/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compilerOracle.hpp"
#include "gc/shared/isGCActiveMark.hpp"
#include "memory/heapInspection.hpp"
#include "memory/resourceArea.hpp"
#include "oops/symbol.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/sweeper.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/vm_operations.hpp"
#include "services/threadService.hpp"
#include "trace/tracing.hpp"
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
#define VM_OP_NAME_INITIALIZE(name) #name,
const char* VM_Operation::_names[VM_Operation::VMOp_Terminating] = \
{ VM_OPS_DO(VM_OP_NAME_INITIALIZE) };
void VM_Operation::set_calling_thread(Thread* thread, ThreadPriority priority) {
_calling_thread = thread;
assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
_priority = priority;
}
void VM_Operation::evaluate() {
ResourceMark rm;
if (TraceVMOperation) {
tty->print("[");
NOT_PRODUCT(print();)
}
doit();
if (TraceVMOperation) {
tty->print_cr("]");
}
}
const char* VM_Operation::mode_to_string(Mode mode) {
switch(mode) {
case _safepoint : return "safepoint";
case _no_safepoint : return "no safepoint";
case _concurrent : return "concurrent";
case _async_safepoint: return "async safepoint";
default : return "unknown";
}
}
// Called by fatal error handler.
void VM_Operation::print_on_error(outputStream* st) const {
st->print("VM_Operation (" PTR_FORMAT "): ", this);
st->print("%s", name());
const char* mode = mode_to_string(evaluation_mode());
st->print(", mode: %s", mode);
if (calling_thread()) {
st->print(", requested by thread " PTR_FORMAT, calling_thread());
}
}
void VM_ThreadStop::doit() {
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
JavaThread* target = java_lang_Thread::thread(target_thread());
// Note that this now allows multiple ThreadDeath exceptions to be
// thrown at a thread.
if (target != NULL) {
// the thread has run and is not already in the process of exiting
target->send_thread_stop(throwable());
}
}
void VM_Deoptimize::doit() {
// We do not want any GCs to happen while we are in the middle of this VM operation
ResourceMark rm;
DeoptimizationMarker dm;
// Deoptimize all activations depending on marked nmethods
Deoptimization::deoptimize_dependents();
// Make the dependent methods zombies
CodeCache::make_marked_nmethods_zombies();
}
void VM_MarkActiveNMethods::doit() {
NMethodSweeper::mark_active_nmethods();
}
VM_DeoptimizeFrame::VM_DeoptimizeFrame(JavaThread* thread, intptr_t* id) {
_thread = thread;
_id = id;
}
void VM_DeoptimizeFrame::doit() {
Deoptimization::deoptimize_frame_internal(_thread, _id);
}
#ifndef PRODUCT
void VM_DeoptimizeAll::doit() {
DeoptimizationMarker dm;
// deoptimize all java threads in the system
if (DeoptimizeALot) {
for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
if (thread->has_last_Java_frame()) {
thread->deoptimize();
}
}
} else if (DeoptimizeRandom) {
// Deoptimize some selected threads and frames
int tnum = os::random() & 0x3;
int fnum = os::random() & 0x3;
int tcount = 0;
for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
if (thread->has_last_Java_frame()) {
if (tcount++ == tnum) {
tcount = 0;
int fcount = 0;
// Deoptimize some selected frames.
// Biased llocking wants a updated register map
for(StackFrameStream fst(thread, UseBiasedLocking); !fst.is_done(); fst.next()) {
if (fst.current()->can_be_deoptimized()) {
if (fcount++ == fnum) {
fcount = 0;
Deoptimization::deoptimize(thread, *fst.current(), fst.register_map());
}
}
}
}
}
}
}
}
void VM_ZombieAll::doit() {
JavaThread *thread = (JavaThread *)calling_thread();
assert(thread->is_Java_thread(), "must be a Java thread");
thread->make_zombies();
}
#endif // !PRODUCT
void VM_UnlinkSymbols::doit() {
JavaThread *thread = (JavaThread *)calling_thread();
assert(thread->is_Java_thread(), "must be a Java thread");
SymbolTable::unlink();
}
void VM_Verify::doit() {
Universe::heap()->prepare_for_verify();
Universe::verify(_silent);
}
bool VM_PrintThreads::doit_prologue() {
assert(Thread::current()->is_Java_thread(), "just checking");
// Make sure AbstractOwnableSynchronizer is loaded
java_util_concurrent_locks_AbstractOwnableSynchronizer::initialize(JavaThread::current());
// Get Heap_lock if concurrent locks will be dumped
if (_print_concurrent_locks) {
Heap_lock->lock();
}
return true;
}
void VM_PrintThreads::doit() {
Threads::print_on(_out, true, false, _print_concurrent_locks);
}
void VM_PrintThreads::doit_epilogue() {
if (_print_concurrent_locks) {
// Release Heap_lock
Heap_lock->unlock();
}
}
void VM_PrintJNI::doit() {
JNIHandles::print_on(_out);
}
VM_FindDeadlocks::~VM_FindDeadlocks() {
if (_deadlocks != NULL) {
DeadlockCycle* cycle = _deadlocks;
while (cycle != NULL) {
DeadlockCycle* d = cycle;
cycle = cycle->next();
delete d;
}
}
}
bool VM_FindDeadlocks::doit_prologue() {
assert(Thread::current()->is_Java_thread(), "just checking");
// Load AbstractOwnableSynchronizer class
if (_concurrent_locks) {
java_util_concurrent_locks_AbstractOwnableSynchronizer::initialize(JavaThread::current());
}
return true;
}
void VM_FindDeadlocks::doit() {
_deadlocks = ThreadService::find_deadlocks_at_safepoint(_concurrent_locks);
if (_out != NULL) {
int num_deadlocks = 0;
for (DeadlockCycle* cycle = _deadlocks; cycle != NULL; cycle = cycle->next()) {
num_deadlocks++;
cycle->print_on(_out);
}
if (num_deadlocks == 1) {
_out->print_cr("\nFound 1 deadlock.\n");
_out->flush();
} else if (num_deadlocks > 1) {
_out->print_cr("\nFound %d deadlocks.\n", num_deadlocks);
_out->flush();
}
}
}
VM_ThreadDump::VM_ThreadDump(ThreadDumpResult* result,
int max_depth,
bool with_locked_monitors,
bool with_locked_synchronizers) {
_result = result;
_num_threads = 0; // 0 indicates all threads
_threads = NULL;
_result = result;
_max_depth = max_depth;
_with_locked_monitors = with_locked_monitors;
_with_locked_synchronizers = with_locked_synchronizers;
}
VM_ThreadDump::VM_ThreadDump(ThreadDumpResult* result,
GrowableArray<instanceHandle>* threads,
int num_threads,
int max_depth,
bool with_locked_monitors,
bool with_locked_synchronizers) {
_result = result;
_num_threads = num_threads;
_threads = threads;
_result = result;
_max_depth = max_depth;
_with_locked_monitors = with_locked_monitors;
_with_locked_synchronizers = with_locked_synchronizers;
}
bool VM_ThreadDump::doit_prologue() {
assert(Thread::current()->is_Java_thread(), "just checking");
// Load AbstractOwnableSynchronizer class before taking thread snapshots
java_util_concurrent_locks_AbstractOwnableSynchronizer::initialize(JavaThread::current());
if (_with_locked_synchronizers) {
// Acquire Heap_lock to dump concurrent locks
Heap_lock->lock();
}
return true;
}
void VM_ThreadDump::doit_epilogue() {
if (_with_locked_synchronizers) {
// Release Heap_lock
Heap_lock->unlock();
}
}
void VM_ThreadDump::doit() {
ResourceMark rm;
ConcurrentLocksDump concurrent_locks(true);
if (_with_locked_synchronizers) {
concurrent_locks.dump_at_safepoint();
}
if (_num_threads == 0) {
// Snapshot all live threads
for (JavaThread* jt = Threads::first(); jt != NULL; jt = jt->next()) {
if (jt->is_exiting() ||
jt->is_hidden_from_external_view()) {
// skip terminating threads and hidden threads
continue;
}
ThreadConcurrentLocks* tcl = NULL;
if (_with_locked_synchronizers) {
tcl = concurrent_locks.thread_concurrent_locks(jt);
}
ThreadSnapshot* ts = snapshot_thread(jt, tcl);
_result->add_thread_snapshot(ts);
}
} else {
// Snapshot threads in the given _threads array
// A dummy snapshot is created if a thread doesn't exist
for (int i = 0; i < _num_threads; i++) {
instanceHandle th = _threads->at(i);
if (th() == NULL) {
// skip if the thread doesn't exist
// Add a dummy snapshot
_result->add_thread_snapshot(new ThreadSnapshot());
continue;
}
// Dump thread stack only if the thread is alive and not exiting
// and not VM internal thread.
JavaThread* jt = java_lang_Thread::thread(th());
if (jt == NULL || /* thread not alive */
jt->is_exiting() ||
jt->is_hidden_from_external_view()) {
// add a NULL snapshot if skipped
_result->add_thread_snapshot(new ThreadSnapshot());
continue;
}
ThreadConcurrentLocks* tcl = NULL;
if (_with_locked_synchronizers) {
tcl = concurrent_locks.thread_concurrent_locks(jt);
}
ThreadSnapshot* ts = snapshot_thread(jt, tcl);
_result->add_thread_snapshot(ts);
}
}
}
ThreadSnapshot* VM_ThreadDump::snapshot_thread(JavaThread* java_thread, ThreadConcurrentLocks* tcl) {
ThreadSnapshot* snapshot = new ThreadSnapshot(java_thread);
snapshot->dump_stack_at_safepoint(_max_depth, _with_locked_monitors);
snapshot->set_concurrent_locks(tcl);
return snapshot;
}
volatile bool VM_Exit::_vm_exited = false;
Thread * VM_Exit::_shutdown_thread = NULL;
int VM_Exit::set_vm_exited() {
Thread * thr_cur = ThreadLocalStorage::get_thread_slow();
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already");
int num_active = 0;
_shutdown_thread = thr_cur;
_vm_exited = true; // global flag
for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next())
if (thr!=thr_cur && thr->thread_state() == _thread_in_native) {
++num_active;
thr->set_terminated(JavaThread::_vm_exited); // per-thread flag
}
return num_active;
}
int VM_Exit::wait_for_threads_in_native_to_block() {
// VM exits at safepoint. This function must be called at the final safepoint
// to wait for threads in _thread_in_native state to be quiescent.
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint already");
Thread * thr_cur = ThreadLocalStorage::get_thread_slow();
Monitor timer(Mutex::leaf, "VM_Exit timer", true,
Monitor::_safepoint_check_never);
// Compiler threads need longer wait because they can access VM data directly
// while in native. If they are active and some structures being used are
// deleted by the shutdown sequence, they will crash. On the other hand, user
// threads must go through native=>Java/VM transitions first to access VM
// data, and they will be stopped during state transition. In theory, we
// don't have to wait for user threads to be quiescent, but it's always
// better to terminate VM when current thread is the only active thread, so
// wait for user threads too. Numbers are in 10 milliseconds.
int max_wait_user_thread = 30; // at least 300 milliseconds
int max_wait_compiler_thread = 1000; // at least 10 seconds
int max_wait = max_wait_compiler_thread;
int attempts = 0;
while (true) {
int num_active = 0;
int num_active_compiler_thread = 0;
for(JavaThread *thr = Threads::first(); thr != NULL; thr = thr->next()) {
if (thr!=thr_cur && thr->thread_state() == _thread_in_native) {
num_active++;
if (thr->is_Compiler_thread()) {
num_active_compiler_thread++;
}
}
}
if (num_active == 0) {
return 0;
} else if (attempts > max_wait) {
return num_active;
} else if (num_active_compiler_thread == 0 && attempts > max_wait_user_thread) {
return num_active;
}
attempts++;
MutexLockerEx ml(&timer, Mutex::_no_safepoint_check_flag);
timer.wait(Mutex::_no_safepoint_check_flag, 10);
}
}
void VM_Exit::doit() {
CompileBroker::set_should_block();
// Wait for a short period for threads in native to block. Any thread
// still executing native code after the wait will be stopped at
// native==>Java/VM barriers.
// Among 16276 JCK tests, 94% of them come here without any threads still
// running in native; the other 6% are quiescent within 250ms (Ultra 80).
wait_for_threads_in_native_to_block();
set_vm_exited();
// cleanup globals resources before exiting. exit_globals() currently
// cleans up outputStream resources and PerfMemory resources.
exit_globals();
// Check for exit hook
exit_hook_t exit_hook = Arguments::exit_hook();
if (exit_hook != NULL) {
// exit hook should exit.
exit_hook(_exit_code);
// ... but if it didn't, we must do it here
vm_direct_exit(_exit_code);
} else {
vm_direct_exit(_exit_code);
}
}
void VM_Exit::wait_if_vm_exited() {
if (_vm_exited &&
ThreadLocalStorage::get_thread_slow() != _shutdown_thread) {
// _vm_exited is set at safepoint, and the Threads_lock is never released
// we will block here until the process dies
Threads_lock->lock_without_safepoint_check();
ShouldNotReachHere();
}
}
void VM_PrintCompileQueue::doit() {
CompileBroker::print_compile_queues(_out);
}
void VM_PrintCodeList::doit() {
CodeCache::print_codelist(_out);
}
void VM_PrintCodeCache::doit() {
CodeCache::print_layout(_out);
}
#if INCLUDE_SERVICES
void VM_PrintClassHierarchy::doit() {
KlassHierarchy::print_class_hierarchy(_out, _print_interfaces, _print_subclasses, _classname);
}
#endif