double-precision conversion + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst)); + ins_pipe( pipe_slow ); +%} + +instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{ + predicate(UseSSE<=1); + match(Set dst (ConvD2L src)); + effect( KILL cr ); + format %{ "FLD $src\t# Convert double to long\n\t" + "FLDCW trunc mode\n\t" + "SUB ESP,8\n\t" + "FISTp [ESP + #0]\n\t" + "FLDCW std/24-bit mode\n\t" + "POP EAX\n\t" + "POP EDX\n\t" + "CMP EDX,0x80000000\n\t" + "JNE,s fast\n\t" + "TEST EAX,EAX\n\t" + "JNE,s fast\n\t" + "FLD $src\n\t" + "CALL d2l_wrapper\n" + "fast:" %} + ins_encode( Push_Reg_D(src), D2L_encoding(src) ); + ins_pipe( pipe_slow ); +%} + +// XMM lacks a float/double->long conversion, so use the old FPU stack. +instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{ + predicate (UseSSE>=2); + match(Set dst (ConvD2L src)); + effect( KILL cr ); + format %{ "SUB ESP,8\t# Convert double to long\n\t" + "MOVSD [ESP],$src\n\t" + "FLD_D [ESP]\n\t" + "FLDCW trunc mode\n\t" + "FISTp [ESP + #0]\n\t" + "FLDCW std/24-bit mode\n\t" + "POP EAX\n\t" + "POP EDX\n\t" + "CMP EDX,0x80000000\n\t" + "JNE,s fast\n\t" + "TEST EAX,EAX\n\t" + "JNE,s fast\n\t" + "SUB ESP,8\n\t" + "MOVSD [ESP],$src\n\t" + "FLD_D [ESP]\n\t" + "CALL d2l_wrapper\n" + "fast:" %} + ins_encode( XD2L_encoding(src) ); + ins_pipe( pipe_slow ); +%} + +// Convert a double to an int. Java semantics require we do complex +// manglations in the corner cases. So we set the rounding mode to +// 'zero', store the darned double down as an int, and reset the +// rounding mode to 'nearest'. The hardware stores a flag value down +// if we would overflow or converted a NAN; we check for this and +// and go the slow path if needed. +instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{ + predicate(UseSSE==0); + match(Set dst (ConvF2I src)); + effect( KILL tmp, KILL cr ); + format %{ "FLD $src\t# Convert float to int \n\t" + "FLDCW trunc mode\n\t" + "SUB ESP,4\n\t" + "FISTp [ESP + #0]\n\t" + "FLDCW std/24-bit mode\n\t" + "POP EAX\n\t" + "CMP EAX,0x80000000\n\t" + "JNE,s fast\n\t" + "FLD $src\n\t" + "CALL d2i_wrapper\n" + "fast:" %} + // D2I_encoding works for F2I + ins_encode( Push_Reg_F(src), D2I_encoding(src) ); + ins_pipe( pipe_slow ); +%} + +// Convert a float in xmm to an int reg. +instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{ + predicate(UseSSE>=1); + match(Set dst (ConvF2I src)); + effect( KILL tmp, KILL cr ); + format %{ "CVTTSS2SI $dst, $src\n\t" + "CMP $dst,0x80000000\n\t" + "JNE,s fast\n\t" + "SUB ESP, 4\n\t" + "MOVSS [ESP], $src\n\t" + "FLD [ESP]\n\t" + "ADD ESP, 4\n\t" + "CALL d2i_wrapper\n" + "fast:" %} + opcode(0x0); // single-precision conversion + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst)); + ins_pipe( pipe_slow ); +%} + +instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{ + predicate(UseSSE==0); + match(Set dst (ConvF2L src)); + effect( KILL cr ); + format %{ "FLD $src\t# Convert float to long\n\t" + "FLDCW trunc mode\n\t" + "SUB ESP,8\n\t" + "FISTp [ESP + #0]\n\t" + "FLDCW std/24-bit mode\n\t" + "POP EAX\n\t" + "POP EDX\n\t" + "CMP EDX,0x80000000\n\t" + "JNE,s fast\n\t" + "TEST EAX,EAX\n\t" + "JNE,s fast\n\t" + "FLD $src\n\t" + "CALL d2l_wrapper\n" + "fast:" %} + // D2L_encoding works for F2L + ins_encode( Push_Reg_F(src), D2L_encoding(src) ); + ins_pipe( pipe_slow ); +%} + +// XMM lacks a float/double->long conversion, so use the old FPU stack. +instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{ + predicate (UseSSE>=1); + match(Set dst (ConvF2L src)); + effect( KILL cr ); + format %{ "SUB ESP,8\t# Convert float to long\n\t" + "MOVSS [ESP],$src\n\t" + "FLD_S [ESP]\n\t" + "FLDCW trunc mode\n\t" + "FISTp [ESP + #0]\n\t" + "FLDCW std/24-bit mode\n\t" + "POP EAX\n\t" + "POP EDX\n\t" + "CMP EDX,0x80000000\n\t" + "JNE,s fast\n\t" + "TEST EAX,EAX\n\t" + "JNE,s fast\n\t" + "SUB ESP,4\t# Convert float to long\n\t" + "MOVSS [ESP],$src\n\t" + "FLD_S [ESP]\n\t" + "ADD ESP,4\n\t" + "CALL d2l_wrapper\n" + "fast:" %} + ins_encode( X2L_encoding(src) ); + ins_pipe( pipe_slow ); +%} + +instruct convI2D_reg(regD dst, stackSlotI src) %{ + predicate( UseSSE<=1 ); + match(Set dst (ConvI2D src)); + format %{ "FILD $src\n\t" + "FSTP $dst" %} + opcode(0xDB, 0x0); /* DB /0 */ + ins_encode(Push_Mem_I(src), Pop_Reg_D(dst)); + ins_pipe( fpu_reg_mem ); +%} + +instruct convI2XD_reg(regXD dst, eRegI src) %{ + predicate( UseSSE>=2 ); + match(Set dst (ConvI2D src)); + format %{ "CVTSI2SD $dst,$src" %} + opcode(0xF2, 0x0F, 0x2A); + ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct convI2XD_mem(regXD dst, memory mem) %{ + predicate( UseSSE>=2 ); + match(Set dst (ConvI2D (LoadI mem))); + format %{ "CVTSI2SD $dst,$mem" %} + opcode(0xF2, 0x0F, 0x2A); + ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem)); + ins_pipe( pipe_slow ); +%} + +instruct convI2D_mem(regD dst, memory mem) %{ + predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr()); + match(Set dst (ConvI2D (LoadI mem))); + format %{ "FILD $mem\n\t" + "FSTP $dst" %} + opcode(0xDB); /* DB /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), + Pop_Reg_D(dst)); + ins_pipe( fpu_reg_mem ); +%} + +// Convert a byte to a float; no rounding step needed. +instruct conv24I2F_reg(regF dst, stackSlotI src) %{ + predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 ); + match(Set dst (ConvI2F src)); + format %{ "FILD $src\n\t" + "FSTP $dst" %} + + opcode(0xDB, 0x0); /* DB /0 */ + ins_encode(Push_Mem_I(src), Pop_Reg_F(dst)); + ins_pipe( fpu_reg_mem ); +%} + +// In 24-bit mode, force exponent rounding by storing back out +instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{ + predicate( UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (ConvI2F src)); + ins_cost(200); + format %{ "FILD $src\n\t" + "FSTP_S $dst" %} + opcode(0xDB, 0x0); /* DB /0 */ + ins_encode( Push_Mem_I(src), + Pop_Mem_F(dst)); + ins_pipe( fpu_mem_mem ); +%} + +// In 24-bit mode, force exponent rounding by storing back out +instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{ + predicate( UseSSE==0 && Compile::current()->select_24_bit_instr()); + match(Set dst (ConvI2F (LoadI mem))); + ins_cost(200); + format %{ "FILD $mem\n\t" + "FSTP_S $dst" %} + opcode(0xDB); /* DB /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), + Pop_Mem_F(dst)); + ins_pipe( fpu_mem_mem ); +%} + +// This instruction does not round to 24-bits +instruct convI2F_reg(regF dst, stackSlotI src) %{ + predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (ConvI2F src)); + format %{ "FILD $src\n\t" + "FSTP $dst" %} + opcode(0xDB, 0x0); /* DB /0 */ + ins_encode( Push_Mem_I(src), + Pop_Reg_F(dst)); + ins_pipe( fpu_reg_mem ); +%} + +// This instruction does not round to 24-bits +instruct convI2F_mem(regF dst, memory mem) %{ + predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr()); + match(Set dst (ConvI2F (LoadI mem))); + format %{ "FILD $mem\n\t" + "FSTP $dst" %} + opcode(0xDB); /* DB /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,mem), + Pop_Reg_F(dst)); + ins_pipe( fpu_reg_mem ); +%} + +// Convert an int to a float in xmm; no rounding step needed. +instruct convI2X_reg(regX dst, eRegI src) %{ + predicate(UseSSE>=1); + match(Set dst (ConvI2F src)); + format %{ "CVTSI2SS $dst, $src" %} + + opcode(0xF3, 0x0F, 0x2A); /* F3 0F 2A /r */ + ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{ + match(Set dst (ConvI2L src)); + effect(KILL cr); + format %{ "MOV $dst.lo,$src\n\t" + "MOV $dst.hi,$src\n\t" + "SAR $dst.hi,31" %} + ins_encode(convert_int_long(dst,src)); + ins_pipe( ialu_reg_reg_long ); +%} + +// Zero-extend convert int to long +instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{ + match(Set dst (AndL (ConvI2L src) mask) ); + effect( KILL flags ); + format %{ "MOV $dst.lo,$src\n\t" + "XOR $dst.hi,$dst.hi" %} + opcode(0x33); // XOR + ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// Zero-extend long +instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{ + match(Set dst (AndL src mask) ); + effect( KILL flags ); + format %{ "MOV $dst.lo,$src.lo\n\t" + "XOR $dst.hi,$dst.hi\n\t" %} + opcode(0x33); // XOR + ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) ); + ins_pipe( ialu_reg_reg_long ); +%} + +instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{ + predicate (UseSSE<=1); + match(Set dst (ConvL2D src)); + effect( KILL cr ); + format %{ "PUSH $src.hi\t# Convert long to double\n\t" + "PUSH $src.lo\n\t" + "FILD ST,[ESP + #0]\n\t" + "ADD ESP,8\n\t" + "FSTP_D $dst\t# D-round" %} + opcode(0xDF, 0x5); /* DF /5 */ + ins_encode(convert_long_double(src), Pop_Mem_D(dst)); + ins_pipe( pipe_slow ); +%} + +instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{ + predicate (UseSSE>=2); + match(Set dst (ConvL2D src)); + effect( KILL cr ); + format %{ "PUSH $src.hi\t# Convert long to double\n\t" + "PUSH $src.lo\n\t" + "FILD_D [ESP]\n\t" + "FSTP_D [ESP]\n\t" + "MOVSD $dst,[ESP]\n\t" + "ADD ESP,8" %} + opcode(0xDF, 0x5); /* DF /5 */ + ins_encode(convert_long_double2(src), Push_ResultXD(dst)); + ins_pipe( pipe_slow ); +%} + +instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{ + predicate (UseSSE>=1); + match(Set dst (ConvL2F src)); + effect( KILL cr ); + format %{ "PUSH $src.hi\t# Convert long to single float\n\t" + "PUSH $src.lo\n\t" + "FILD_D [ESP]\n\t" + "FSTP_S [ESP]\n\t" + "MOVSS $dst,[ESP]\n\t" + "ADD ESP,8" %} + opcode(0xDF, 0x5); /* DF /5 */ + ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8)); + ins_pipe( pipe_slow ); +%} + +instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{ + match(Set dst (ConvL2F src)); + effect( KILL cr ); + format %{ "PUSH $src.hi\t# Convert long to single float\n\t" + "PUSH $src.lo\n\t" + "FILD ST,[ESP + #0]\n\t" + "ADD ESP,8\n\t" + "FSTP_S $dst\t# F-round" %} + opcode(0xDF, 0x5); /* DF /5 */ + ins_encode(convert_long_double(src), Pop_Mem_F(dst)); + ins_pipe( pipe_slow ); +%} + +instruct convL2I_reg( eRegI dst, eRegL src ) %{ + match(Set dst (ConvL2I src)); + effect( DEF dst, USE src ); + format %{ "MOV $dst,$src.lo" %} + ins_encode(enc_CopyL_Lo(dst,src)); + ins_pipe( ialu_reg_reg ); +%} + + +instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{ + match(Set dst (MoveF2I src)); + effect( DEF dst, USE src ); + ins_cost(100); + format %{ "MOV $dst,$src\t# MoveF2I_stack_reg" %} + opcode(0x8B); + ins_encode( OpcP, RegMem(dst,src)); + ins_pipe( ialu_reg_mem ); +%} + +instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{ + predicate(UseSSE==0); + match(Set dst (MoveF2I src)); + effect( DEF dst, USE src ); + + ins_cost(125); + format %{ "FST_S $dst,$src\t# MoveF2I_reg_stack" %} + ins_encode( Pop_Mem_Reg_F(dst, src) ); + ins_pipe( fpu_mem_reg ); +%} + +instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{ + predicate(UseSSE>=1); + match(Set dst (MoveF2I src)); + effect( DEF dst, USE src ); + + ins_cost(95); + format %{ "MOVSS $dst,$src\t# MoveF2I_reg_stack_sse" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst)); + ins_pipe( pipe_slow ); +%} + +instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{ + predicate(UseSSE>=2); + match(Set dst (MoveF2I src)); + effect( DEF dst, USE src ); + ins_cost(85); + format %{ "MOVD $dst,$src\t# MoveF2I_reg_reg_sse" %} + ins_encode( MovX2I_reg(dst, src)); + ins_pipe( pipe_slow ); +%} + +instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{ + match(Set dst (MoveI2F src)); + effect( DEF dst, USE src ); + + ins_cost(100); + format %{ "MOV $dst,$src\t# MoveI2F_reg_stack" %} + opcode(0x89); + ins_encode( OpcPRegSS( dst, src ) ); + ins_pipe( ialu_mem_reg ); +%} + + +instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{ + predicate(UseSSE==0); + match(Set dst (MoveI2F src)); + effect(DEF dst, USE src); + + ins_cost(125); + format %{ "FLD_S $src\n\t" + "FSTP $dst\t# MoveI2F_stack_reg" %} + opcode(0xD9); /* D9 /0, FLD m32real */ + ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src), + Pop_Reg_F(dst) ); + ins_pipe( fpu_reg_mem ); +%} + +instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{ + predicate(UseSSE>=1); + match(Set dst (MoveI2F src)); + effect( DEF dst, USE src ); + + ins_cost(95); + format %{ "MOVSS $dst,$src\t# MoveI2F_stack_reg_sse" %} + ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src)); + ins_pipe( pipe_slow ); +%} + +instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{ + predicate(UseSSE>=2); + match(Set dst (MoveI2F src)); + effect( DEF dst, USE src ); + + ins_cost(85); + format %{ "MOVD $dst,$src\t# MoveI2F_reg_reg_sse" %} + ins_encode( MovI2X_reg(dst, src) ); + ins_pipe( pipe_slow ); +%} + +instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{ + match(Set dst (MoveD2L src)); + effect(DEF dst, USE src); + + ins_cost(250); + format %{ "MOV $dst.lo,$src\n\t" + "MOV $dst.hi,$src+4\t# MoveD2L_stack_reg" %} + opcode(0x8B, 0x8B); + ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src)); + ins_pipe( ialu_mem_long_reg ); +%} + +instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{ + predicate(UseSSE<=1); + match(Set dst (MoveD2L src)); + effect(DEF dst, USE src); + + ins_cost(125); + format %{ "FST_D $dst,$src\t# MoveD2L_reg_stack" %} + ins_encode( Pop_Mem_Reg_D(dst, src) ); + ins_pipe( fpu_mem_reg ); +%} + +instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (MoveD2L src)); + effect(DEF dst, USE src); + ins_cost(95); + + format %{ "MOVSD $dst,$src\t# MoveD2L_reg_stack_sse" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst)); + ins_pipe( pipe_slow ); +%} + +instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{ + predicate(UseSSE>=2); + match(Set dst (MoveD2L src)); + effect(DEF dst, USE src, TEMP tmp); + ins_cost(85); + format %{ "MOVD $dst.lo,$src\n\t" + "PSHUFLW $tmp,$src,0x4E\n\t" + "MOVD $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %} + ins_encode( MovXD2L_reg(dst, src, tmp) ); + ins_pipe( pipe_slow ); +%} + +instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{ + match(Set dst (MoveL2D src)); + effect(DEF dst, USE src); + + ins_cost(200); + format %{ "MOV $dst,$src.lo\n\t" + "MOV $dst+4,$src.hi\t# MoveL2D_reg_stack" %} + opcode(0x89, 0x89); + ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) ); + ins_pipe( ialu_mem_long_reg ); +%} + + +instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{ + predicate(UseSSE<=1); + match(Set dst (MoveL2D src)); + effect(DEF dst, USE src); + ins_cost(125); + + format %{ "FLD_D $src\n\t" + "FSTP $dst\t# MoveL2D_stack_reg" %} + opcode(0xDD); /* DD /0, FLD m64real */ + ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src), + Pop_Reg_D(dst) ); + ins_pipe( fpu_reg_mem ); +%} + + +instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{ + predicate(UseSSE>=2 && UseXmmLoadAndClearUpper); + match(Set dst (MoveL2D src)); + effect(DEF dst, USE src); + + ins_cost(95); + format %{ "MOVSD $dst,$src\t# MoveL2D_stack_reg_sse" %} + ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src)); + ins_pipe( pipe_slow ); +%} + +instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{ + predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper); + match(Set dst (MoveL2D src)); + effect(DEF dst, USE src); + + ins_cost(95); + format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %} + ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src)); + ins_pipe( pipe_slow ); +%} + +instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{ + predicate(UseSSE>=2); + match(Set dst (MoveL2D src)); + effect(TEMP dst, USE src, TEMP tmp); + ins_cost(85); + format %{ "MOVD $dst,$src.lo\n\t" + "MOVD $tmp,$src.hi\n\t" + "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %} + ins_encode( MovL2XD_reg(dst, src, tmp) ); + ins_pipe( pipe_slow ); +%} + +// Replicate scalar to packed byte (1 byte) values in xmm +instruct Repl8B_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate8B src)); + format %{ "MOVDQA $dst,$src\n\t" + "PUNPCKLBW $dst,$dst\n\t" + "PSHUFLW $dst,$dst,0x00\t! replicate8B" %} + ins_encode( pshufd_8x8(dst, src)); + ins_pipe( pipe_slow ); +%} + +// Replicate scalar to packed byte (1 byte) values in xmm +instruct Repl8B_eRegI(regXD dst, eRegI src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate8B src)); + format %{ "MOVD $dst,$src\n\t" + "PUNPCKLBW $dst,$dst\n\t" + "PSHUFLW $dst,$dst,0x00\t! replicate8B" %} + ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst)); + ins_pipe( pipe_slow ); +%} + +// Replicate scalar zero to packed byte (1 byte) values in xmm +instruct Repl8B_immI0(regXD dst, immI0 zero) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate8B zero)); + format %{ "PXOR $dst,$dst\t! replicate8B" %} + ins_encode( pxor(dst, dst)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed shore (2 byte) values in xmm +instruct Repl4S_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate4S src)); + format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %} + ins_encode( pshufd_4x16(dst, src)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed shore (2 byte) values in xmm +instruct Repl4S_eRegI(regXD dst, eRegI src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate4S src)); + format %{ "MOVD $dst,$src\n\t" + "PSHUFLW $dst,$dst,0x00\t! replicate4S" %} + ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar zero to packed short (2 byte) values in xmm +instruct Repl4S_immI0(regXD dst, immI0 zero) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate4S zero)); + format %{ "PXOR $dst,$dst\t! replicate4S" %} + ins_encode( pxor(dst, dst)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed char (2 byte) values in xmm +instruct Repl4C_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate4C src)); + format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %} + ins_encode( pshufd_4x16(dst, src)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed char (2 byte) values in xmm +instruct Repl4C_eRegI(regXD dst, eRegI src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate4C src)); + format %{ "MOVD $dst,$src\n\t" + "PSHUFLW $dst,$dst,0x00\t! replicate4C" %} + ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar zero to packed char (2 byte) values in xmm +instruct Repl4C_immI0(regXD dst, immI0 zero) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate4C zero)); + format %{ "PXOR $dst,$dst\t! replicate4C" %} + ins_encode( pxor(dst, dst)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed integer (4 byte) values in xmm +instruct Repl2I_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate2I src)); + format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %} + ins_encode( pshufd(dst, src, 0x00)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed integer (4 byte) values in xmm +instruct Repl2I_eRegI(regXD dst, eRegI src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate2I src)); + format %{ "MOVD $dst,$src\n\t" + "PSHUFD $dst,$dst,0x00\t! replicate2I" %} + ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar zero to packed integer (2 byte) values in xmm +instruct Repl2I_immI0(regXD dst, immI0 zero) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate2I zero)); + format %{ "PXOR $dst,$dst\t! replicate2I" %} + ins_encode( pxor(dst, dst)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed single precision floating point values in xmm +instruct Repl2F_reg(regXD dst, regXD src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate2F src)); + format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %} + ins_encode( pshufd(dst, src, 0xe0)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed single precision floating point values in xmm +instruct Repl2F_regX(regXD dst, regX src) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate2F src)); + format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %} + ins_encode( pshufd(dst, src, 0xe0)); + ins_pipe( fpu_reg_reg ); +%} + +// Replicate scalar to packed single precision floating point values in xmm +instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{ + predicate(UseSSE>=2); + match(Set dst (Replicate2F zero)); + format %{ "PXOR $dst,$dst\t! replicate2F" %} + ins_encode( pxor(dst, dst)); + ins_pipe( fpu_reg_reg ); +%} + + + +// ======================================================================= +// fast clearing of an array + +instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{ + match(Set dummy (ClearArray cnt base)); + effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr); + format %{ "SHL ECX,1\t# Convert doublewords to words\n\t" + "XOR EAX,EAX\n\t" + "REP STOS\t# store EAX into [EDI++] while ECX--" %} + opcode(0,0x4); + ins_encode( Opcode(0xD1), RegOpc(ECX), + OpcRegReg(0x33,EAX,EAX), + Opcode(0xF3), Opcode(0xAB) ); + ins_pipe( pipe_slow ); +%} + +instruct string_compare(eDIRegP str1, eSIRegP str2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{ + match(Set result (StrComp str1 str2)); + effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr); + //ins_cost(300); + + format %{ "String Compare $str1,$str2 -> $result // KILL EAX, EBX" %} + ins_encode( enc_String_Compare() ); + ins_pipe( pipe_slow ); +%} + +//----------Control Flow Instructions------------------------------------------ +// Signed compare Instructions +instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{ + match(Set cr (CmpI op1 op2)); + effect( DEF cr, USE op1, USE op2 ); + format %{ "CMP $op1,$op2" %} + opcode(0x3B); /* Opcode 3B /r */ + ins_encode( OpcP, RegReg( op1, op2) ); + ins_pipe( ialu_cr_reg_reg ); +%} + +instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{ + match(Set cr (CmpI op1 op2)); + effect( DEF cr, USE op1 ); + format %{ "CMP $op1,$op2" %} + opcode(0x81,0x07); /* Opcode 81 /7 */ + // ins_encode( RegImm( op1, op2) ); /* Was CmpImm */ + ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) ); + ins_pipe( ialu_cr_reg_imm ); +%} + +// Cisc-spilled version of cmpI_eReg +instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{ + match(Set cr (CmpI op1 (LoadI op2))); + + format %{ "CMP $op1,$op2" %} + ins_cost(500); + opcode(0x3B); /* Opcode 3B /r */ + ins_encode( OpcP, RegMem( op1, op2) ); + ins_pipe( ialu_cr_reg_mem ); +%} + +instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{ + match(Set cr (CmpI src zero)); + effect( DEF cr, USE src ); + + format %{ "TEST $src,$src" %} + opcode(0x85); + ins_encode( OpcP, RegReg( src, src ) ); + ins_pipe( ialu_cr_reg_imm ); +%} + +instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{ + match(Set cr (CmpI (AndI src con) zero)); + + format %{ "TEST $src,$con" %} + opcode(0xF7,0x00); + ins_encode( OpcP, RegOpc(src), Con32(con) ); + ins_pipe( ialu_cr_reg_imm ); +%} + +instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{ + match(Set cr (CmpI (AndI src mem) zero)); + + format %{ "TEST $src,$mem" %} + opcode(0x85); + ins_encode( OpcP, RegMem( src, mem ) ); + ins_pipe( ialu_cr_reg_mem ); +%} + +// Unsigned compare Instructions; really, same as signed except they +// produce an eFlagsRegU instead of eFlagsReg. +instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{ + match(Set cr (CmpU op1 op2)); + + format %{ "CMPu $op1,$op2" %} + opcode(0x3B); /* Opcode 3B /r */ + ins_encode( OpcP, RegReg( op1, op2) ); + ins_pipe( ialu_cr_reg_reg ); +%} + +instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{ + match(Set cr (CmpU op1 op2)); + + format %{ "CMPu $op1,$op2" %} + opcode(0x81,0x07); /* Opcode 81 /7 */ + ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) ); + ins_pipe( ialu_cr_reg_imm ); +%} + +// // Cisc-spilled version of cmpU_eReg +instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{ + match(Set cr (CmpU op1 (LoadI op2))); + + format %{ "CMPu $op1,$op2" %} + ins_cost(500); + opcode(0x3B); /* Opcode 3B /r */ + ins_encode( OpcP, RegMem( op1, op2) ); + ins_pipe( ialu_cr_reg_mem ); +%} + +// // Cisc-spilled version of cmpU_eReg +//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{ +// match(Set cr (CmpU (LoadI op1) op2)); +// +// format %{ "CMPu $op1,$op2" %} +// ins_cost(500); +// opcode(0x39); /* Opcode 39 /r */ +// ins_encode( OpcP, RegMem( op1, op2) ); +//%} + +instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{ + match(Set cr (CmpU src zero)); + + format %{ "TESTu $src,$src" %} + opcode(0x85); + ins_encode( OpcP, RegReg( src, src ) ); + ins_pipe( ialu_cr_reg_imm ); +%} + +// Unsigned pointer compare Instructions +instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{ + match(Set cr (CmpP op1 op2)); + + format %{ "CMPu $op1,$op2" %} + opcode(0x3B); /* Opcode 3B /r */ + ins_encode( OpcP, RegReg( op1, op2) ); + ins_pipe( ialu_cr_reg_reg ); +%} + +instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{ + match(Set cr (CmpP op1 op2)); + + format %{ "CMPu $op1,$op2" %} + opcode(0x81,0x07); /* Opcode 81 /7 */ + ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) ); + ins_pipe( ialu_cr_reg_imm ); +%} + +// // Cisc-spilled version of cmpP_eReg +instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{ + match(Set cr (CmpP op1 (LoadP op2))); + + format %{ "CMPu $op1,$op2" %} + ins_cost(500); + opcode(0x3B); /* Opcode 3B /r */ + ins_encode( OpcP, RegMem( op1, op2) ); + ins_pipe( ialu_cr_reg_mem ); +%} + +// // Cisc-spilled version of cmpP_eReg +//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{ +// match(Set cr (CmpP (LoadP op1) op2)); +// +// format %{ "CMPu $op1,$op2" %} +// ins_cost(500); +// opcode(0x39); /* Opcode 39 /r */ +// ins_encode( OpcP, RegMem( op1, op2) ); +//%} + +// Compare raw pointer (used in out-of-heap check). +// Only works because non-oop pointers must be raw pointers +// and raw pointers have no anti-dependencies. +instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{ + predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() ); + match(Set cr (CmpP op1 (LoadP op2))); + + format %{ "CMPu $op1,$op2" %} + opcode(0x3B); /* Opcode 3B /r */ + ins_encode( OpcP, RegMem( op1, op2) ); + ins_pipe( ialu_cr_reg_mem ); +%} + +// +// This will generate a signed flags result. This should be ok +// since any compare to a zero should be eq/neq. +instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{ + match(Set cr (CmpP src zero)); + + format %{ "TEST $src,$src" %} + opcode(0x85); + ins_encode( OpcP, RegReg( src, src ) ); + ins_pipe( ialu_cr_reg_imm ); +%} + +// Cisc-spilled version of testP_reg +// This will generate a signed flags result. This should be ok +// since any compare to a zero should be eq/neq. +instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{ + match(Set cr (CmpP (LoadP op) zero)); + + format %{ "TEST $op,0xFFFFFFFF" %} + ins_cost(500); + opcode(0xF7); /* Opcode F7 /0 */ + ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) ); + ins_pipe( ialu_cr_reg_imm ); +%} + +// Yanked all unsigned pointer compare operations. +// Pointer compares are done with CmpP which is already unsigned. + +//----------Max and Min-------------------------------------------------------- +// Min Instructions +//// +// *** Min and Max using the conditional move are slower than the +// *** branch version on a Pentium III. +// // Conditional move for min +//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{ +// effect( USE_DEF op2, USE op1, USE cr ); +// format %{ "CMOVlt $op2,$op1\t! min" %} +// opcode(0x4C,0x0F); +// ins_encode( OpcS, OpcP, RegReg( op2, op1 ) ); +// ins_pipe( pipe_cmov_reg ); +//%} +// +//// Min Register with Register (P6 version) +//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{ +// predicate(VM_Version::supports_cmov() ); +// match(Set op2 (MinI op1 op2)); +// ins_cost(200); +// expand %{ +// eFlagsReg cr; +// compI_eReg(cr,op1,op2); +// cmovI_reg_lt(op2,op1,cr); +// %} +//%} + +// Min Register with Register (generic version) +instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{ + match(Set dst (MinI dst src)); + effect(KILL flags); + ins_cost(300); + + format %{ "MIN $dst,$src" %} + opcode(0xCC); + ins_encode( min_enc(dst,src) ); + ins_pipe( pipe_slow ); +%} + +// Max Register with Register +// *** Min and Max using the conditional move are slower than the +// *** branch version on a Pentium III. +// // Conditional move for max +//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{ +// effect( USE_DEF op2, USE op1, USE cr ); +// format %{ "CMOVgt $op2,$op1\t! max" %} +// opcode(0x4F,0x0F); +// ins_encode( OpcS, OpcP, RegReg( op2, op1 ) ); +// ins_pipe( pipe_cmov_reg ); +//%} +// +// // Max Register with Register (P6 version) +//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{ +// predicate(VM_Version::supports_cmov() ); +// match(Set op2 (MaxI op1 op2)); +// ins_cost(200); +// expand %{ +// eFlagsReg cr; +// compI_eReg(cr,op1,op2); +// cmovI_reg_gt(op2,op1,cr); +// %} +//%} + +// Max Register with Register (generic version) +instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{ + match(Set dst (MaxI dst src)); + effect(KILL flags); + ins_cost(300); + + format %{ "MAX $dst,$src" %} + opcode(0xCC); + ins_encode( max_enc(dst,src) ); + ins_pipe( pipe_slow ); +%} + +// ============================================================================ +// Branch Instructions +// Jump Table +instruct jumpXtnd(eRegI switch_val) %{ + match(Jump switch_val); + ins_cost(350); + + format %{ "JMP [table_base](,$switch_val,1)\n\t" %} + + ins_encode %{ + address table_base = __ address_table_constant(_index2label); + + // Jump to Address(table_base + switch_reg) + InternalAddress table(table_base); + Address index(noreg, $switch_val$$Register, Address::times_1); + __ jump(ArrayAddress(table, index)); + %} + ins_pc_relative(1); + ins_pipe(pipe_jmp); +%} + +// Jump Direct - Label defines a relative address from JMP+1 +instruct jmpDir(label labl) %{ + match(Goto); + effect(USE labl); + + ins_cost(300); + format %{ "JMP $labl" %} + size(5); + opcode(0xE9); + ins_encode( OpcP, Lbl( labl ) ); + ins_pipe( pipe_jmp ); + ins_pc_relative(1); +%} + +// Jump Direct Conditional - Label defines a relative address from Jcc+1 +instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{ + match(If cop cr); + effect(USE labl); + + ins_cost(300); + format %{ "J$cop $labl" %} + size(6); + opcode(0x0F, 0x80); + ins_encode( Jcc( cop, labl) ); + ins_pipe( pipe_jcc ); + ins_pc_relative(1); +%} + +// Jump Direct Conditional - Label defines a relative address from Jcc+1 +instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{ + match(CountedLoopEnd cop cr); + effect(USE labl); + + ins_cost(300); + format %{ "J$cop $labl\t# Loop end" %} + size(6); + opcode(0x0F, 0x80); + ins_encode( Jcc( cop, labl) ); + ins_pipe( pipe_jcc ); + ins_pc_relative(1); +%} + +// Jump Direct Conditional - Label defines a relative address from Jcc+1 +instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{ + match(CountedLoopEnd cop cmp); + effect(USE labl); + + ins_cost(300); + format %{ "J$cop,u $labl\t# Loop end" %} + size(6); + opcode(0x0F, 0x80); + ins_encode( Jcc( cop, labl) ); + ins_pipe( pipe_jcc ); + ins_pc_relative(1); +%} + +// Jump Direct Conditional - using unsigned comparison +instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{ + match(If cop cmp); + effect(USE labl); + + ins_cost(300); + format %{ "J$cop,u $labl" %} + size(6); + opcode(0x0F, 0x80); + ins_encode( Jcc( cop, labl) ); + ins_pipe( pipe_jcc ); + ins_pc_relative(1); +%} + +// ============================================================================ +// The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass +// array for an instance of the superklass. Set a hidden internal cache on a +// hit (cache is checked with exposed code in gen_subtype_check()). Return +// NZ for a miss or zero for a hit. The encoding ALSO sets flags. +instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{ + match(Set result (PartialSubtypeCheck sub super)); + effect( KILL rcx, KILL cr ); + + ins_cost(1100); // slightly larger than the next version + format %{ "CMPL EAX,ESI\n\t" + "JEQ,s hit\n\t" + "MOV EDI,[$sub+Klass::secondary_supers]\n\t" + "MOV ECX,[EDI+arrayKlass::length]\t# length to scan\n\t" + "ADD EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t" + "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t" + "JNE,s miss\t\t# Missed: EDI not-zero\n\t" + "MOV [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t" + "hit:\n\t" + "XOR $result,$result\t\t Hit: EDI zero\n\t" + "miss:\t" %} + + opcode(0x1); // Force a XOR of EDI + ins_encode( enc_PartialSubtypeCheck() ); + ins_pipe( pipe_slow ); +%} + +instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{ + match(Set cr (CmpP (PartialSubtypeCheck sub super) zero)); + effect( KILL rcx, KILL result ); + + ins_cost(1000); + format %{ "CMPL EAX,ESI\n\t" + "JEQ,s miss\t# Actually a hit; we are done.\n\t" + "MOV EDI,[$sub+Klass::secondary_supers]\n\t" + "MOV ECX,[EDI+arrayKlass::length]\t# length to scan\n\t" + "ADD EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t" + "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t" + "JNE,s miss\t\t# Missed: flags NZ\n\t" + "MOV [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t" + "miss:\t" %} + + opcode(0x0); // No need to XOR EDI + ins_encode( enc_PartialSubtypeCheck() ); + ins_pipe( pipe_slow ); +%} + +// ============================================================================ +// Branch Instructions -- short offset versions +// +// These instructions are used to replace jumps of a long offset (the default +// match) with jumps of a shorter offset. These instructions are all tagged +// with the ins_short_branch attribute, which causes the ADLC to suppress the +// match rules in general matching. Instead, the ADLC generates a conversion +// method in the MachNode which can be used to do in-place replacement of the +// long variant with the shorter variant. The compiler will determine if a +// branch can be taken by the is_short_branch_offset() predicate in the machine +// specific code section of the file. + +// Jump Direct - Label defines a relative address from JMP+1 +instruct jmpDir_short(label labl) %{ + match(Goto); + effect(USE labl); + + ins_cost(300); + format %{ "JMP,s $labl" %} + size(2); + opcode(0xEB); + ins_encode( OpcP, LblShort( labl ) ); + ins_pipe( pipe_jmp ); + ins_pc_relative(1); + ins_short_branch(1); +%} + +// Jump Direct Conditional - Label defines a relative address from Jcc+1 +instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{ + match(If cop cr); + effect(USE labl); + + ins_cost(300); + format %{ "J$cop,s $labl" %} + size(2); + opcode(0x70); + ins_encode( JccShort( cop, labl) ); + ins_pipe( pipe_jcc ); + ins_pc_relative(1); + ins_short_branch(1); +%} + +// Jump Direct Conditional - Label defines a relative address from Jcc+1 +instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{ + match(CountedLoopEnd cop cr); + effect(USE labl); + + ins_cost(300); + format %{ "J$cop,s $labl" %} + size(2); + opcode(0x70); + ins_encode( JccShort( cop, labl) ); + ins_pipe( pipe_jcc ); + ins_pc_relative(1); + ins_short_branch(1); +%} + +// Jump Direct Conditional - Label defines a relative address from Jcc+1 +instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{ + match(CountedLoopEnd cop cmp); + effect(USE labl); + + ins_cost(300); + format %{ "J$cop,us $labl" %} + size(2); + opcode(0x70); + ins_encode( JccShort( cop, labl) ); + ins_pipe( pipe_jcc ); + ins_pc_relative(1); + ins_short_branch(1); +%} + +// Jump Direct Conditional - using unsigned comparison +instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{ + match(If cop cmp); + effect(USE labl); + + ins_cost(300); + format %{ "J$cop,us $labl" %} + size(2); + opcode(0x70); + ins_encode( JccShort( cop, labl) ); + ins_pipe( pipe_jcc ); + ins_pc_relative(1); + ins_short_branch(1); +%} + +// ============================================================================ +// Long Compare +// +// Currently we hold longs in 2 registers. Comparing such values efficiently +// is tricky. The flavor of compare used depends on whether we are testing +// for LT, LE, or EQ. For a simple LT test we can check just the sign bit. +// The GE test is the negated LT test. The LE test can be had by commuting +// the operands (yielding a GE test) and then negating; negate again for the +// GT test. The EQ test is done by ORcc'ing the high and low halves, and the +// NE test is negated from that. + +// Due to a shortcoming in the ADLC, it mixes up expressions like: +// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)). Note the +// difference between 'Y' and '0L'. The tree-matches for the CmpI sections +// are collapsed internally in the ADLC's dfa-gen code. The match for +// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the +// foo match ends up with the wrong leaf. One fix is to not match both +// reg-reg and reg-zero forms of long-compare. This is unfortunate because +// both forms beat the trinary form of long-compare and both are very useful +// on Intel which has so few registers. + +// Manifest a CmpL result in an integer register. Very painful. +// This is the test to avoid. +instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{ + match(Set dst (CmpL3 src1 src2)); + effect( KILL flags ); + ins_cost(1000); + format %{ "XOR $dst,$dst\n\t" + "CMP $src1.hi,$src2.hi\n\t" + "JLT,s m_one\n\t" + "JGT,s p_one\n\t" + "CMP $src1.lo,$src2.lo\n\t" + "JB,s m_one\n\t" + "JEQ,s done\n" + "p_one:\tINC $dst\n\t" + "JMP,s done\n" + "m_one:\tDEC $dst\n" + "done:" %} + ins_encode %{ + Label p_one, m_one, done; + __ xorl($dst$$Register, $dst$$Register); + __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register)); + __ jccb(Assembler::less, m_one); + __ jccb(Assembler::greater, p_one); + __ cmpl($src1$$Register, $src2$$Register); + __ jccb(Assembler::below, m_one); + __ jccb(Assembler::equal, done); + __ bind(p_one); + __ increment($dst$$Register); + __ jmpb(done); + __ bind(m_one); + __ decrement($dst$$Register); + __ bind(done); + %} + ins_pipe( pipe_slow ); +%} + +//====== +// Manifest a CmpL result in the normal flags. Only good for LT or GE +// compares. Can be used for LE or GT compares by reversing arguments. +// NOT GOOD FOR EQ/NE tests. +instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{ + match( Set flags (CmpL src zero )); + ins_cost(100); + format %{ "TEST $src.hi,$src.hi" %} + opcode(0x85); + ins_encode( OpcP, RegReg_Hi2( src, src ) ); + ins_pipe( ialu_cr_reg_reg ); +%} + +// Manifest a CmpL result in the normal flags. Only good for LT or GE +// compares. Can be used for LE or GT compares by reversing arguments. +// NOT GOOD FOR EQ/NE tests. +instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{ + match( Set flags (CmpL src1 src2 )); + effect( TEMP tmp ); + ins_cost(300); + format %{ "CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t" + "MOV $tmp,$src1.hi\n\t" + "SBB $tmp,$src2.hi\t! Compute flags for long compare" %} + ins_encode( long_cmp_flags2( src1, src2, tmp ) ); + ins_pipe( ialu_cr_reg_reg ); +%} + +// Long compares reg < zero/req OR reg >= zero/req. +// Just a wrapper for a normal branch, plus the predicate test. +instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{ + match(If cmp flags); + effect(USE labl); + predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); + expand %{ + jmpCon(cmp,flags,labl); // JLT or JGE... + %} +%} + +// Compare 2 longs and CMOVE longs. +instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{ + match(Set dst (CMoveL (Binary cmp flags) (Binary dst src))); + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); + ins_cost(400); + format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" + "CMOV$cmp $dst.hi,$src.hi" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) ); + ins_pipe( pipe_cmov_reg_long ); +%} + +instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{ + match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src)))); + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); + ins_cost(500); + format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" + "CMOV$cmp $dst.hi,$src.hi" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) ); + ins_pipe( pipe_cmov_reg_long ); +%} + +// Compare 2 longs and CMOVE ints. +instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); + match(Set dst (CMoveI (Binary cmp flags) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); + match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src)))); + ins_cost(250); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegMem( dst, src ) ); + ins_pipe( pipe_cmov_mem ); +%} + +// Compare 2 longs and CMOVE ints. +instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); + match(Set dst (CMoveP (Binary cmp flags) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +// Compare 2 longs and CMOVE doubles +instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{ + predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); + match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovD_regS(cmp,flags,dst,src); + %} +%} + +// Compare 2 longs and CMOVE doubles +instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{ + predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); + match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovXD_regS(cmp,flags,dst,src); + %} +%} + +instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{ + predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); + match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovF_regS(cmp,flags,dst,src); + %} +%} + +instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{ + predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); + match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovX_regS(cmp,flags,dst,src); + %} +%} + +//====== +// Manifest a CmpL result in the normal flags. Only good for EQ/NE compares. +instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{ + match( Set flags (CmpL src zero )); + effect(TEMP tmp); + ins_cost(200); + format %{ "MOV $tmp,$src.lo\n\t" + "OR $tmp,$src.hi\t! Long is EQ/NE 0?" %} + ins_encode( long_cmp_flags0( src, tmp ) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// Manifest a CmpL result in the normal flags. Only good for EQ/NE compares. +instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{ + match( Set flags (CmpL src1 src2 )); + ins_cost(200+300); + format %{ "CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t" + "JNE,s skip\n\t" + "CMP $src1.hi,$src2.hi\n\t" + "skip:\t" %} + ins_encode( long_cmp_flags1( src1, src2 ) ); + ins_pipe( ialu_cr_reg_reg ); +%} + +// Long compare reg == zero/reg OR reg != zero/reg +// Just a wrapper for a normal branch, plus the predicate test. +instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{ + match(If cmp flags); + effect(USE labl); + predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); + expand %{ + jmpCon(cmp,flags,labl); // JEQ or JNE... + %} +%} + +// Compare 2 longs and CMOVE longs. +instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{ + match(Set dst (CMoveL (Binary cmp flags) (Binary dst src))); + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); + ins_cost(400); + format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" + "CMOV$cmp $dst.hi,$src.hi" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) ); + ins_pipe( pipe_cmov_reg_long ); +%} + +instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{ + match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src)))); + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); + ins_cost(500); + format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" + "CMOV$cmp $dst.hi,$src.hi" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) ); + ins_pipe( pipe_cmov_reg_long ); +%} + +// Compare 2 longs and CMOVE ints. +instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); + match(Set dst (CMoveI (Binary cmp flags) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); + match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src)))); + ins_cost(250); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegMem( dst, src ) ); + ins_pipe( pipe_cmov_mem ); +%} + +// Compare 2 longs and CMOVE ints. +instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); + match(Set dst (CMoveP (Binary cmp flags) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +// Compare 2 longs and CMOVE doubles +instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{ + predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); + match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovD_regS(cmp,flags,dst,src); + %} +%} + +// Compare 2 longs and CMOVE doubles +instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{ + predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); + match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovXD_regS(cmp,flags,dst,src); + %} +%} + +instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{ + predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); + match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovF_regS(cmp,flags,dst,src); + %} +%} + +instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{ + predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); + match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovX_regS(cmp,flags,dst,src); + %} +%} + +//====== +// Manifest a CmpL result in the normal flags. Only good for LE or GT compares. +// Same as cmpL_reg_flags_LEGT except must negate src +instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{ + match( Set flags (CmpL src zero )); + effect( TEMP tmp ); + ins_cost(300); + format %{ "XOR $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t" + "CMP $tmp,$src.lo\n\t" + "SBB $tmp,$src.hi\n\t" %} + ins_encode( long_cmp_flags3(src, tmp) ); + ins_pipe( ialu_reg_reg_long ); +%} + +// Manifest a CmpL result in the normal flags. Only good for LE or GT compares. +// Same as cmpL_reg_flags_LTGE except operands swapped. Swapping operands +// requires a commuted test to get the same result. +instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{ + match( Set flags (CmpL src1 src2 )); + effect( TEMP tmp ); + ins_cost(300); + format %{ "CMP $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t" + "MOV $tmp,$src2.hi\n\t" + "SBB $tmp,$src1.hi\t! Compute flags for long compare" %} + ins_encode( long_cmp_flags2( src2, src1, tmp ) ); + ins_pipe( ialu_cr_reg_reg ); +%} + +// Long compares reg < zero/req OR reg >= zero/req. +// Just a wrapper for a normal branch, plus the predicate test +instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{ + match(If cmp flags); + effect(USE labl); + predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le ); + ins_cost(300); + expand %{ + jmpCon(cmp,flags,labl); // JGT or JLE... + %} +%} + +// Compare 2 longs and CMOVE longs. +instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{ + match(Set dst (CMoveL (Binary cmp flags) (Binary dst src))); + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); + ins_cost(400); + format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" + "CMOV$cmp $dst.hi,$src.hi" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) ); + ins_pipe( pipe_cmov_reg_long ); +%} + +instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{ + match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src)))); + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); + ins_cost(500); + format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" + "CMOV$cmp $dst.hi,$src.hi+4" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) ); + ins_pipe( pipe_cmov_reg_long ); +%} + +// Compare 2 longs and CMOVE ints. +instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); + match(Set dst (CMoveI (Binary cmp flags) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); + match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src)))); + ins_cost(250); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegMem( dst, src ) ); + ins_pipe( pipe_cmov_mem ); +%} + +// Compare 2 longs and CMOVE ptrs. +instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{ + predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); + match(Set dst (CMoveP (Binary cmp flags) (Binary dst src))); + ins_cost(200); + format %{ "CMOV$cmp $dst,$src" %} + opcode(0x0F,0x40); + ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); + ins_pipe( pipe_cmov_reg ); +%} + +// Compare 2 longs and CMOVE doubles +instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{ + predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ); + match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovD_regS(cmp,flags,dst,src); + %} +%} + +// Compare 2 longs and CMOVE doubles +instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{ + predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ); + match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovXD_regS(cmp,flags,dst,src); + %} +%} + +instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{ + predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ); + match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovF_regS(cmp,flags,dst,src); + %} +%} + + +instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{ + predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ); + match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); + ins_cost(200); + expand %{ + fcmovX_regS(cmp,flags,dst,src); + %} +%} + + +// ============================================================================ +// Procedure Call/Return Instructions +// Call Java Static Instruction +// Note: If this code changes, the corresponding ret_addr_offset() and +// compute_padding() functions will have to be adjusted. +instruct CallStaticJavaDirect(method meth) %{ + match(CallStaticJava); + effect(USE meth); + + ins_cost(300); + format %{ "CALL,static " %} + opcode(0xE8); /* E8 cd */ + ins_encode( pre_call_FPU, + Java_Static_Call( meth ), + call_epilog, + post_call_FPU ); + ins_pipe( pipe_slow ); + ins_pc_relative(1); + ins_alignment(4); +%} + +// Call Java Dynamic Instruction +// Note: If this code changes, the corresponding ret_addr_offset() and +// compute_padding() functions will have to be adjusted. +instruct CallDynamicJavaDirect(method meth) %{ + match(CallDynamicJava); + effect(USE meth); + + ins_cost(300); + format %{ "MOV EAX,(oop)-1\n\t" + "CALL,dynamic" %} + opcode(0xE8); /* E8 cd */ + ins_encode( pre_call_FPU, + Java_Dynamic_Call( meth ), + call_epilog, + post_call_FPU ); + ins_pipe( pipe_slow ); + ins_pc_relative(1); + ins_alignment(4); +%} + +// Call Runtime Instruction +instruct CallRuntimeDirect(method meth) %{ + match(CallRuntime ); + effect(USE meth); + + ins_cost(300); + format %{ "CALL,runtime " %} + opcode(0xE8); /* E8 cd */ + // Use FFREEs to clear entries in float stack + ins_encode( pre_call_FPU, + FFree_Float_Stack_All, + Java_To_Runtime( meth ), + post_call_FPU ); + ins_pipe( pipe_slow ); + ins_pc_relative(1); +%} + +// Call runtime without safepoint +instruct CallLeafDirect(method meth) %{ + match(CallLeaf); + effect(USE meth); + + ins_cost(300); + format %{ "CALL_LEAF,runtime " %} + opcode(0xE8); /* E8 cd */ + ins_encode( pre_call_FPU, + FFree_Float_Stack_All, + Java_To_Runtime( meth ), + Verify_FPU_For_Leaf, post_call_FPU ); + ins_pipe( pipe_slow ); + ins_pc_relative(1); +%} + +instruct CallLeafNoFPDirect(method meth) %{ + match(CallLeafNoFP); + effect(USE meth); + + ins_cost(300); + format %{ "CALL_LEAF_NOFP,runtime " %} + opcode(0xE8); /* E8 cd */ + ins_encode(Java_To_Runtime(meth)); + ins_pipe( pipe_slow ); + ins_pc_relative(1); +%} + + +// Return Instruction +// Remove the return address & jump to it. +instruct Ret() %{ + match(Return); + format %{ "RET" %} + opcode(0xC3); + ins_encode(OpcP); + ins_pipe( pipe_jmp ); +%} + +// Tail Call; Jump from runtime stub to Java code. +// Also known as an 'interprocedural jump'. +// Target of jump will eventually return to caller. +// TailJump below removes the return address. +instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{ + match(TailCall jump_target method_oop ); + ins_cost(300); + format %{ "JMP $jump_target \t# EBX holds method oop" %} + opcode(0xFF, 0x4); /* Opcode FF /4 */ + ins_encode( OpcP, RegOpc(jump_target) ); + ins_pipe( pipe_jmp ); +%} + + +// Tail Jump; remove the return address; jump to target. +// TailCall above leaves the return address around. +instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{ + match( TailJump jump_target ex_oop ); + ins_cost(300); + format %{ "POP EDX\t# pop return address into dummy\n\t" + "JMP $jump_target " %} + opcode(0xFF, 0x4); /* Opcode FF /4 */ + ins_encode( enc_pop_rdx, + OpcP, RegOpc(jump_target) ); + ins_pipe( pipe_jmp ); +%} + +// Create exception oop: created by stack-crawling runtime code. +// Created exception is now available to this handler, and is setup +// just prior to jumping to this handler. No code emitted. +instruct CreateException( eAXRegP ex_oop ) +%{ + match(Set ex_oop (CreateEx)); + + size(0); + // use the following format syntax + format %{ "# exception oop is in EAX; no code emitted" %} + ins_encode(); + ins_pipe( empty ); +%} + + +// Rethrow exception: +// The exception oop will come in the first argument position. +// Then JUMP (not call) to the rethrow stub code. +instruct RethrowException() +%{ + match(Rethrow); + + // use the following format syntax + format %{ "JMP rethrow_stub" %} + ins_encode(enc_rethrow); + ins_pipe( pipe_jmp ); +%} + +// inlined locking and unlocking + + +instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{ + match( Set cr (FastLock object box) ); + effect( TEMP tmp, TEMP scr ); + ins_cost(300); + format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %} + ins_encode( Fast_Lock(object,box,tmp,scr) ); + ins_pipe( pipe_slow ); + ins_pc_relative(1); +%} + +instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{ + match( Set cr (FastUnlock object box) ); + effect( TEMP tmp ); + ins_cost(300); + format %{ "FASTUNLOCK $object, $box, $tmp" %} + ins_encode( Fast_Unlock(object,box,tmp) ); + ins_pipe( pipe_slow ); + ins_pc_relative(1); +%} + + + +// ============================================================================ +// Safepoint Instruction +instruct safePoint_poll(eFlagsReg cr) %{ + match(SafePoint); + effect(KILL cr); + + // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page. + // On SPARC that might be acceptable as we can generate the address with + // just a sethi, saving an or. By polling at offset 0 we can end up + // putting additional pressure on the index-0 in the D$. Because of + // alignment (just like the situation at hand) the lower indices tend + // to see more traffic. It'd be better to change the polling address + // to offset 0 of the last $line in the polling page. + + format %{ "TSTL #polladdr,EAX\t! Safepoint: poll for GC" %} + ins_cost(125); + size(6) ; + ins_encode( Safepoint_Poll() ); + ins_pipe( ialu_reg_mem ); +%} + +//----------PEEPHOLE RULES----------------------------------------------------- +// These must follow all instruction definitions as they use the names +// defined in the instructions definitions. +// +// peepmatch ( root_instr_name [preceeding_instruction]* ); +// +// peepconstraint %{ +// (instruction_number.operand_name relational_op instruction_number.operand_name +// [, ...] ); +// // instruction numbers are zero-based using left to right order in peepmatch +// +// peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); +// // provide an instruction_number.operand_name for each operand that appears +// // in the replacement instruction's match rule +// +// ---------VM FLAGS--------------------------------------------------------- +// +// All peephole optimizations can be turned off using -XX:-OptoPeephole +// +// Each peephole rule is given an identifying number starting with zero and +// increasing by one in the order seen by the parser. An individual peephole +// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=# +// on the command-line. +// +// ---------CURRENT LIMITATIONS---------------------------------------------- +// +// Only match adjacent instructions in same basic block +// Only equality constraints +// Only constraints between operands, not (0.dest_reg == EAX_enc) +// Only one replacement instruction +// +// ---------EXAMPLE---------------------------------------------------------- +// +// // pertinent parts of existing instructions in architecture description +// instruct movI(eRegI dst, eRegI src) %{ +// match(Set dst (CopyI src)); +// %} +// +// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{ +// match(Set dst (AddI dst src)); +// effect(KILL cr); +// %} +// +// // Change (inc mov) to lea +// peephole %{ +// // increment preceeded by register-register move +// peepmatch ( incI_eReg movI ); +// // require that the destination register of the increment +// // match the destination register of the move +// peepconstraint ( 0.dst == 1.dst ); +// // construct a replacement instruction that sets +// // the destination to ( move's source register + one ) +// peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) ); +// %} +// +// Implementation no longer uses movX instructions since +// machine-independent system no longer uses CopyX nodes. +// +// peephole %{ +// peepmatch ( incI_eReg movI ); +// peepconstraint ( 0.dst == 1.dst ); +// peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) ); +// %} +// +// peephole %{ +// peepmatch ( decI_eReg movI ); +// peepconstraint ( 0.dst == 1.dst ); +// peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) ); +// %} +// +// peephole %{ +// peepmatch ( addI_eReg_imm movI ); +// peepconstraint ( 0.dst == 1.dst ); +// peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) ); +// %} +// +// peephole %{ +// peepmatch ( addP_eReg_imm movP ); +// peepconstraint ( 0.dst == 1.dst ); +// peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) ); +// %} + +// // Change load of spilled value to only a spill +// instruct storeI(memory mem, eRegI src) %{ +// match(Set mem (StoreI mem src)); +// %} +// +// instruct loadI(eRegI dst, memory mem) %{ +// match(Set dst (LoadI mem)); +// %} +// +peephole %{ + peepmatch ( loadI storeI ); + peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem ); + peepreplace ( storeI( 1.mem 1.mem 1.src ) ); +%} + +//----------SMARTSPILL RULES--------------------------------------------------- +// These must follow all instruction definitions as they use the names +// defined in the instructions definitions.