diff -r fd16c54261b3 -r 489c9b5090e2 hotspot/src/cpu/x86/vm/c1_LIRAssembler_x86.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hotspot/src/cpu/x86/vm/c1_LIRAssembler_x86.cpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,3136 @@ +/* + * Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +# include "incls/_precompiled.incl" +# include "incls/_c1_LIRAssembler_x86.cpp.incl" + + +// These masks are used to provide 128-bit aligned bitmasks to the XMM +// instructions, to allow sign-masking or sign-bit flipping. They allow +// fast versions of NegF/NegD and AbsF/AbsD. + +// Note: 'double' and 'long long' have 32-bits alignment on x86. +static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { + // Use the expression (adr)&(~0xF) to provide 128-bits aligned address + // of 128-bits operands for SSE instructions. + jlong *operand = (jlong*)(((long)adr)&((long)(~0xF))); + // Store the value to a 128-bits operand. + operand[0] = lo; + operand[1] = hi; + return operand; +} + +// Buffer for 128-bits masks used by SSE instructions. +static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) + +// Static initialization during VM startup. +static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); +static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); +static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); +static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); + + + +NEEDS_CLEANUP // remove this definitions ? +const Register IC_Klass = rax; // where the IC klass is cached +const Register SYNC_header = rax; // synchronization header +const Register SHIFT_count = rcx; // where count for shift operations must be + +#define __ _masm-> + + +static void select_different_registers(Register preserve, + Register extra, + Register &tmp1, + Register &tmp2) { + if (tmp1 == preserve) { + assert_different_registers(tmp1, tmp2, extra); + tmp1 = extra; + } else if (tmp2 == preserve) { + assert_different_registers(tmp1, tmp2, extra); + tmp2 = extra; + } + assert_different_registers(preserve, tmp1, tmp2); +} + + + +static void select_different_registers(Register preserve, + Register extra, + Register &tmp1, + Register &tmp2, + Register &tmp3) { + if (tmp1 == preserve) { + assert_different_registers(tmp1, tmp2, tmp3, extra); + tmp1 = extra; + } else if (tmp2 == preserve) { + assert_different_registers(tmp1, tmp2, tmp3, extra); + tmp2 = extra; + } else if (tmp3 == preserve) { + assert_different_registers(tmp1, tmp2, tmp3, extra); + tmp3 = extra; + } + assert_different_registers(preserve, tmp1, tmp2, tmp3); +} + + + +bool LIR_Assembler::is_small_constant(LIR_Opr opr) { + if (opr->is_constant()) { + LIR_Const* constant = opr->as_constant_ptr(); + switch (constant->type()) { + case T_INT: { + return true; + } + + default: + return false; + } + } + return false; +} + + +LIR_Opr LIR_Assembler::receiverOpr() { + return FrameMap::rcx_oop_opr; +} + +LIR_Opr LIR_Assembler::incomingReceiverOpr() { + return receiverOpr(); +} + +LIR_Opr LIR_Assembler::osrBufferPointer() { + return FrameMap::rcx_opr; +} + +//--------------fpu register translations----------------------- + + +address LIR_Assembler::float_constant(float f) { + address const_addr = __ float_constant(f); + if (const_addr == NULL) { + bailout("const section overflow"); + return __ code()->consts()->start(); + } else { + return const_addr; + } +} + + +address LIR_Assembler::double_constant(double d) { + address const_addr = __ double_constant(d); + if (const_addr == NULL) { + bailout("const section overflow"); + return __ code()->consts()->start(); + } else { + return const_addr; + } +} + + +void LIR_Assembler::set_24bit_FPU() { + __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24())); +} + +void LIR_Assembler::reset_FPU() { + __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); +} + +void LIR_Assembler::fpop() { + __ fpop(); +} + +void LIR_Assembler::fxch(int i) { + __ fxch(i); +} + +void LIR_Assembler::fld(int i) { + __ fld_s(i); +} + +void LIR_Assembler::ffree(int i) { + __ ffree(i); +} + +void LIR_Assembler::breakpoint() { + __ int3(); +} + +void LIR_Assembler::push(LIR_Opr opr) { + if (opr->is_single_cpu()) { + __ push_reg(opr->as_register()); + } else if (opr->is_double_cpu()) { + __ push_reg(opr->as_register_hi()); + __ push_reg(opr->as_register_lo()); + } else if (opr->is_stack()) { + __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); + } else if (opr->is_constant()) { + LIR_Const* const_opr = opr->as_constant_ptr(); + if (const_opr->type() == T_OBJECT) { + __ push_oop(const_opr->as_jobject()); + } else if (const_opr->type() == T_INT) { + __ push_jint(const_opr->as_jint()); + } else { + ShouldNotReachHere(); + } + + } else { + ShouldNotReachHere(); + } +} + +void LIR_Assembler::pop(LIR_Opr opr) { + if (opr->is_single_cpu()) { + __ pop(opr->as_register()); + } else { + ShouldNotReachHere(); + } +} + +//------------------------------------------- +Address LIR_Assembler::as_Address(LIR_Address* addr) { + if (addr->base()->is_illegal()) { + assert(addr->index()->is_illegal(), "must be illegal too"); + //return Address(addr->disp(), relocInfo::none); + // hack for now since this should really return an AddressLiteral + // which will have to await 64bit c1 changes. + return Address(noreg, addr->disp()); + } + + Register base = addr->base()->as_register(); + + if (addr->index()->is_illegal()) { + return Address( base, addr->disp()); + } else if (addr->index()->is_single_cpu()) { + Register index = addr->index()->as_register(); + return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); + } else if (addr->index()->is_constant()) { + int addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); + + return Address(base, addr_offset); + } else { + Unimplemented(); + return Address(); + } +} + + +Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { + Address base = as_Address(addr); + return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); +} + + +Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { + return as_Address(addr); +} + + +void LIR_Assembler::osr_entry() { + offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); + BlockBegin* osr_entry = compilation()->hir()->osr_entry(); + ValueStack* entry_state = osr_entry->state(); + int number_of_locks = entry_state->locks_size(); + + // we jump here if osr happens with the interpreter + // state set up to continue at the beginning of the + // loop that triggered osr - in particular, we have + // the following registers setup: + // + // rcx: osr buffer + // + + // build frame + ciMethod* m = compilation()->method(); + __ build_frame(initial_frame_size_in_bytes()); + + // OSR buffer is + // + // locals[nlocals-1..0] + // monitors[0..number_of_locks] + // + // locals is a direct copy of the interpreter frame so in the osr buffer + // so first slot in the local array is the last local from the interpreter + // and last slot is local[0] (receiver) from the interpreter + // + // Similarly with locks. The first lock slot in the osr buffer is the nth lock + // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock + // in the interpreter frame (the method lock if a sync method) + + // Initialize monitors in the compiled activation. + // rcx: pointer to osr buffer + // + // All other registers are dead at this point and the locals will be + // copied into place by code emitted in the IR. + + Register OSR_buf = osrBufferPointer()->as_register(); + { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); + int monitor_offset = BytesPerWord * method()->max_locals() + + (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); + for (int i = 0; i < number_of_locks; i++) { + int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord); +#ifdef ASSERT + // verify the interpreter's monitor has a non-null object + { + Label L; + __ cmpl(Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); + __ jcc(Assembler::notZero, L); + __ stop("locked object is NULL"); + __ bind(L); + } +#endif + __ movl(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::lock_offset_in_bytes())); + __ movl(frame_map()->address_for_monitor_lock(i), rbx); + __ movl(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes())); + __ movl(frame_map()->address_for_monitor_object(i), rbx); + } + } +} + + +// inline cache check; done before the frame is built. +int LIR_Assembler::check_icache() { + Register receiver = FrameMap::receiver_opr->as_register(); + Register ic_klass = IC_Klass; + + if (!VerifyOops) { + // insert some nops so that the verified entry point is aligned on CodeEntryAlignment + while ((__ offset() + 9) % CodeEntryAlignment != 0) { + __ nop(); + } + } + int offset = __ offset(); + __ inline_cache_check(receiver, IC_Klass); + assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct"); + if (VerifyOops) { + // force alignment after the cache check. + // It's been verified to be aligned if !VerifyOops + __ align(CodeEntryAlignment); + } + return offset; +} + + +void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { + jobject o = NULL; + PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); + __ movoop(reg, o); + patching_epilog(patch, lir_patch_normal, reg, info); +} + + +void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) { + if (exception->is_valid()) { + // preserve exception + // note: the monitor_exit runtime call is a leaf routine + // and cannot block => no GC can happen + // The slow case (MonitorAccessStub) uses the first two stack slots + // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8] + __ movl (Address(rsp, 2*wordSize), exception); + } + + Register obj_reg = obj_opr->as_register(); + Register lock_reg = lock_opr->as_register(); + + // setup registers (lock_reg must be rax, for lock_object) + assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here"); + Register hdr = lock_reg; + assert(new_hdr == SYNC_header, "wrong register"); + lock_reg = new_hdr; + // compute pointer to BasicLock + Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no); + __ leal(lock_reg, lock_addr); + // unlock object + MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no); + // _slow_case_stubs->append(slow_case); + // temporary fix: must be created after exceptionhandler, therefore as call stub + _slow_case_stubs->append(slow_case); + if (UseFastLocking) { + // try inlined fast unlocking first, revert to slow locking if it fails + // note: lock_reg points to the displaced header since the displaced header offset is 0! + assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); + __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry()); + } else { + // always do slow unlocking + // note: the slow unlocking code could be inlined here, however if we use + // slow unlocking, speed doesn't matter anyway and this solution is + // simpler and requires less duplicated code - additionally, the + // slow unlocking code is the same in either case which simplifies + // debugging + __ jmp(*slow_case->entry()); + } + // done + __ bind(*slow_case->continuation()); + + if (exception->is_valid()) { + // restore exception + __ movl (exception, Address(rsp, 2 * wordSize)); + } +} + +// This specifies the rsp decrement needed to build the frame +int LIR_Assembler::initial_frame_size_in_bytes() { + // if rounding, must let FrameMap know! + return (frame_map()->framesize() - 2) * BytesPerWord; // subtract two words to account for return address and link +} + + +void LIR_Assembler::emit_exception_handler() { + // if the last instruction is a call (typically to do a throw which + // is coming at the end after block reordering) the return address + // must still point into the code area in order to avoid assertion + // failures when searching for the corresponding bci => add a nop + // (was bug 5/14/1999 - gri) + + __ nop(); + + // generate code for exception handler + address handler_base = __ start_a_stub(exception_handler_size); + if (handler_base == NULL) { + // not enough space left for the handler + bailout("exception handler overflow"); + return; + } +#ifdef ASSERT + int offset = code_offset(); +#endif // ASSERT + + compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset()); + + // if the method does not have an exception handler, then there is + // no reason to search for one + if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) { + // the exception oop and pc are in rax, and rdx + // no other registers need to be preserved, so invalidate them + __ invalidate_registers(false, true, true, false, true, true); + + // check that there is really an exception + __ verify_not_null_oop(rax); + + // search an exception handler (rax: exception oop, rdx: throwing pc) + __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id))); + + // if the call returns here, then the exception handler for particular + // exception doesn't exist -> unwind activation and forward exception to caller + } + + // the exception oop is in rax, + // no other registers need to be preserved, so invalidate them + __ invalidate_registers(false, true, true, true, true, true); + + // check that there is really an exception + __ verify_not_null_oop(rax); + + // unlock the receiver/klass if necessary + // rax,: exception + ciMethod* method = compilation()->method(); + if (method->is_synchronized() && GenerateSynchronizationCode) { + monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax); + } + + // unwind activation and forward exception to caller + // rax,: exception + __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id))); + + assert(code_offset() - offset <= exception_handler_size, "overflow"); + + __ end_a_stub(); +} + +void LIR_Assembler::emit_deopt_handler() { + // if the last instruction is a call (typically to do a throw which + // is coming at the end after block reordering) the return address + // must still point into the code area in order to avoid assertion + // failures when searching for the corresponding bci => add a nop + // (was bug 5/14/1999 - gri) + + __ nop(); + + // generate code for exception handler + address handler_base = __ start_a_stub(deopt_handler_size); + if (handler_base == NULL) { + // not enough space left for the handler + bailout("deopt handler overflow"); + return; + } +#ifdef ASSERT + int offset = code_offset(); +#endif // ASSERT + + compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset()); + + InternalAddress here(__ pc()); + __ pushptr(here.addr()); + + __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); + + assert(code_offset() - offset <= deopt_handler_size, "overflow"); + + __ end_a_stub(); + +} + + +// This is the fast version of java.lang.String.compare; it has not +// OSR-entry and therefore, we generate a slow version for OSR's +void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) { + __ movl (rbx, rcx); // receiver is in rcx + __ movl (rax, arg1->as_register()); + + // Get addresses of first characters from both Strings + __ movl (rsi, Address(rax, java_lang_String::value_offset_in_bytes())); + __ movl (rcx, Address(rax, java_lang_String::offset_offset_in_bytes())); + __ leal (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); + + + // rbx, may be NULL + add_debug_info_for_null_check_here(info); + __ movl (rdi, Address(rbx, java_lang_String::value_offset_in_bytes())); + __ movl (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes())); + __ leal (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); + + // compute minimum length (in rax) and difference of lengths (on top of stack) + if (VM_Version::supports_cmov()) { + __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes())); + __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes())); + __ movl (rcx, rbx); + __ subl (rbx, rax); // subtract lengths + __ pushl(rbx); // result + __ cmovl(Assembler::lessEqual, rax, rcx); + } else { + Label L; + __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes())); + __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes())); + __ movl (rax, rbx); + __ subl (rbx, rcx); + __ pushl(rbx); + __ jcc (Assembler::lessEqual, L); + __ movl (rax, rcx); + __ bind (L); + } + // is minimum length 0? + Label noLoop, haveResult; + __ testl (rax, rax); + __ jcc (Assembler::zero, noLoop); + + // compare first characters + __ load_unsigned_word(rcx, Address(rdi, 0)); + __ load_unsigned_word(rbx, Address(rsi, 0)); + __ subl(rcx, rbx); + __ jcc(Assembler::notZero, haveResult); + // starting loop + __ decrement(rax); // we already tested index: skip one + __ jcc(Assembler::zero, noLoop); + + // set rsi.edi to the end of the arrays (arrays have same length) + // negate the index + + __ leal(rsi, Address(rsi, rax, Address::times_2, type2aelembytes[T_CHAR])); + __ leal(rdi, Address(rdi, rax, Address::times_2, type2aelembytes[T_CHAR])); + __ negl(rax); + + // compare the strings in a loop + + Label loop; + __ align(wordSize); + __ bind(loop); + __ load_unsigned_word(rcx, Address(rdi, rax, Address::times_2, 0)); + __ load_unsigned_word(rbx, Address(rsi, rax, Address::times_2, 0)); + __ subl(rcx, rbx); + __ jcc(Assembler::notZero, haveResult); + __ increment(rax); + __ jcc(Assembler::notZero, loop); + + // strings are equal up to min length + + __ bind(noLoop); + __ popl(rax); + return_op(LIR_OprFact::illegalOpr); + + __ bind(haveResult); + // leave instruction is going to discard the TOS value + __ movl (rax, rcx); // result of call is in rax, +} + + +void LIR_Assembler::return_op(LIR_Opr result) { + assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); + if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { + assert(result->fpu() == 0, "result must already be on TOS"); + } + + // Pop the stack before the safepoint code + __ leave(); + + bool result_is_oop = result->is_valid() ? result->is_oop() : false; + + // Note: we do not need to round double result; float result has the right precision + // the poll sets the condition code, but no data registers + AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()), + relocInfo::poll_return_type); + __ test32(rax, polling_page); + + __ ret(0); +} + + +int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { + AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()), + relocInfo::poll_type); + + if (info != NULL) { + add_debug_info_for_branch(info); + } else { + ShouldNotReachHere(); + } + + int offset = __ offset(); + __ test32(rax, polling_page); + return offset; +} + + +void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { + if (from_reg != to_reg) __ movl(to_reg, from_reg); +} + +void LIR_Assembler::swap_reg(Register a, Register b) { + __ xchgl(a, b); +} + + +void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { + assert(src->is_constant(), "should not call otherwise"); + assert(dest->is_register(), "should not call otherwise"); + LIR_Const* c = src->as_constant_ptr(); + + switch (c->type()) { + case T_INT: { + assert(patch_code == lir_patch_none, "no patching handled here"); + __ movl(dest->as_register(), c->as_jint()); + break; + } + + case T_LONG: { + assert(patch_code == lir_patch_none, "no patching handled here"); + __ movl(dest->as_register_lo(), c->as_jint_lo()); + __ movl(dest->as_register_hi(), c->as_jint_hi()); + break; + } + + case T_OBJECT: { + if (patch_code != lir_patch_none) { + jobject2reg_with_patching(dest->as_register(), info); + } else { + __ movoop(dest->as_register(), c->as_jobject()); + } + break; + } + + case T_FLOAT: { + if (dest->is_single_xmm()) { + if (c->is_zero_float()) { + __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); + } else { + __ movflt(dest->as_xmm_float_reg(), + InternalAddress(float_constant(c->as_jfloat()))); + } + } else { + assert(dest->is_single_fpu(), "must be"); + assert(dest->fpu_regnr() == 0, "dest must be TOS"); + if (c->is_zero_float()) { + __ fldz(); + } else if (c->is_one_float()) { + __ fld1(); + } else { + __ fld_s (InternalAddress(float_constant(c->as_jfloat()))); + } + } + break; + } + + case T_DOUBLE: { + if (dest->is_double_xmm()) { + if (c->is_zero_double()) { + __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); + } else { + __ movdbl(dest->as_xmm_double_reg(), + InternalAddress(double_constant(c->as_jdouble()))); + } + } else { + assert(dest->is_double_fpu(), "must be"); + assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); + if (c->is_zero_double()) { + __ fldz(); + } else if (c->is_one_double()) { + __ fld1(); + } else { + __ fld_d (InternalAddress(double_constant(c->as_jdouble()))); + } + } + break; + } + + default: + ShouldNotReachHere(); + } +} + +void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { + assert(src->is_constant(), "should not call otherwise"); + assert(dest->is_stack(), "should not call otherwise"); + LIR_Const* c = src->as_constant_ptr(); + + switch (c->type()) { + case T_INT: // fall through + case T_FLOAT: + __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); + break; + + case T_OBJECT: + __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject()); + break; + + case T_LONG: // fall through + case T_DOUBLE: + __ movl(frame_map()->address_for_slot(dest->double_stack_ix(), + lo_word_offset_in_bytes), c->as_jint_lo_bits()); + __ movl(frame_map()->address_for_slot(dest->double_stack_ix(), + hi_word_offset_in_bytes), c->as_jint_hi_bits()); + break; + + default: + ShouldNotReachHere(); + } +} + +void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) { + assert(src->is_constant(), "should not call otherwise"); + assert(dest->is_address(), "should not call otherwise"); + LIR_Const* c = src->as_constant_ptr(); + LIR_Address* addr = dest->as_address_ptr(); + + if (info != NULL) add_debug_info_for_null_check_here(info); + switch (type) { + case T_INT: // fall through + case T_FLOAT: + __ movl(as_Address(addr), c->as_jint_bits()); + break; + + case T_OBJECT: // fall through + case T_ARRAY: + if (c->as_jobject() == NULL) { + __ movl(as_Address(addr), NULL_WORD); + } else { + __ movoop(as_Address(addr), c->as_jobject()); + } + break; + + case T_LONG: // fall through + case T_DOUBLE: + __ movl(as_Address_hi(addr), c->as_jint_hi_bits()); + __ movl(as_Address_lo(addr), c->as_jint_lo_bits()); + break; + + case T_BOOLEAN: // fall through + case T_BYTE: + __ movb(as_Address(addr), c->as_jint() & 0xFF); + break; + + case T_CHAR: // fall through + case T_SHORT: + __ movw(as_Address(addr), c->as_jint() & 0xFFFF); + break; + + default: + ShouldNotReachHere(); + }; +} + + +void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { + assert(src->is_register(), "should not call otherwise"); + assert(dest->is_register(), "should not call otherwise"); + + // move between cpu-registers + if (dest->is_single_cpu()) { + assert(src->is_single_cpu(), "must match"); + if (src->type() == T_OBJECT) { + __ verify_oop(src->as_register()); + } + move_regs(src->as_register(), dest->as_register()); + + } else if (dest->is_double_cpu()) { + assert(src->is_double_cpu(), "must match"); + Register f_lo = src->as_register_lo(); + Register f_hi = src->as_register_hi(); + Register t_lo = dest->as_register_lo(); + Register t_hi = dest->as_register_hi(); + assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation"); + + if (f_lo == t_hi && f_hi == t_lo) { + swap_reg(f_lo, f_hi); + } else if (f_hi == t_lo) { + assert(f_lo != t_hi, "overwriting register"); + move_regs(f_hi, t_hi); + move_regs(f_lo, t_lo); + } else { + assert(f_hi != t_lo, "overwriting register"); + move_regs(f_lo, t_lo); + move_regs(f_hi, t_hi); + } + + // special moves from fpu-register to xmm-register + // necessary for method results + } else if (src->is_single_xmm() && !dest->is_single_xmm()) { + __ movflt(Address(rsp, 0), src->as_xmm_float_reg()); + __ fld_s(Address(rsp, 0)); + } else if (src->is_double_xmm() && !dest->is_double_xmm()) { + __ movdbl(Address(rsp, 0), src->as_xmm_double_reg()); + __ fld_d(Address(rsp, 0)); + } else if (dest->is_single_xmm() && !src->is_single_xmm()) { + __ fstp_s(Address(rsp, 0)); + __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0)); + } else if (dest->is_double_xmm() && !src->is_double_xmm()) { + __ fstp_d(Address(rsp, 0)); + __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0)); + + // move between xmm-registers + } else if (dest->is_single_xmm()) { + assert(src->is_single_xmm(), "must match"); + __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); + } else if (dest->is_double_xmm()) { + assert(src->is_double_xmm(), "must match"); + __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); + + // move between fpu-registers (no instruction necessary because of fpu-stack) + } else if (dest->is_single_fpu() || dest->is_double_fpu()) { + assert(src->is_single_fpu() || src->is_double_fpu(), "must match"); + assert(src->fpu() == dest->fpu(), "currently should be nothing to do"); + } else { + ShouldNotReachHere(); + } +} + +void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { + assert(src->is_register(), "should not call otherwise"); + assert(dest->is_stack(), "should not call otherwise"); + + if (src->is_single_cpu()) { + Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); + if (type == T_OBJECT || type == T_ARRAY) { + __ verify_oop(src->as_register()); + } + __ movl (dst, src->as_register()); + + } else if (src->is_double_cpu()) { + Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); + Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); + __ movl (dstLO, src->as_register_lo()); + __ movl (dstHI, src->as_register_hi()); + + } else if (src->is_single_xmm()) { + Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); + __ movflt(dst_addr, src->as_xmm_float_reg()); + + } else if (src->is_double_xmm()) { + Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); + __ movdbl(dst_addr, src->as_xmm_double_reg()); + + } else if (src->is_single_fpu()) { + assert(src->fpu_regnr() == 0, "argument must be on TOS"); + Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); + if (pop_fpu_stack) __ fstp_s (dst_addr); + else __ fst_s (dst_addr); + + } else if (src->is_double_fpu()) { + assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); + Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); + if (pop_fpu_stack) __ fstp_d (dst_addr); + else __ fst_d (dst_addr); + + } else { + ShouldNotReachHere(); + } +} + + +void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) { + LIR_Address* to_addr = dest->as_address_ptr(); + PatchingStub* patch = NULL; + + if (type == T_ARRAY || type == T_OBJECT) { + __ verify_oop(src->as_register()); + } + if (patch_code != lir_patch_none) { + patch = new PatchingStub(_masm, PatchingStub::access_field_id); + } + if (info != NULL) { + add_debug_info_for_null_check_here(info); + } + + switch (type) { + case T_FLOAT: { + if (src->is_single_xmm()) { + __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); + } else { + assert(src->is_single_fpu(), "must be"); + assert(src->fpu_regnr() == 0, "argument must be on TOS"); + if (pop_fpu_stack) __ fstp_s(as_Address(to_addr)); + else __ fst_s (as_Address(to_addr)); + } + break; + } + + case T_DOUBLE: { + if (src->is_double_xmm()) { + __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); + } else { + assert(src->is_double_fpu(), "must be"); + assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); + if (pop_fpu_stack) __ fstp_d(as_Address(to_addr)); + else __ fst_d (as_Address(to_addr)); + } + break; + } + + case T_ADDRESS: // fall through + case T_ARRAY: // fall through + case T_OBJECT: // fall through + case T_INT: + __ movl(as_Address(to_addr), src->as_register()); + break; + + case T_LONG: { + Register from_lo = src->as_register_lo(); + Register from_hi = src->as_register_hi(); + Register base = to_addr->base()->as_register(); + Register index = noreg; + if (to_addr->index()->is_register()) { + index = to_addr->index()->as_register(); + } + if (base == from_lo || index == from_lo) { + assert(base != from_hi, "can't be"); + assert(index == noreg || (index != base && index != from_hi), "can't handle this"); + __ movl(as_Address_hi(to_addr), from_hi); + if (patch != NULL) { + patching_epilog(patch, lir_patch_high, base, info); + patch = new PatchingStub(_masm, PatchingStub::access_field_id); + patch_code = lir_patch_low; + } + __ movl(as_Address_lo(to_addr), from_lo); + } else { + assert(index == noreg || (index != base && index != from_lo), "can't handle this"); + __ movl(as_Address_lo(to_addr), from_lo); + if (patch != NULL) { + patching_epilog(patch, lir_patch_low, base, info); + patch = new PatchingStub(_masm, PatchingStub::access_field_id); + patch_code = lir_patch_high; + } + __ movl(as_Address_hi(to_addr), from_hi); + } + break; + } + + case T_BYTE: // fall through + case T_BOOLEAN: { + Register src_reg = src->as_register(); + Address dst_addr = as_Address(to_addr); + assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); + __ movb(dst_addr, src_reg); + break; + } + + case T_CHAR: // fall through + case T_SHORT: + __ movw(as_Address(to_addr), src->as_register()); + break; + + default: + ShouldNotReachHere(); + } + + if (patch_code != lir_patch_none) { + patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); + } +} + + +void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { + assert(src->is_stack(), "should not call otherwise"); + assert(dest->is_register(), "should not call otherwise"); + + if (dest->is_single_cpu()) { + __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); + if (type == T_ARRAY || type == T_OBJECT) { + __ verify_oop(dest->as_register()); + } + + } else if (dest->is_double_cpu()) { + Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); + Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); + __ movl(dest->as_register_hi(), src_addr_HI); + __ movl(dest->as_register_lo(), src_addr_LO); + + } else if (dest->is_single_xmm()) { + Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); + __ movflt(dest->as_xmm_float_reg(), src_addr); + + } else if (dest->is_double_xmm()) { + Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); + __ movdbl(dest->as_xmm_double_reg(), src_addr); + + } else if (dest->is_single_fpu()) { + assert(dest->fpu_regnr() == 0, "dest must be TOS"); + Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); + __ fld_s(src_addr); + + } else if (dest->is_double_fpu()) { + assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); + Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); + __ fld_d(src_addr); + + } else { + ShouldNotReachHere(); + } +} + + +void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { + if (src->is_single_stack()) { + __ pushl(frame_map()->address_for_slot(src ->single_stack_ix())); + __ popl (frame_map()->address_for_slot(dest->single_stack_ix())); + + } else if (src->is_double_stack()) { + __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0)); + // push and pop the part at src + 4, adding 4 for the previous push + __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 4 + 4)); + __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 4 + 4)); + __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0)); + + } else { + ShouldNotReachHere(); + } +} + + +void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) { + assert(src->is_address(), "should not call otherwise"); + assert(dest->is_register(), "should not call otherwise"); + + LIR_Address* addr = src->as_address_ptr(); + Address from_addr = as_Address(addr); + + switch (type) { + case T_BOOLEAN: // fall through + case T_BYTE: // fall through + case T_CHAR: // fall through + case T_SHORT: + if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { + // on pre P6 processors we may get partial register stalls + // so blow away the value of to_rinfo before loading a + // partial word into it. Do it here so that it precedes + // the potential patch point below. + __ xorl(dest->as_register(), dest->as_register()); + } + break; + } + + PatchingStub* patch = NULL; + if (patch_code != lir_patch_none) { + patch = new PatchingStub(_masm, PatchingStub::access_field_id); + } + if (info != NULL) { + add_debug_info_for_null_check_here(info); + } + + switch (type) { + case T_FLOAT: { + if (dest->is_single_xmm()) { + __ movflt(dest->as_xmm_float_reg(), from_addr); + } else { + assert(dest->is_single_fpu(), "must be"); + assert(dest->fpu_regnr() == 0, "dest must be TOS"); + __ fld_s(from_addr); + } + break; + } + + case T_DOUBLE: { + if (dest->is_double_xmm()) { + __ movdbl(dest->as_xmm_double_reg(), from_addr); + } else { + assert(dest->is_double_fpu(), "must be"); + assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); + __ fld_d(from_addr); + } + break; + } + + case T_ADDRESS: // fall through + case T_OBJECT: // fall through + case T_ARRAY: // fall through + case T_INT: + __ movl(dest->as_register(), from_addr); + break; + + case T_LONG: { + Register to_lo = dest->as_register_lo(); + Register to_hi = dest->as_register_hi(); + Register base = addr->base()->as_register(); + Register index = noreg; + if (addr->index()->is_register()) { + index = addr->index()->as_register(); + } + if ((base == to_lo && index == to_hi) || + (base == to_hi && index == to_lo)) { + // addresses with 2 registers are only formed as a result of + // array access so this code will never have to deal with + // patches or null checks. + assert(info == NULL && patch == NULL, "must be"); + __ leal(to_hi, as_Address(addr)); + __ movl(to_lo, Address(to_hi, 0)); + __ movl(to_hi, Address(to_hi, BytesPerWord)); + } else if (base == to_lo || index == to_lo) { + assert(base != to_hi, "can't be"); + assert(index == noreg || (index != base && index != to_hi), "can't handle this"); + __ movl(to_hi, as_Address_hi(addr)); + if (patch != NULL) { + patching_epilog(patch, lir_patch_high, base, info); + patch = new PatchingStub(_masm, PatchingStub::access_field_id); + patch_code = lir_patch_low; + } + __ movl(to_lo, as_Address_lo(addr)); + } else { + assert(index == noreg || (index != base && index != to_lo), "can't handle this"); + __ movl(to_lo, as_Address_lo(addr)); + if (patch != NULL) { + patching_epilog(patch, lir_patch_low, base, info); + patch = new PatchingStub(_masm, PatchingStub::access_field_id); + patch_code = lir_patch_high; + } + __ movl(to_hi, as_Address_hi(addr)); + } + break; + } + + case T_BOOLEAN: // fall through + case T_BYTE: { + Register dest_reg = dest->as_register(); + assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); + if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { + __ movsxb(dest_reg, from_addr); + } else { + __ movb(dest_reg, from_addr); + __ shll(dest_reg, 24); + __ sarl(dest_reg, 24); + } + break; + } + + case T_CHAR: { + Register dest_reg = dest->as_register(); + assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); + if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { + __ movzxw(dest_reg, from_addr); + } else { + __ movw(dest_reg, from_addr); + } + break; + } + + case T_SHORT: { + Register dest_reg = dest->as_register(); + if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { + __ movsxw(dest_reg, from_addr); + } else { + __ movw(dest_reg, from_addr); + __ shll(dest_reg, 16); + __ sarl(dest_reg, 16); + } + break; + } + + default: + ShouldNotReachHere(); + } + + if (patch != NULL) { + patching_epilog(patch, patch_code, addr->base()->as_register(), info); + } + + if (type == T_ARRAY || type == T_OBJECT) { + __ verify_oop(dest->as_register()); + } +} + + +void LIR_Assembler::prefetchr(LIR_Opr src) { + LIR_Address* addr = src->as_address_ptr(); + Address from_addr = as_Address(addr); + + if (VM_Version::supports_sse()) { + switch (ReadPrefetchInstr) { + case 0: + __ prefetchnta(from_addr); break; + case 1: + __ prefetcht0(from_addr); break; + case 2: + __ prefetcht2(from_addr); break; + default: + ShouldNotReachHere(); break; + } + } else if (VM_Version::supports_3dnow()) { + __ prefetchr(from_addr); + } +} + + +void LIR_Assembler::prefetchw(LIR_Opr src) { + LIR_Address* addr = src->as_address_ptr(); + Address from_addr = as_Address(addr); + + if (VM_Version::supports_sse()) { + switch (AllocatePrefetchInstr) { + case 0: + __ prefetchnta(from_addr); break; + case 1: + __ prefetcht0(from_addr); break; + case 2: + __ prefetcht2(from_addr); break; + case 3: + __ prefetchw(from_addr); break; + default: + ShouldNotReachHere(); break; + } + } else if (VM_Version::supports_3dnow()) { + __ prefetchw(from_addr); + } +} + + +NEEDS_CLEANUP; // This could be static? +Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { + int elem_size = type2aelembytes[type]; + switch (elem_size) { + case 1: return Address::times_1; + case 2: return Address::times_2; + case 4: return Address::times_4; + case 8: return Address::times_8; + } + ShouldNotReachHere(); + return Address::no_scale; +} + + +void LIR_Assembler::emit_op3(LIR_Op3* op) { + switch (op->code()) { + case lir_idiv: + case lir_irem: + arithmetic_idiv(op->code(), + op->in_opr1(), + op->in_opr2(), + op->in_opr3(), + op->result_opr(), + op->info()); + break; + default: ShouldNotReachHere(); break; + } +} + +void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { +#ifdef ASSERT + assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); + if (op->block() != NULL) _branch_target_blocks.append(op->block()); + if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); +#endif + + if (op->cond() == lir_cond_always) { + if (op->info() != NULL) add_debug_info_for_branch(op->info()); + __ jmp (*(op->label())); + } else { + Assembler::Condition acond = Assembler::zero; + if (op->code() == lir_cond_float_branch) { + assert(op->ublock() != NULL, "must have unordered successor"); + __ jcc(Assembler::parity, *(op->ublock()->label())); + switch(op->cond()) { + case lir_cond_equal: acond = Assembler::equal; break; + case lir_cond_notEqual: acond = Assembler::notEqual; break; + case lir_cond_less: acond = Assembler::below; break; + case lir_cond_lessEqual: acond = Assembler::belowEqual; break; + case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; + case lir_cond_greater: acond = Assembler::above; break; + default: ShouldNotReachHere(); + } + } else { + switch (op->cond()) { + case lir_cond_equal: acond = Assembler::equal; break; + case lir_cond_notEqual: acond = Assembler::notEqual; break; + case lir_cond_less: acond = Assembler::less; break; + case lir_cond_lessEqual: acond = Assembler::lessEqual; break; + case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; + case lir_cond_greater: acond = Assembler::greater; break; + case lir_cond_belowEqual: acond = Assembler::belowEqual; break; + case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; + default: ShouldNotReachHere(); + } + } + __ jcc(acond,*(op->label())); + } +} + +void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { + LIR_Opr src = op->in_opr(); + LIR_Opr dest = op->result_opr(); + + switch (op->bytecode()) { + case Bytecodes::_i2l: + move_regs(src->as_register(), dest->as_register_lo()); + move_regs(src->as_register(), dest->as_register_hi()); + __ sarl(dest->as_register_hi(), 31); + break; + + case Bytecodes::_l2i: + move_regs(src->as_register_lo(), dest->as_register()); + break; + + case Bytecodes::_i2b: + move_regs(src->as_register(), dest->as_register()); + __ sign_extend_byte(dest->as_register()); + break; + + case Bytecodes::_i2c: + move_regs(src->as_register(), dest->as_register()); + __ andl(dest->as_register(), 0xFFFF); + break; + + case Bytecodes::_i2s: + move_regs(src->as_register(), dest->as_register()); + __ sign_extend_short(dest->as_register()); + break; + + + case Bytecodes::_f2d: + case Bytecodes::_d2f: + if (dest->is_single_xmm()) { + __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); + } else if (dest->is_double_xmm()) { + __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); + } else { + assert(src->fpu() == dest->fpu(), "register must be equal"); + // do nothing (float result is rounded later through spilling) + } + break; + + case Bytecodes::_i2f: + case Bytecodes::_i2d: + if (dest->is_single_xmm()) { + __ cvtsi2ss(dest->as_xmm_float_reg(), src->as_register()); + } else if (dest->is_double_xmm()) { + __ cvtsi2sd(dest->as_xmm_double_reg(), src->as_register()); + } else { + assert(dest->fpu() == 0, "result must be on TOS"); + __ movl(Address(rsp, 0), src->as_register()); + __ fild_s(Address(rsp, 0)); + } + break; + + case Bytecodes::_f2i: + case Bytecodes::_d2i: + if (src->is_single_xmm()) { + __ cvttss2si(dest->as_register(), src->as_xmm_float_reg()); + } else if (src->is_double_xmm()) { + __ cvttsd2si(dest->as_register(), src->as_xmm_double_reg()); + } else { + assert(src->fpu() == 0, "input must be on TOS"); + __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc())); + __ fist_s(Address(rsp, 0)); + __ movl(dest->as_register(), Address(rsp, 0)); + __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); + } + + // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub + assert(op->stub() != NULL, "stub required"); + __ cmpl(dest->as_register(), 0x80000000); + __ jcc(Assembler::equal, *op->stub()->entry()); + __ bind(*op->stub()->continuation()); + break; + + case Bytecodes::_l2f: + case Bytecodes::_l2d: + assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)"); + assert(dest->fpu() == 0, "result must be on TOS"); + + __ movl(Address(rsp, 0), src->as_register_lo()); + __ movl(Address(rsp, BytesPerWord), src->as_register_hi()); + __ fild_d(Address(rsp, 0)); + // float result is rounded later through spilling + break; + + case Bytecodes::_f2l: + case Bytecodes::_d2l: + assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)"); + assert(src->fpu() == 0, "input must be on TOS"); + assert(dest == FrameMap::rax_rdx_long_opr, "runtime stub places result in these registers"); + + // instruction sequence too long to inline it here + { + __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id))); + } + break; + + default: ShouldNotReachHere(); + } +} + +void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { + if (op->init_check()) { + __ cmpl(Address(op->klass()->as_register(), + instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), + instanceKlass::fully_initialized); + add_debug_info_for_null_check_here(op->stub()->info()); + __ jcc(Assembler::notEqual, *op->stub()->entry()); + } + __ allocate_object(op->obj()->as_register(), + op->tmp1()->as_register(), + op->tmp2()->as_register(), + op->header_size(), + op->object_size(), + op->klass()->as_register(), + *op->stub()->entry()); + __ bind(*op->stub()->continuation()); +} + +void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { + if (UseSlowPath || + (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) || + (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) { + __ jmp(*op->stub()->entry()); + } else { + Register len = op->len()->as_register(); + Register tmp1 = op->tmp1()->as_register(); + Register tmp2 = op->tmp2()->as_register(); + Register tmp3 = op->tmp3()->as_register(); + if (len == tmp1) { + tmp1 = tmp3; + } else if (len == tmp2) { + tmp2 = tmp3; + } else if (len == tmp3) { + // everything is ok + } else { + __ movl(tmp3, len); + } + __ allocate_array(op->obj()->as_register(), + len, + tmp1, + tmp2, + arrayOopDesc::header_size(op->type()), + array_element_size(op->type()), + op->klass()->as_register(), + *op->stub()->entry()); + } + __ bind(*op->stub()->continuation()); +} + + + +void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { + LIR_Code code = op->code(); + if (code == lir_store_check) { + Register value = op->object()->as_register(); + Register array = op->array()->as_register(); + Register k_RInfo = op->tmp1()->as_register(); + Register klass_RInfo = op->tmp2()->as_register(); + Register Rtmp1 = op->tmp3()->as_register(); + + CodeStub* stub = op->stub(); + Label done; + __ cmpl(value, 0); + __ jcc(Assembler::equal, done); + add_debug_info_for_null_check_here(op->info_for_exception()); + __ movl(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes())); + __ movl(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes())); + + // get instance klass + __ movl(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc))); + // get super_check_offset + __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes())); + // See if we get an immediate positive hit + __ cmpl(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1)); + __ jcc(Assembler::equal, done); + // check for immediate negative hit + __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()); + __ jcc(Assembler::notEqual, *stub->entry()); + // check for self + __ cmpl(klass_RInfo, k_RInfo); + __ jcc(Assembler::equal, done); + + __ pushl(klass_RInfo); + __ pushl(k_RInfo); + __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); + __ popl(klass_RInfo); + __ popl(k_RInfo); + __ cmpl(k_RInfo, 0); + __ jcc(Assembler::equal, *stub->entry()); + __ bind(done); + } else if (op->code() == lir_checkcast) { + // we always need a stub for the failure case. + CodeStub* stub = op->stub(); + Register obj = op->object()->as_register(); + Register k_RInfo = op->tmp1()->as_register(); + Register klass_RInfo = op->tmp2()->as_register(); + Register dst = op->result_opr()->as_register(); + ciKlass* k = op->klass(); + Register Rtmp1 = noreg; + + Label done; + if (obj == k_RInfo) { + k_RInfo = dst; + } else if (obj == klass_RInfo) { + klass_RInfo = dst; + } + if (k->is_loaded()) { + select_different_registers(obj, dst, k_RInfo, klass_RInfo); + } else { + Rtmp1 = op->tmp3()->as_register(); + select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); + } + + assert_different_registers(obj, k_RInfo, klass_RInfo); + if (!k->is_loaded()) { + jobject2reg_with_patching(k_RInfo, op->info_for_patch()); + } else { + k_RInfo = noreg; + } + assert(obj != k_RInfo, "must be different"); + __ cmpl(obj, 0); + if (op->profiled_method() != NULL) { + ciMethod* method = op->profiled_method(); + int bci = op->profiled_bci(); + + Label profile_done; + __ jcc(Assembler::notEqual, profile_done); + // Object is null; update methodDataOop + ciMethodData* md = method->method_data(); + if (md == NULL) { + bailout("out of memory building methodDataOop"); + return; + } + ciProfileData* data = md->bci_to_data(bci); + assert(data != NULL, "need data for checkcast"); + assert(data->is_BitData(), "need BitData for checkcast"); + Register mdo = klass_RInfo; + __ movoop(mdo, md->encoding()); + Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); + int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); + __ orl(data_addr, header_bits); + __ jmp(done); + __ bind(profile_done); + } else { + __ jcc(Assembler::equal, done); + } + __ verify_oop(obj); + + if (op->fast_check()) { + // get object classo + // not a safepoint as obj null check happens earlier + if (k->is_loaded()) { + __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding()); + } else { + __ cmpl(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); + + } + __ jcc(Assembler::notEqual, *stub->entry()); + __ bind(done); + } else { + // get object class + // not a safepoint as obj null check happens earlier + __ movl(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); + if (k->is_loaded()) { + // See if we get an immediate positive hit + __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding()); + if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) { + __ jcc(Assembler::notEqual, *stub->entry()); + } else { + // See if we get an immediate positive hit + __ jcc(Assembler::equal, done); + // check for self + __ cmpoop(klass_RInfo, k->encoding()); + __ jcc(Assembler::equal, done); + + __ pushl(klass_RInfo); + __ pushoop(k->encoding()); + __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); + __ popl(klass_RInfo); + __ popl(klass_RInfo); + __ cmpl(klass_RInfo, 0); + __ jcc(Assembler::equal, *stub->entry()); + } + __ bind(done); + } else { + __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes())); + // See if we get an immediate positive hit + __ cmpl(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1)); + __ jcc(Assembler::equal, done); + // check for immediate negative hit + __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()); + __ jcc(Assembler::notEqual, *stub->entry()); + // check for self + __ cmpl(klass_RInfo, k_RInfo); + __ jcc(Assembler::equal, done); + + __ pushl(klass_RInfo); + __ pushl(k_RInfo); + __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); + __ popl(klass_RInfo); + __ popl(k_RInfo); + __ cmpl(k_RInfo, 0); + __ jcc(Assembler::equal, *stub->entry()); + __ bind(done); + } + + } + if (dst != obj) { + __ movl(dst, obj); + } + } else if (code == lir_instanceof) { + Register obj = op->object()->as_register(); + Register k_RInfo = op->tmp1()->as_register(); + Register klass_RInfo = op->tmp2()->as_register(); + Register dst = op->result_opr()->as_register(); + ciKlass* k = op->klass(); + + Label done; + Label zero; + Label one; + if (obj == k_RInfo) { + k_RInfo = klass_RInfo; + klass_RInfo = obj; + } + // patching may screw with our temporaries on sparc, + // so let's do it before loading the class + if (!k->is_loaded()) { + jobject2reg_with_patching(k_RInfo, op->info_for_patch()); + } + assert(obj != k_RInfo, "must be different"); + + __ verify_oop(obj); + if (op->fast_check()) { + __ cmpl(obj, 0); + __ jcc(Assembler::equal, zero); + // get object class + // not a safepoint as obj null check happens earlier + if (k->is_loaded()) { + __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding()); + k_RInfo = noreg; + } else { + __ cmpl(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); + + } + __ jcc(Assembler::equal, one); + } else { + // get object class + // not a safepoint as obj null check happens earlier + __ cmpl(obj, 0); + __ jcc(Assembler::equal, zero); + __ movl(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); + if (k->is_loaded()) { + // See if we get an immediate positive hit + __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding()); + __ jcc(Assembler::equal, one); + if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) { + // check for self + __ cmpoop(klass_RInfo, k->encoding()); + __ jcc(Assembler::equal, one); + __ pushl(klass_RInfo); + __ pushoop(k->encoding()); + __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); + __ popl(klass_RInfo); + __ popl(dst); + __ jmp(done); + } + } else { + assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers"); + + __ movl(dst, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes())); + // See if we get an immediate positive hit + __ cmpl(k_RInfo, Address(klass_RInfo, dst, Address::times_1)); + __ jcc(Assembler::equal, one); + // check for immediate negative hit + __ cmpl(dst, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()); + __ jcc(Assembler::notEqual, zero); + // check for self + __ cmpl(klass_RInfo, k_RInfo); + __ jcc(Assembler::equal, one); + + __ pushl(klass_RInfo); + __ pushl(k_RInfo); + __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); + __ popl(klass_RInfo); + __ popl(dst); + __ jmp(done); + } + } + __ bind(zero); + __ xorl(dst, dst); + __ jmp(done); + __ bind(one); + __ movl(dst, 1); + __ bind(done); + } else { + ShouldNotReachHere(); + } + +} + + +void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { + if (op->code() == lir_cas_long) { + assert(VM_Version::supports_cx8(), "wrong machine"); + assert(op->cmp_value()->as_register_lo() == rax, "wrong register"); + assert(op->cmp_value()->as_register_hi() == rdx, "wrong register"); + assert(op->new_value()->as_register_lo() == rbx, "wrong register"); + assert(op->new_value()->as_register_hi() == rcx, "wrong register"); + Register addr = op->addr()->as_register(); + if (os::is_MP()) { + __ lock(); + } + __ cmpxchg8(Address(addr, 0)); + + } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { + Register addr = op->addr()->as_register(); + Register newval = op->new_value()->as_register(); + Register cmpval = op->cmp_value()->as_register(); + assert(cmpval == rax, "wrong register"); + assert(newval != NULL, "new val must be register"); + assert(cmpval != newval, "cmp and new values must be in different registers"); + assert(cmpval != addr, "cmp and addr must be in different registers"); + assert(newval != addr, "new value and addr must be in different registers"); + if (os::is_MP()) { + __ lock(); + } + __ cmpxchg(newval, Address(addr, 0)); + } else { + Unimplemented(); + } +} + + +void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) { + Assembler::Condition acond, ncond; + switch (condition) { + case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; + case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; + case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; + case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; + case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; + case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; + case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; + case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; + default: ShouldNotReachHere(); + } + + if (opr1->is_cpu_register()) { + reg2reg(opr1, result); + } else if (opr1->is_stack()) { + stack2reg(opr1, result, result->type()); + } else if (opr1->is_constant()) { + const2reg(opr1, result, lir_patch_none, NULL); + } else { + ShouldNotReachHere(); + } + + if (VM_Version::supports_cmov() && !opr2->is_constant()) { + // optimized version that does not require a branch + if (opr2->is_single_cpu()) { + assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); + __ cmovl(ncond, result->as_register(), opr2->as_register()); + } else if (opr2->is_double_cpu()) { + assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); + assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); + __ cmovl(ncond, result->as_register_lo(), opr2->as_register_lo()); + __ cmovl(ncond, result->as_register_hi(), opr2->as_register_hi()); + } else if (opr2->is_single_stack()) { + __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); + } else if (opr2->is_double_stack()) { + __ cmovl(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); + __ cmovl(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes)); + } else { + ShouldNotReachHere(); + } + + } else { + Label skip; + __ jcc (acond, skip); + if (opr2->is_cpu_register()) { + reg2reg(opr2, result); + } else if (opr2->is_stack()) { + stack2reg(opr2, result, result->type()); + } else if (opr2->is_constant()) { + const2reg(opr2, result, lir_patch_none, NULL); + } else { + ShouldNotReachHere(); + } + __ bind(skip); + } +} + + +void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { + assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); + + if (left->is_single_cpu()) { + assert(left == dest, "left and dest must be equal"); + Register lreg = left->as_register(); + + if (right->is_single_cpu()) { + // cpu register - cpu register + Register rreg = right->as_register(); + switch (code) { + case lir_add: __ addl (lreg, rreg); break; + case lir_sub: __ subl (lreg, rreg); break; + case lir_mul: __ imull(lreg, rreg); break; + default: ShouldNotReachHere(); + } + + } else if (right->is_stack()) { + // cpu register - stack + Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); + switch (code) { + case lir_add: __ addl(lreg, raddr); break; + case lir_sub: __ subl(lreg, raddr); break; + default: ShouldNotReachHere(); + } + + } else if (right->is_constant()) { + // cpu register - constant + jint c = right->as_constant_ptr()->as_jint(); + switch (code) { + case lir_add: { + __ increment(lreg, c); + break; + } + case lir_sub: { + __ decrement(lreg, c); + break; + } + default: ShouldNotReachHere(); + } + + } else { + ShouldNotReachHere(); + } + + } else if (left->is_double_cpu()) { + assert(left == dest, "left and dest must be equal"); + Register lreg_lo = left->as_register_lo(); + Register lreg_hi = left->as_register_hi(); + + if (right->is_double_cpu()) { + // cpu register - cpu register + Register rreg_lo = right->as_register_lo(); + Register rreg_hi = right->as_register_hi(); + assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi); + switch (code) { + case lir_add: + __ addl(lreg_lo, rreg_lo); + __ adcl(lreg_hi, rreg_hi); + break; + case lir_sub: + __ subl(lreg_lo, rreg_lo); + __ sbbl(lreg_hi, rreg_hi); + break; + case lir_mul: + assert(lreg_lo == rax && lreg_hi == rdx, "must be"); + __ imull(lreg_hi, rreg_lo); + __ imull(rreg_hi, lreg_lo); + __ addl (rreg_hi, lreg_hi); + __ mull (rreg_lo); + __ addl (lreg_hi, rreg_hi); + break; + default: + ShouldNotReachHere(); + } + + } else if (right->is_constant()) { + // cpu register - constant + jint c_lo = right->as_constant_ptr()->as_jint_lo(); + jint c_hi = right->as_constant_ptr()->as_jint_hi(); + switch (code) { + case lir_add: + __ addl(lreg_lo, c_lo); + __ adcl(lreg_hi, c_hi); + break; + case lir_sub: + __ subl(lreg_lo, c_lo); + __ sbbl(lreg_hi, c_hi); + break; + default: + ShouldNotReachHere(); + } + + } else { + ShouldNotReachHere(); + } + + } else if (left->is_single_xmm()) { + assert(left == dest, "left and dest must be equal"); + XMMRegister lreg = left->as_xmm_float_reg(); + + if (right->is_single_xmm()) { + XMMRegister rreg = right->as_xmm_float_reg(); + switch (code) { + case lir_add: __ addss(lreg, rreg); break; + case lir_sub: __ subss(lreg, rreg); break; + case lir_mul_strictfp: // fall through + case lir_mul: __ mulss(lreg, rreg); break; + case lir_div_strictfp: // fall through + case lir_div: __ divss(lreg, rreg); break; + default: ShouldNotReachHere(); + } + } else { + Address raddr; + if (right->is_single_stack()) { + raddr = frame_map()->address_for_slot(right->single_stack_ix()); + } else if (right->is_constant()) { + // hack for now + raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); + } else { + ShouldNotReachHere(); + } + switch (code) { + case lir_add: __ addss(lreg, raddr); break; + case lir_sub: __ subss(lreg, raddr); break; + case lir_mul_strictfp: // fall through + case lir_mul: __ mulss(lreg, raddr); break; + case lir_div_strictfp: // fall through + case lir_div: __ divss(lreg, raddr); break; + default: ShouldNotReachHere(); + } + } + + } else if (left->is_double_xmm()) { + assert(left == dest, "left and dest must be equal"); + + XMMRegister lreg = left->as_xmm_double_reg(); + if (right->is_double_xmm()) { + XMMRegister rreg = right->as_xmm_double_reg(); + switch (code) { + case lir_add: __ addsd(lreg, rreg); break; + case lir_sub: __ subsd(lreg, rreg); break; + case lir_mul_strictfp: // fall through + case lir_mul: __ mulsd(lreg, rreg); break; + case lir_div_strictfp: // fall through + case lir_div: __ divsd(lreg, rreg); break; + default: ShouldNotReachHere(); + } + } else { + Address raddr; + if (right->is_double_stack()) { + raddr = frame_map()->address_for_slot(right->double_stack_ix()); + } else if (right->is_constant()) { + // hack for now + raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); + } else { + ShouldNotReachHere(); + } + switch (code) { + case lir_add: __ addsd(lreg, raddr); break; + case lir_sub: __ subsd(lreg, raddr); break; + case lir_mul_strictfp: // fall through + case lir_mul: __ mulsd(lreg, raddr); break; + case lir_div_strictfp: // fall through + case lir_div: __ divsd(lreg, raddr); break; + default: ShouldNotReachHere(); + } + } + + } else if (left->is_single_fpu()) { + assert(dest->is_single_fpu(), "fpu stack allocation required"); + + if (right->is_single_fpu()) { + arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack); + + } else { + assert(left->fpu_regnr() == 0, "left must be on TOS"); + assert(dest->fpu_regnr() == 0, "dest must be on TOS"); + + Address raddr; + if (right->is_single_stack()) { + raddr = frame_map()->address_for_slot(right->single_stack_ix()); + } else if (right->is_constant()) { + address const_addr = float_constant(right->as_jfloat()); + assert(const_addr != NULL, "incorrect float/double constant maintainance"); + // hack for now + raddr = __ as_Address(InternalAddress(const_addr)); + } else { + ShouldNotReachHere(); + } + + switch (code) { + case lir_add: __ fadd_s(raddr); break; + case lir_sub: __ fsub_s(raddr); break; + case lir_mul_strictfp: // fall through + case lir_mul: __ fmul_s(raddr); break; + case lir_div_strictfp: // fall through + case lir_div: __ fdiv_s(raddr); break; + default: ShouldNotReachHere(); + } + } + + } else if (left->is_double_fpu()) { + assert(dest->is_double_fpu(), "fpu stack allocation required"); + + if (code == lir_mul_strictfp || code == lir_div_strictfp) { + // Double values require special handling for strictfp mul/div on x86 + __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); + __ fmulp(left->fpu_regnrLo() + 1); + } + + if (right->is_double_fpu()) { + arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack); + + } else { + assert(left->fpu_regnrLo() == 0, "left must be on TOS"); + assert(dest->fpu_regnrLo() == 0, "dest must be on TOS"); + + Address raddr; + if (right->is_double_stack()) { + raddr = frame_map()->address_for_slot(right->double_stack_ix()); + } else if (right->is_constant()) { + // hack for now + raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); + } else { + ShouldNotReachHere(); + } + + switch (code) { + case lir_add: __ fadd_d(raddr); break; + case lir_sub: __ fsub_d(raddr); break; + case lir_mul_strictfp: // fall through + case lir_mul: __ fmul_d(raddr); break; + case lir_div_strictfp: // fall through + case lir_div: __ fdiv_d(raddr); break; + default: ShouldNotReachHere(); + } + } + + if (code == lir_mul_strictfp || code == lir_div_strictfp) { + // Double values require special handling for strictfp mul/div on x86 + __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); + __ fmulp(dest->fpu_regnrLo() + 1); + } + + } else if (left->is_single_stack() || left->is_address()) { + assert(left == dest, "left and dest must be equal"); + + Address laddr; + if (left->is_single_stack()) { + laddr = frame_map()->address_for_slot(left->single_stack_ix()); + } else if (left->is_address()) { + laddr = as_Address(left->as_address_ptr()); + } else { + ShouldNotReachHere(); + } + + if (right->is_single_cpu()) { + Register rreg = right->as_register(); + switch (code) { + case lir_add: __ addl(laddr, rreg); break; + case lir_sub: __ subl(laddr, rreg); break; + default: ShouldNotReachHere(); + } + } else if (right->is_constant()) { + jint c = right->as_constant_ptr()->as_jint(); + switch (code) { + case lir_add: { + __ increment(laddr, c); + break; + } + case lir_sub: { + __ decrement(laddr, c); + break; + } + default: ShouldNotReachHere(); + } + } else { + ShouldNotReachHere(); + } + + } else { + ShouldNotReachHere(); + } +} + +void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { + assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR"); + assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR"); + assert(left_index == 0 || right_index == 0, "either must be on top of stack"); + + bool left_is_tos = (left_index == 0); + bool dest_is_tos = (dest_index == 0); + int non_tos_index = (left_is_tos ? right_index : left_index); + + switch (code) { + case lir_add: + if (pop_fpu_stack) __ faddp(non_tos_index); + else if (dest_is_tos) __ fadd (non_tos_index); + else __ fadda(non_tos_index); + break; + + case lir_sub: + if (left_is_tos) { + if (pop_fpu_stack) __ fsubrp(non_tos_index); + else if (dest_is_tos) __ fsub (non_tos_index); + else __ fsubra(non_tos_index); + } else { + if (pop_fpu_stack) __ fsubp (non_tos_index); + else if (dest_is_tos) __ fsubr (non_tos_index); + else __ fsuba (non_tos_index); + } + break; + + case lir_mul_strictfp: // fall through + case lir_mul: + if (pop_fpu_stack) __ fmulp(non_tos_index); + else if (dest_is_tos) __ fmul (non_tos_index); + else __ fmula(non_tos_index); + break; + + case lir_div_strictfp: // fall through + case lir_div: + if (left_is_tos) { + if (pop_fpu_stack) __ fdivrp(non_tos_index); + else if (dest_is_tos) __ fdiv (non_tos_index); + else __ fdivra(non_tos_index); + } else { + if (pop_fpu_stack) __ fdivp (non_tos_index); + else if (dest_is_tos) __ fdivr (non_tos_index); + else __ fdiva (non_tos_index); + } + break; + + case lir_rem: + assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation"); + __ fremr(noreg); + break; + + default: + ShouldNotReachHere(); + } +} + + +void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) { + if (value->is_double_xmm()) { + switch(code) { + case lir_abs : + { + if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { + __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); + } + __ andpd(dest->as_xmm_double_reg(), + ExternalAddress((address)double_signmask_pool)); + } + break; + + case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; + // all other intrinsics are not available in the SSE instruction set, so FPU is used + default : ShouldNotReachHere(); + } + + } else if (value->is_double_fpu()) { + assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS"); + switch(code) { + case lir_log : __ flog() ; break; + case lir_log10 : __ flog10() ; break; + case lir_abs : __ fabs() ; break; + case lir_sqrt : __ fsqrt(); break; + case lir_sin : + // Should consider not saving rbx, if not necessary + __ trigfunc('s', op->as_Op2()->fpu_stack_size()); + break; + case lir_cos : + // Should consider not saving rbx, if not necessary + assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots"); + __ trigfunc('c', op->as_Op2()->fpu_stack_size()); + break; + case lir_tan : + // Should consider not saving rbx, if not necessary + __ trigfunc('t', op->as_Op2()->fpu_stack_size()); + break; + default : ShouldNotReachHere(); + } + } else { + Unimplemented(); + } +} + +void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { + // assert(left->destroys_register(), "check"); + if (left->is_single_cpu()) { + Register reg = left->as_register(); + if (right->is_constant()) { + int val = right->as_constant_ptr()->as_jint(); + switch (code) { + case lir_logic_and: __ andl (reg, val); break; + case lir_logic_or: __ orl (reg, val); break; + case lir_logic_xor: __ xorl (reg, val); break; + default: ShouldNotReachHere(); + } + } else if (right->is_stack()) { + // added support for stack operands + Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); + switch (code) { + case lir_logic_and: __ andl (reg, raddr); break; + case lir_logic_or: __ orl (reg, raddr); break; + case lir_logic_xor: __ xorl (reg, raddr); break; + default: ShouldNotReachHere(); + } + } else { + Register rright = right->as_register(); + switch (code) { + case lir_logic_and: __ andl (reg, rright); break; + case lir_logic_or : __ orl (reg, rright); break; + case lir_logic_xor: __ xorl (reg, rright); break; + default: ShouldNotReachHere(); + } + } + move_regs(reg, dst->as_register()); + } else { + Register l_lo = left->as_register_lo(); + Register l_hi = left->as_register_hi(); + if (right->is_constant()) { + int r_lo = right->as_constant_ptr()->as_jint_lo(); + int r_hi = right->as_constant_ptr()->as_jint_hi(); + switch (code) { + case lir_logic_and: + __ andl(l_lo, r_lo); + __ andl(l_hi, r_hi); + break; + case lir_logic_or: + __ orl(l_lo, r_lo); + __ orl(l_hi, r_hi); + break; + case lir_logic_xor: + __ xorl(l_lo, r_lo); + __ xorl(l_hi, r_hi); + break; + default: ShouldNotReachHere(); + } + } else { + Register r_lo = right->as_register_lo(); + Register r_hi = right->as_register_hi(); + assert(l_lo != r_hi, "overwriting registers"); + switch (code) { + case lir_logic_and: + __ andl(l_lo, r_lo); + __ andl(l_hi, r_hi); + break; + case lir_logic_or: + __ orl(l_lo, r_lo); + __ orl(l_hi, r_hi); + break; + case lir_logic_xor: + __ xorl(l_lo, r_lo); + __ xorl(l_hi, r_hi); + break; + default: ShouldNotReachHere(); + } + } + + Register dst_lo = dst->as_register_lo(); + Register dst_hi = dst->as_register_hi(); + + if (dst_lo == l_hi) { + assert(dst_hi != l_lo, "overwriting registers"); + move_regs(l_hi, dst_hi); + move_regs(l_lo, dst_lo); + } else { + assert(dst_lo != l_hi, "overwriting registers"); + move_regs(l_lo, dst_lo); + move_regs(l_hi, dst_hi); + } + } +} + + +// we assume that rax, and rdx can be overwritten +void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { + + assert(left->is_single_cpu(), "left must be register"); + assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); + assert(result->is_single_cpu(), "result must be register"); + + // assert(left->destroys_register(), "check"); + // assert(right->destroys_register(), "check"); + + Register lreg = left->as_register(); + Register dreg = result->as_register(); + + if (right->is_constant()) { + int divisor = right->as_constant_ptr()->as_jint(); + assert(divisor > 0 && is_power_of_2(divisor), "must be"); + if (code == lir_idiv) { + assert(lreg == rax, "must be rax,"); + assert(temp->as_register() == rdx, "tmp register must be rdx"); + __ cdql(); // sign extend into rdx:rax + if (divisor == 2) { + __ subl(lreg, rdx); + } else { + __ andl(rdx, divisor - 1); + __ addl(lreg, rdx); + } + __ sarl(lreg, log2_intptr(divisor)); + move_regs(lreg, dreg); + } else if (code == lir_irem) { + Label done; + __ movl(dreg, lreg); + __ andl(dreg, 0x80000000 | (divisor - 1)); + __ jcc(Assembler::positive, done); + __ decrement(dreg); + __ orl(dreg, ~(divisor - 1)); + __ increment(dreg); + __ bind(done); + } else { + ShouldNotReachHere(); + } + } else { + Register rreg = right->as_register(); + assert(lreg == rax, "left register must be rax,"); + assert(rreg != rdx, "right register must not be rdx"); + assert(temp->as_register() == rdx, "tmp register must be rdx"); + + move_regs(lreg, rax); + + int idivl_offset = __ corrected_idivl(rreg); + add_debug_info_for_div0(idivl_offset, info); + if (code == lir_irem) { + move_regs(rdx, dreg); // result is in rdx + } else { + move_regs(rax, dreg); + } + } +} + + +void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { + if (opr1->is_single_cpu()) { + Register reg1 = opr1->as_register(); + if (opr2->is_single_cpu()) { + // cpu register - cpu register + __ cmpl(reg1, opr2->as_register()); + } else if (opr2->is_stack()) { + // cpu register - stack + __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); + } else if (opr2->is_constant()) { + // cpu register - constant + LIR_Const* c = opr2->as_constant_ptr(); + if (c->type() == T_INT) { + __ cmpl(reg1, c->as_jint()); + } else if (c->type() == T_OBJECT) { + jobject o = c->as_jobject(); + if (o == NULL) { + __ cmpl(reg1, NULL_WORD); + } else { + __ cmpoop(reg1, c->as_jobject()); + } + } else { + ShouldNotReachHere(); + } + // cpu register - address + } else if (opr2->is_address()) { + if (op->info() != NULL) { + add_debug_info_for_null_check_here(op->info()); + } + __ cmpl(reg1, as_Address(opr2->as_address_ptr())); + } else { + ShouldNotReachHere(); + } + + } else if(opr1->is_double_cpu()) { + Register xlo = opr1->as_register_lo(); + Register xhi = opr1->as_register_hi(); + if (opr2->is_double_cpu()) { + // cpu register - cpu register + Register ylo = opr2->as_register_lo(); + Register yhi = opr2->as_register_hi(); + __ subl(xlo, ylo); + __ sbbl(xhi, yhi); + if (condition == lir_cond_equal || condition == lir_cond_notEqual) { + __ orl(xhi, xlo); + } + } else if (opr2->is_constant()) { + // cpu register - constant 0 + assert(opr2->as_jlong() == (jlong)0, "only handles zero"); + assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case"); + __ orl(xhi, xlo); + } else { + ShouldNotReachHere(); + } + + } else if (opr1->is_single_xmm()) { + XMMRegister reg1 = opr1->as_xmm_float_reg(); + if (opr2->is_single_xmm()) { + // xmm register - xmm register + __ ucomiss(reg1, opr2->as_xmm_float_reg()); + } else if (opr2->is_stack()) { + // xmm register - stack + __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); + } else if (opr2->is_constant()) { + // xmm register - constant + __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); + } else if (opr2->is_address()) { + // xmm register - address + if (op->info() != NULL) { + add_debug_info_for_null_check_here(op->info()); + } + __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); + } else { + ShouldNotReachHere(); + } + + } else if (opr1->is_double_xmm()) { + XMMRegister reg1 = opr1->as_xmm_double_reg(); + if (opr2->is_double_xmm()) { + // xmm register - xmm register + __ ucomisd(reg1, opr2->as_xmm_double_reg()); + } else if (opr2->is_stack()) { + // xmm register - stack + __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); + } else if (opr2->is_constant()) { + // xmm register - constant + __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); + } else if (opr2->is_address()) { + // xmm register - address + if (op->info() != NULL) { + add_debug_info_for_null_check_here(op->info()); + } + __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); + } else { + ShouldNotReachHere(); + } + + } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) { + assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)"); + assert(opr2->is_fpu_register(), "both must be registers"); + __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); + + } else if (opr1->is_address() && opr2->is_constant()) { + if (op->info() != NULL) { + add_debug_info_for_null_check_here(op->info()); + } + // special case: address - constant + LIR_Address* addr = opr1->as_address_ptr(); + LIR_Const* c = opr2->as_constant_ptr(); + if (c->type() == T_INT) { + __ cmpl(as_Address(addr), c->as_jint()); + } else if (c->type() == T_OBJECT) { + __ cmpoop(as_Address(addr), c->as_jobject()); + } else { + ShouldNotReachHere(); + } + + } else { + ShouldNotReachHere(); + } +} + +void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { + if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { + if (left->is_single_xmm()) { + assert(right->is_single_xmm(), "must match"); + __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); + } else if (left->is_double_xmm()) { + assert(right->is_double_xmm(), "must match"); + __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); + + } else { + assert(left->is_single_fpu() || left->is_double_fpu(), "must be"); + assert(right->is_single_fpu() || right->is_double_fpu(), "must match"); + + assert(left->fpu() == 0, "left must be on TOS"); + __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(), + op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); + } + } else { + assert(code == lir_cmp_l2i, "check"); + __ lcmp2int(left->as_register_hi(), + left->as_register_lo(), + right->as_register_hi(), + right->as_register_lo()); + move_regs(left->as_register_hi(), dst->as_register()); + } +} + + +void LIR_Assembler::align_call(LIR_Code code) { + if (os::is_MP()) { + // make sure that the displacement word of the call ends up word aligned + int offset = __ offset(); + switch (code) { + case lir_static_call: + case lir_optvirtual_call: + offset += NativeCall::displacement_offset; + break; + case lir_icvirtual_call: + offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size; + break; + case lir_virtual_call: // currently, sparc-specific for niagara + default: ShouldNotReachHere(); + } + while (offset++ % BytesPerWord != 0) { + __ nop(); + } + } +} + + +void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) { + assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, + "must be aligned"); + __ call(AddressLiteral(entry, rtype)); + add_call_info(code_offset(), info); +} + + +void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) { + RelocationHolder rh = virtual_call_Relocation::spec(pc()); + __ movoop(IC_Klass, (jobject)Universe::non_oop_word()); + assert(!os::is_MP() || + (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, + "must be aligned"); + __ call(AddressLiteral(entry, rh)); + add_call_info(code_offset(), info); +} + + +/* Currently, vtable-dispatch is only enabled for sparc platforms */ +void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) { + ShouldNotReachHere(); +} + +void LIR_Assembler::emit_static_call_stub() { + address call_pc = __ pc(); + address stub = __ start_a_stub(call_stub_size); + if (stub == NULL) { + bailout("static call stub overflow"); + return; + } + + int start = __ offset(); + if (os::is_MP()) { + // make sure that the displacement word of the call ends up word aligned + int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset; + while (offset++ % BytesPerWord != 0) { + __ nop(); + } + } + __ relocate(static_stub_Relocation::spec(call_pc)); + __ movoop(rbx, (jobject)NULL); + // must be set to -1 at code generation time + assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP"); + __ jump(RuntimeAddress((address)-1)); + + assert(__ offset() - start <= call_stub_size, "stub too big") + __ end_a_stub(); +} + + +void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) { + assert(exceptionOop->as_register() == rax, "must match"); + assert(unwind || exceptionPC->as_register() == rdx, "must match"); + + // exception object is not added to oop map by LinearScan + // (LinearScan assumes that no oops are in fixed registers) + info->add_register_oop(exceptionOop); + Runtime1::StubID unwind_id; + + if (!unwind) { + // get current pc information + // pc is only needed if the method has an exception handler, the unwind code does not need it. + int pc_for_athrow_offset = __ offset(); + InternalAddress pc_for_athrow(__ pc()); + __ lea(exceptionPC->as_register(), pc_for_athrow); + add_call_info(pc_for_athrow_offset, info); // for exception handler + + __ verify_not_null_oop(rax); + // search an exception handler (rax: exception oop, rdx: throwing pc) + if (compilation()->has_fpu_code()) { + unwind_id = Runtime1::handle_exception_id; + } else { + unwind_id = Runtime1::handle_exception_nofpu_id; + } + } else { + unwind_id = Runtime1::unwind_exception_id; + } + __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); + + // enough room for two byte trap + __ nop(); +} + + +void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { + + // optimized version for linear scan: + // * count must be already in ECX (guaranteed by LinearScan) + // * left and dest must be equal + // * tmp must be unused + assert(count->as_register() == SHIFT_count, "count must be in ECX"); + assert(left == dest, "left and dest must be equal"); + assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); + + if (left->is_single_cpu()) { + Register value = left->as_register(); + assert(value != SHIFT_count, "left cannot be ECX"); + + switch (code) { + case lir_shl: __ shll(value); break; + case lir_shr: __ sarl(value); break; + case lir_ushr: __ shrl(value); break; + default: ShouldNotReachHere(); + } + } else if (left->is_double_cpu()) { + Register lo = left->as_register_lo(); + Register hi = left->as_register_hi(); + assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); + + switch (code) { + case lir_shl: __ lshl(hi, lo); break; + case lir_shr: __ lshr(hi, lo, true); break; + case lir_ushr: __ lshr(hi, lo, false); break; + default: ShouldNotReachHere(); + } + } else { + ShouldNotReachHere(); + } +} + + +void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { + if (dest->is_single_cpu()) { + // first move left into dest so that left is not destroyed by the shift + Register value = dest->as_register(); + count = count & 0x1F; // Java spec + + move_regs(left->as_register(), value); + switch (code) { + case lir_shl: __ shll(value, count); break; + case lir_shr: __ sarl(value, count); break; + case lir_ushr: __ shrl(value, count); break; + default: ShouldNotReachHere(); + } + } else if (dest->is_double_cpu()) { + Unimplemented(); + } else { + ShouldNotReachHere(); + } +} + + +void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { + assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); + int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; + assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); + __ movl (Address(rsp, offset_from_rsp_in_bytes), r); +} + + +void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { + assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); + int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; + assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); + __ movl (Address(rsp, offset_from_rsp_in_bytes), c); +} + + +void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { + assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); + int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; + assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); + __ movoop (Address(rsp, offset_from_rsp_in_bytes), o); +} + + +// This code replaces a call to arraycopy; no exception may +// be thrown in this code, they must be thrown in the System.arraycopy +// activation frame; we could save some checks if this would not be the case +void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { + ciArrayKlass* default_type = op->expected_type(); + Register src = op->src()->as_register(); + Register dst = op->dst()->as_register(); + Register src_pos = op->src_pos()->as_register(); + Register dst_pos = op->dst_pos()->as_register(); + Register length = op->length()->as_register(); + Register tmp = op->tmp()->as_register(); + + CodeStub* stub = op->stub(); + int flags = op->flags(); + BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; + if (basic_type == T_ARRAY) basic_type = T_OBJECT; + + // if we don't know anything or it's an object array, just go through the generic arraycopy + if (default_type == NULL) { + Label done; + // save outgoing arguments on stack in case call to System.arraycopy is needed + // HACK ALERT. This code used to push the parameters in a hardwired fashion + // for interpreter calling conventions. Now we have to do it in new style conventions. + // For the moment until C1 gets the new register allocator I just force all the + // args to the right place (except the register args) and then on the back side + // reload the register args properly if we go slow path. Yuck + + // These are proper for the calling convention + + store_parameter(length, 2); + store_parameter(dst_pos, 1); + store_parameter(dst, 0); + + // these are just temporary placements until we need to reload + store_parameter(src_pos, 3); + store_parameter(src, 4); + assert(src == rcx && src_pos == rdx, "mismatch in calling convention"); + + // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint + __ pushl(length); + __ pushl(dst_pos); + __ pushl(dst); + __ pushl(src_pos); + __ pushl(src); + address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy); + __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack + + __ cmpl(rax, 0); + __ jcc(Assembler::equal, *stub->continuation()); + + // Reload values from the stack so they are where the stub + // expects them. + __ movl (dst, Address(rsp, 0*BytesPerWord)); + __ movl (dst_pos, Address(rsp, 1*BytesPerWord)); + __ movl (length, Address(rsp, 2*BytesPerWord)); + __ movl (src_pos, Address(rsp, 3*BytesPerWord)); + __ movl (src, Address(rsp, 4*BytesPerWord)); + __ jmp(*stub->entry()); + + __ bind(*stub->continuation()); + return; + } + + assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); + + int elem_size = type2aelembytes[basic_type]; + int shift_amount; + Address::ScaleFactor scale; + + switch (elem_size) { + case 1 : + shift_amount = 0; + scale = Address::times_1; + break; + case 2 : + shift_amount = 1; + scale = Address::times_2; + break; + case 4 : + shift_amount = 2; + scale = Address::times_4; + break; + case 8 : + shift_amount = 3; + scale = Address::times_8; + break; + default: + ShouldNotReachHere(); + } + + Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); + Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); + Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); + Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); + + // test for NULL + if (flags & LIR_OpArrayCopy::src_null_check) { + __ testl(src, src); + __ jcc(Assembler::zero, *stub->entry()); + } + if (flags & LIR_OpArrayCopy::dst_null_check) { + __ testl(dst, dst); + __ jcc(Assembler::zero, *stub->entry()); + } + + // check if negative + if (flags & LIR_OpArrayCopy::src_pos_positive_check) { + __ testl(src_pos, src_pos); + __ jcc(Assembler::less, *stub->entry()); + } + if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { + __ testl(dst_pos, dst_pos); + __ jcc(Assembler::less, *stub->entry()); + } + if (flags & LIR_OpArrayCopy::length_positive_check) { + __ testl(length, length); + __ jcc(Assembler::less, *stub->entry()); + } + + if (flags & LIR_OpArrayCopy::src_range_check) { + __ leal(tmp, Address(src_pos, length, Address::times_1, 0)); + __ cmpl(tmp, src_length_addr); + __ jcc(Assembler::above, *stub->entry()); + } + if (flags & LIR_OpArrayCopy::dst_range_check) { + __ leal(tmp, Address(dst_pos, length, Address::times_1, 0)); + __ cmpl(tmp, dst_length_addr); + __ jcc(Assembler::above, *stub->entry()); + } + + if (flags & LIR_OpArrayCopy::type_check) { + __ movl(tmp, src_klass_addr); + __ cmpl(tmp, dst_klass_addr); + __ jcc(Assembler::notEqual, *stub->entry()); + } + +#ifdef ASSERT + if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { + // Sanity check the known type with the incoming class. For the + // primitive case the types must match exactly with src.klass and + // dst.klass each exactly matching the default type. For the + // object array case, if no type check is needed then either the + // dst type is exactly the expected type and the src type is a + // subtype which we can't check or src is the same array as dst + // but not necessarily exactly of type default_type. + Label known_ok, halt; + __ movoop(tmp, default_type->encoding()); + if (basic_type != T_OBJECT) { + __ cmpl(tmp, dst_klass_addr); + __ jcc(Assembler::notEqual, halt); + __ cmpl(tmp, src_klass_addr); + __ jcc(Assembler::equal, known_ok); + } else { + __ cmpl(tmp, dst_klass_addr); + __ jcc(Assembler::equal, known_ok); + __ cmpl(src, dst); + __ jcc(Assembler::equal, known_ok); + } + __ bind(halt); + __ stop("incorrect type information in arraycopy"); + __ bind(known_ok); + } +#endif + + __ leal(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); + store_parameter(tmp, 0); + __ leal(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); + store_parameter(tmp, 1); + if (shift_amount > 0 && basic_type != T_OBJECT) { + __ shll(length, shift_amount); + } + store_parameter(length, 2); + if (basic_type == T_OBJECT) { + __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0); + } else { + __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0); + } + + __ bind(*stub->continuation()); +} + + +void LIR_Assembler::emit_lock(LIR_OpLock* op) { + Register obj = op->obj_opr()->as_register(); // may not be an oop + Register hdr = op->hdr_opr()->as_register(); + Register lock = op->lock_opr()->as_register(); + if (!UseFastLocking) { + __ jmp(*op->stub()->entry()); + } else if (op->code() == lir_lock) { + Register scratch = noreg; + if (UseBiasedLocking) { + scratch = op->scratch_opr()->as_register(); + } + assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); + // add debug info for NullPointerException only if one is possible + int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry()); + if (op->info() != NULL) { + add_debug_info_for_null_check(null_check_offset, op->info()); + } + // done + } else if (op->code() == lir_unlock) { + assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); + __ unlock_object(hdr, obj, lock, *op->stub()->entry()); + } else { + Unimplemented(); + } + __ bind(*op->stub()->continuation()); +} + + +void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { + ciMethod* method = op->profiled_method(); + int bci = op->profiled_bci(); + + // Update counter for all call types + ciMethodData* md = method->method_data(); + if (md == NULL) { + bailout("out of memory building methodDataOop"); + return; + } + ciProfileData* data = md->bci_to_data(bci); + assert(data->is_CounterData(), "need CounterData for calls"); + assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); + Register mdo = op->mdo()->as_register(); + __ movoop(mdo, md->encoding()); + Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); + __ addl(counter_addr, DataLayout::counter_increment); + Bytecodes::Code bc = method->java_code_at_bci(bci); + // Perform additional virtual call profiling for invokevirtual and + // invokeinterface bytecodes + if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) && + Tier1ProfileVirtualCalls) { + assert(op->recv()->is_single_cpu(), "recv must be allocated"); + Register recv = op->recv()->as_register(); + assert_different_registers(mdo, recv); + assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); + ciKlass* known_klass = op->known_holder(); + if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) { + // We know the type that will be seen at this call site; we can + // statically update the methodDataOop rather than needing to do + // dynamic tests on the receiver type + + // NOTE: we should probably put a lock around this search to + // avoid collisions by concurrent compilations + ciVirtualCallData* vc_data = (ciVirtualCallData*) data; + uint i; + for (i = 0; i < VirtualCallData::row_limit(); i++) { + ciKlass* receiver = vc_data->receiver(i); + if (known_klass->equals(receiver)) { + Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); + __ addl(data_addr, DataLayout::counter_increment); + return; + } + } + + // Receiver type not found in profile data; select an empty slot + + // Note that this is less efficient than it should be because it + // always does a write to the receiver part of the + // VirtualCallData rather than just the first time + for (i = 0; i < VirtualCallData::row_limit(); i++) { + ciKlass* receiver = vc_data->receiver(i); + if (receiver == NULL) { + Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); + __ movoop(recv_addr, known_klass->encoding()); + Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); + __ addl(data_addr, DataLayout::counter_increment); + return; + } + } + } else { + __ movl(recv, Address(recv, oopDesc::klass_offset_in_bytes())); + Label update_done; + uint i; + for (i = 0; i < VirtualCallData::row_limit(); i++) { + Label next_test; + // See if the receiver is receiver[n]. + __ cmpl(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)))); + __ jcc(Assembler::notEqual, next_test); + Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); + __ addl(data_addr, DataLayout::counter_increment); + __ jmp(update_done); + __ bind(next_test); + } + + // Didn't find receiver; find next empty slot and fill it in + for (i = 0; i < VirtualCallData::row_limit(); i++) { + Label next_test; + Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); + __ cmpl(recv_addr, NULL_WORD); + __ jcc(Assembler::notEqual, next_test); + __ movl(recv_addr, recv); + __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment); + if (i < (VirtualCallData::row_limit() - 1)) { + __ jmp(update_done); + } + __ bind(next_test); + } + + __ bind(update_done); + } + } +} + + +void LIR_Assembler::emit_delay(LIR_OpDelay*) { + Unimplemented(); +} + + +void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { + __ leal(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); +} + + +void LIR_Assembler::align_backward_branch_target() { + __ align(BytesPerWord); +} + + +void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) { + if (left->is_single_cpu()) { + __ negl(left->as_register()); + move_regs(left->as_register(), dest->as_register()); + + } else if (left->is_double_cpu()) { + Register lo = left->as_register_lo(); + Register hi = left->as_register_hi(); + __ lneg(hi, lo); + if (dest->as_register_lo() == hi) { + assert(dest->as_register_hi() != lo, "destroying register"); + move_regs(hi, dest->as_register_hi()); + move_regs(lo, dest->as_register_lo()); + } else { + move_regs(lo, dest->as_register_lo()); + move_regs(hi, dest->as_register_hi()); + } + + } else if (dest->is_single_xmm()) { + if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { + __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); + } + __ xorps(dest->as_xmm_float_reg(), + ExternalAddress((address)float_signflip_pool)); + + } else if (dest->is_double_xmm()) { + if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { + __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); + } + __ xorpd(dest->as_xmm_double_reg(), + ExternalAddress((address)double_signflip_pool)); + + } else if (left->is_single_fpu() || left->is_double_fpu()) { + assert(left->fpu() == 0, "arg must be on TOS"); + assert(dest->fpu() == 0, "dest must be TOS"); + __ fchs(); + + } else { + ShouldNotReachHere(); + } +} + + +void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) { + assert(addr->is_address() && dest->is_register(), "check"); + Register reg = dest->as_register(); + __ leal(dest->as_register(), as_Address(addr->as_address_ptr())); +} + + + +void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { + assert(!tmp->is_valid(), "don't need temporary"); + __ call(RuntimeAddress(dest)); + if (info != NULL) { + add_call_info_here(info); + } +} + + +void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { + assert(type == T_LONG, "only for volatile long fields"); + + if (info != NULL) { + add_debug_info_for_null_check_here(info); + } + + if (src->is_double_xmm()) { + if (dest->is_double_cpu()) { + __ movd(dest->as_register_lo(), src->as_xmm_double_reg()); + __ psrlq(src->as_xmm_double_reg(), 32); + __ movd(dest->as_register_hi(), src->as_xmm_double_reg()); + } else if (dest->is_double_stack()) { + __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); + } else if (dest->is_address()) { + __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); + } else { + ShouldNotReachHere(); + } + + } else if (dest->is_double_xmm()) { + if (src->is_double_stack()) { + __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); + } else if (src->is_address()) { + __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); + } else { + ShouldNotReachHere(); + } + + } else if (src->is_double_fpu()) { + assert(src->fpu_regnrLo() == 0, "must be TOS"); + if (dest->is_double_stack()) { + __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix())); + } else if (dest->is_address()) { + __ fistp_d(as_Address(dest->as_address_ptr())); + } else { + ShouldNotReachHere(); + } + + } else if (dest->is_double_fpu()) { + assert(dest->fpu_regnrLo() == 0, "must be TOS"); + if (src->is_double_stack()) { + __ fild_d(frame_map()->address_for_slot(src->double_stack_ix())); + } else if (src->is_address()) { + __ fild_d(as_Address(src->as_address_ptr())); + } else { + ShouldNotReachHere(); + } + } else { + ShouldNotReachHere(); + } +} + + +void LIR_Assembler::membar() { + __ membar(); +} + +void LIR_Assembler::membar_acquire() { + // No x86 machines currently require load fences + // __ load_fence(); +} + +void LIR_Assembler::membar_release() { + // No x86 machines currently require store fences + // __ store_fence(); +} + +void LIR_Assembler::get_thread(LIR_Opr result_reg) { + assert(result_reg->is_register(), "check"); + __ get_thread(result_reg->as_register()); +} + + +void LIR_Assembler::peephole(LIR_List*) { + // do nothing for now +} + + +#undef __