/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "c1/c1_Defs.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_x86.hpp"
#include "oops/compiledICHolder.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "register_x86.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/macros.hpp"
#include "vmreg_x86.inline.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#endif
// Implementation of StubAssembler
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
// setup registers
const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
assert(args_size >= 0, "illegal args_size");
bool align_stack = false;
#ifdef _LP64
// At a method handle call, the stack may not be properly aligned
// when returning with an exception.
align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
#endif
#ifdef _LP64
mov(c_rarg0, thread);
set_num_rt_args(0); // Nothing on stack
#else
set_num_rt_args(1 + args_size);
// push java thread (becomes first argument of C function)
get_thread(thread);
push(thread);
#endif // _LP64
int call_offset;
if (!align_stack) {
set_last_Java_frame(thread, noreg, rbp, NULL);
} else {
address the_pc = pc();
call_offset = offset();
set_last_Java_frame(thread, noreg, rbp, the_pc);
andptr(rsp, -(StackAlignmentInBytes)); // Align stack
}
// do the call
call(RuntimeAddress(entry));
if (!align_stack) {
call_offset = offset();
}
// verify callee-saved register
#ifdef ASSERT
guarantee(thread != rax, "change this code");
push(rax);
{ Label L;
get_thread(rax);
cmpptr(thread, rax);
jcc(Assembler::equal, L);
int3();
stop("StubAssembler::call_RT: rdi not callee saved?");
bind(L);
}
pop(rax);
#endif
reset_last_Java_frame(thread, true, align_stack);
// discard thread and arguments
NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
// check for pending exceptions
{ Label L;
cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
jcc(Assembler::equal, L);
// exception pending => remove activation and forward to exception handler
movptr(rax, Address(thread, Thread::pending_exception_offset()));
// make sure that the vm_results are cleared
if (oop_result1->is_valid()) {
movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
}
if (metadata_result->is_valid()) {
movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
}
if (frame_size() == no_frame_size) {
leave();
jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
} else if (_stub_id == Runtime1::forward_exception_id) {
should_not_reach_here();
} else {
jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
}
bind(L);
}
// get oop results if there are any and reset the values in the thread
if (oop_result1->is_valid()) {
get_vm_result(oop_result1, thread);
}
if (metadata_result->is_valid()) {
get_vm_result_2(metadata_result, thread);
}
return call_offset;
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
#ifdef _LP64
mov(c_rarg1, arg1);
#else
push(arg1);
#endif // _LP64
return call_RT(oop_result1, metadata_result, entry, 1);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
#ifdef _LP64
if (c_rarg1 == arg2) {
if (c_rarg2 == arg1) {
xchgq(arg1, arg2);
} else {
mov(c_rarg2, arg2);
mov(c_rarg1, arg1);
}
} else {
mov(c_rarg1, arg1);
mov(c_rarg2, arg2);
}
#else
push(arg2);
push(arg1);
#endif // _LP64
return call_RT(oop_result1, metadata_result, entry, 2);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
#ifdef _LP64
// if there is any conflict use the stack
if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
arg2 == c_rarg1 || arg1 == c_rarg3 ||
arg3 == c_rarg1 || arg1 == c_rarg2) {
push(arg3);
push(arg2);
push(arg1);
pop(c_rarg1);
pop(c_rarg2);
pop(c_rarg3);
} else {
mov(c_rarg1, arg1);
mov(c_rarg2, arg2);
mov(c_rarg3, arg3);
}
#else
push(arg3);
push(arg2);
push(arg1);
#endif // _LP64
return call_RT(oop_result1, metadata_result, entry, 3);
}
// Implementation of StubFrame
class StubFrame: public StackObj {
private:
StubAssembler* _sasm;
public:
StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
void load_argument(int offset_in_words, Register reg);
~StubFrame();
};
#define __ _sasm->
StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
_sasm = sasm;
__ set_info(name, must_gc_arguments);
__ enter();
}
// load parameters that were stored with LIR_Assembler::store_parameter
// Note: offsets for store_parameter and load_argument must match
void StubFrame::load_argument(int offset_in_words, Register reg) {
// rbp, + 0: link
// + 1: return address
// + 2: argument with offset 0
// + 3: argument with offset 1
// + 4: ...
__ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
}
StubFrame::~StubFrame() {
__ leave();
__ ret(0);
}
#undef __
// Implementation of Runtime1
#define __ sasm->
const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
// Stack layout for saving/restoring all the registers needed during a runtime
// call (this includes deoptimization)
// Note: note that users of this frame may well have arguments to some runtime
// while these values are on the stack. These positions neglect those arguments
// but the code in save_live_registers will take the argument count into
// account.
//
#ifdef _LP64
#define SLOT2(x) x,
#define SLOT_PER_WORD 2
#else
#define SLOT2(x)
#define SLOT_PER_WORD 1
#endif // _LP64
enum reg_save_layout {
// 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
// happen and will assert if the stack size we create is misaligned
#ifdef _LP64
align_dummy_0, align_dummy_1,
#endif // _LP64
#ifdef _WIN64
// Windows always allocates space for it's argument registers (see
// frame::arg_reg_save_area_bytes).
arg_reg_save_1, arg_reg_save_1H, // 0, 4
arg_reg_save_2, arg_reg_save_2H, // 8, 12
arg_reg_save_3, arg_reg_save_3H, // 16, 20
arg_reg_save_4, arg_reg_save_4H, // 24, 28
#endif // _WIN64
xmm_regs_as_doubles_off, // 32
float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots, // 160
fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots, // 224
// fpu_state_end_off is exclusive
fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD), // 352
marker = fpu_state_end_off, SLOT2(markerH) // 352, 356
extra_space_offset, // 360
#ifdef _LP64
r15_off = extra_space_offset, r15H_off, // 360, 364
r14_off, r14H_off, // 368, 372
r13_off, r13H_off, // 376, 380
r12_off, r12H_off, // 384, 388
r11_off, r11H_off, // 392, 396
r10_off, r10H_off, // 400, 404
r9_off, r9H_off, // 408, 412
r8_off, r8H_off, // 416, 420
rdi_off, rdiH_off, // 424, 428
#else
rdi_off = extra_space_offset,
#endif // _LP64
rsi_off, SLOT2(rsiH_off) // 432, 436
rbp_off, SLOT2(rbpH_off) // 440, 444
rsp_off, SLOT2(rspH_off) // 448, 452
rbx_off, SLOT2(rbxH_off) // 456, 460
rdx_off, SLOT2(rdxH_off) // 464, 468
rcx_off, SLOT2(rcxH_off) // 472, 476
rax_off, SLOT2(raxH_off) // 480, 484
saved_rbp_off, SLOT2(saved_rbpH_off) // 488, 492
return_off, SLOT2(returnH_off) // 496, 500
reg_save_frame_size // As noted: neglects any parameters to runtime // 504
};
// Save off registers which might be killed by calls into the runtime.
// Tries to smart of about FP registers. In particular we separate
// saving and describing the FPU registers for deoptimization since we
// have to save the FPU registers twice if we describe them and on P4
// saving FPU registers which don't contain anything appears
// expensive. The deopt blob is the only thing which needs to
// describe FPU registers. In all other cases it should be sufficient
// to simply save their current value.
static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
bool save_fpu_registers = true) {
// In 64bit all the args are in regs so there are no additional stack slots
LP64_ONLY(num_rt_args = 0);
LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
// record saved value locations in an OopMap
// locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
OopMap* map = new OopMap(frame_size_in_slots, 0);
map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
#ifdef _LP64
map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args), r8->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args), r9->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
// This is stupid but needed.
map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args), r8->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args), r9->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
#endif // _LP64
if (save_fpu_registers) {
if (UseSSE < 2) {
int fpu_off = float_regs_as_doubles_off;
for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
VMReg fpu_name_0 = FrameMap::fpu_regname(n);
map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + num_rt_args), fpu_name_0);
// %%% This is really a waste but we'll keep things as they were for now
if (true) {
map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
}
fpu_off += 2;
}
assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
}
if (UseSSE >= 2) {
int xmm_off = xmm_regs_as_doubles_off;
for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
// %%% This is really a waste but we'll keep things as they were for now
if (true) {
map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
}
xmm_off += 2;
}
assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
} else if (UseSSE == 1) {
int xmm_off = xmm_regs_as_doubles_off;
for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
xmm_off += 2;
}
assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
}
}
return map;
}
static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
bool save_fpu_registers = true) {
__ block_comment("save_live_registers");
__ pusha(); // integer registers
// assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
// assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
__ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
#ifdef ASSERT
__ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
#endif
if (save_fpu_registers) {
if (UseSSE < 2) {
// save FPU stack
__ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
__ fwait();
#ifdef ASSERT
Label ok;
__ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
__ jccb(Assembler::equal, ok);
__ stop("corrupted control word detected");
__ bind(ok);
#endif
// Reset the control word to guard against exceptions being unmasked
// since fstp_d can cause FPU stack underflow exceptions. Write it
// into the on stack copy and then reload that to make sure that the
// current and future values are correct.
__ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
__ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
// Save the FPU registers in de-opt-able form
__ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0));
__ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8));
__ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
__ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
__ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
__ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
__ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
__ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
}
if (UseSSE >= 2) {
// save XMM registers
// XMM registers can contain float or double values, but this is not known here,
// so always save them as doubles.
// note that float values are _not_ converted automatically, so for float values
// the second word contains only garbage data.
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0), xmm0);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8), xmm1);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
#ifdef _LP64
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
__ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
#endif // _LP64
} else if (UseSSE == 1) {
// save XMM registers as float because double not supported without SSE2
__ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0), xmm0);
__ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8), xmm1);
__ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
__ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
__ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
__ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
__ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
__ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
}
}
// FPU stack must be empty now
__ verify_FPU(0, "save_live_registers");
return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
}
static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
if (restore_fpu_registers) {
if (UseSSE >= 2) {
// restore XMM registers
__ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0));
__ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8));
__ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
__ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
__ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
__ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
__ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
__ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
#ifdef _LP64
__ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
__ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
__ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
__ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
__ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
__ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
__ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
__ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
#endif // _LP64
} else if (UseSSE == 1) {
// restore XMM registers
__ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0));
__ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8));
__ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
__ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
__ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
__ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
__ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
__ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
}
if (UseSSE < 2) {
__ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
} else {
// check that FPU stack is really empty
__ verify_FPU(0, "restore_live_registers");
}
} else {
// check that FPU stack is really empty
__ verify_FPU(0, "restore_live_registers");
}
#ifdef ASSERT
{
Label ok;
__ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
__ jcc(Assembler::equal, ok);
__ stop("bad offsets in frame");
__ bind(ok);
}
#endif // ASSERT
__ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
}
static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
__ block_comment("restore_live_registers");
restore_fpu(sasm, restore_fpu_registers);
__ popa();
}
static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
__ block_comment("restore_live_registers_except_rax");
restore_fpu(sasm, restore_fpu_registers);
#ifdef _LP64
__ movptr(r15, Address(rsp, 0));
__ movptr(r14, Address(rsp, wordSize));
__ movptr(r13, Address(rsp, 2 * wordSize));
__ movptr(r12, Address(rsp, 3 * wordSize));
__ movptr(r11, Address(rsp, 4 * wordSize));
__ movptr(r10, Address(rsp, 5 * wordSize));
__ movptr(r9, Address(rsp, 6 * wordSize));
__ movptr(r8, Address(rsp, 7 * wordSize));
__ movptr(rdi, Address(rsp, 8 * wordSize));
__ movptr(rsi, Address(rsp, 9 * wordSize));
__ movptr(rbp, Address(rsp, 10 * wordSize));
// skip rsp
__ movptr(rbx, Address(rsp, 12 * wordSize));
__ movptr(rdx, Address(rsp, 13 * wordSize));
__ movptr(rcx, Address(rsp, 14 * wordSize));
__ addptr(rsp, 16 * wordSize);
#else
__ pop(rdi);
__ pop(rsi);
__ pop(rbp);
__ pop(rbx); // skip this value
__ pop(rbx);
__ pop(rdx);
__ pop(rcx);
__ addptr(rsp, BytesPerWord);
#endif // _LP64
}
void Runtime1::initialize_pd() {
// nothing to do
}
// target: the entry point of the method that creates and posts the exception oop
// has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
// preserve all registers
int num_rt_args = has_argument ? 2 : 1;
OopMap* oop_map = save_live_registers(sasm, num_rt_args);
// now all registers are saved and can be used freely
// verify that no old value is used accidentally
__ invalidate_registers(true, true, true, true, true, true);
// registers used by this stub
const Register temp_reg = rbx;
// load argument for exception that is passed as an argument into the stub
if (has_argument) {
#ifdef _LP64
__ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
#else
__ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
__ push(temp_reg);
#endif // _LP64
}
int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
__ stop("should not reach here");
return oop_maps;
}
OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
__ block_comment("generate_handle_exception");
// incoming parameters
const Register exception_oop = rax;
const Register exception_pc = rdx;
// other registers used in this stub
const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
// Save registers, if required.
OopMapSet* oop_maps = new OopMapSet();
OopMap* oop_map = NULL;
switch (id) {
case forward_exception_id:
// We're handling an exception in the context of a compiled frame.
// The registers have been saved in the standard places. Perform
// an exception lookup in the caller and dispatch to the handler
// if found. Otherwise unwind and dispatch to the callers
// exception handler.
oop_map = generate_oop_map(sasm, 1 /*thread*/);
// load and clear pending exception oop into RAX
__ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
__ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
// load issuing PC (the return address for this stub) into rdx
__ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
// make sure that the vm_results are cleared (may be unnecessary)
__ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
__ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
break;
case handle_exception_nofpu_id:
case handle_exception_id:
// At this point all registers MAY be live.
oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
break;
case handle_exception_from_callee_id: {
// At this point all registers except exception oop (RAX) and
// exception pc (RDX) are dead.
const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
sasm->set_frame_size(frame_size);
WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
break;
}
default: ShouldNotReachHere();
}
#ifdef TIERED
// C2 can leave the fpu stack dirty
if (UseSSE < 2) {
__ empty_FPU_stack();
}
#endif // TIERED
// verify that only rax, and rdx is valid at this time
__ invalidate_registers(false, true, true, false, true, true);
// verify that rax, contains a valid exception
__ verify_not_null_oop(exception_oop);
// load address of JavaThread object for thread-local data
NOT_LP64(__ get_thread(thread);)
#ifdef ASSERT
// check that fields in JavaThread for exception oop and issuing pc are
// empty before writing to them
Label oop_empty;
__ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
__ jcc(Assembler::equal, oop_empty);
__ stop("exception oop already set");
__ bind(oop_empty);
Label pc_empty;
__ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
__ jcc(Assembler::equal, pc_empty);
__ stop("exception pc already set");
__ bind(pc_empty);
#endif
// save exception oop and issuing pc into JavaThread
// (exception handler will load it from here)
__ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
__ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc);
// patch throwing pc into return address (has bci & oop map)
__ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
// compute the exception handler.
// the exception oop and the throwing pc are read from the fields in JavaThread
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
oop_maps->add_gc_map(call_offset, oop_map);
// rax: handler address
// will be the deopt blob if nmethod was deoptimized while we looked up
// handler regardless of whether handler existed in the nmethod.
// only rax, is valid at this time, all other registers have been destroyed by the runtime call
__ invalidate_registers(false, true, true, true, true, true);
// patch the return address, this stub will directly return to the exception handler
__ movptr(Address(rbp, 1*BytesPerWord), rax);
switch (id) {
case forward_exception_id:
case handle_exception_nofpu_id:
case handle_exception_id:
// Restore the registers that were saved at the beginning.
restore_live_registers(sasm, id != handle_exception_nofpu_id);
break;
case handle_exception_from_callee_id:
// WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
// since we do a leave anyway.
// Pop the return address.
__ leave();
__ pop(rcx);
__ jmp(rcx); // jump to exception handler
break;
default: ShouldNotReachHere();
}
return oop_maps;
}
void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
// incoming parameters
const Register exception_oop = rax;
// callee-saved copy of exception_oop during runtime call
const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
// other registers used in this stub
const Register exception_pc = rdx;
const Register handler_addr = rbx;
const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
// verify that only rax, is valid at this time
__ invalidate_registers(false, true, true, true, true, true);
#ifdef ASSERT
// check that fields in JavaThread for exception oop and issuing pc are empty
NOT_LP64(__ get_thread(thread);)
Label oop_empty;
__ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
__ jcc(Assembler::equal, oop_empty);
__ stop("exception oop must be empty");
__ bind(oop_empty);
Label pc_empty;
__ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
__ jcc(Assembler::equal, pc_empty);
__ stop("exception pc must be empty");
__ bind(pc_empty);
#endif
// clear the FPU stack in case any FPU results are left behind
__ empty_FPU_stack();
// save exception_oop in callee-saved register to preserve it during runtime calls
__ verify_not_null_oop(exception_oop);
__ movptr(exception_oop_callee_saved, exception_oop);
NOT_LP64(__ get_thread(thread);)
// Get return address (is on top of stack after leave).
__ movptr(exception_pc, Address(rsp, 0));
// search the exception handler address of the caller (using the return address)
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
// rax: exception handler address of the caller
// Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
__ invalidate_registers(false, true, true, true, false, true);
// move result of call into correct register
__ movptr(handler_addr, rax);
// Restore exception oop to RAX (required convention of exception handler).
__ movptr(exception_oop, exception_oop_callee_saved);
// verify that there is really a valid exception in rax
__ verify_not_null_oop(exception_oop);
// get throwing pc (= return address).
// rdx has been destroyed by the call, so it must be set again
// the pop is also necessary to simulate the effect of a ret(0)
__ pop(exception_pc);
// continue at exception handler (return address removed)
// note: do *not* remove arguments when unwinding the
// activation since the caller assumes having
// all arguments on the stack when entering the
// runtime to determine the exception handler
// (GC happens at call site with arguments!)
// rax: exception oop
// rdx: throwing pc
// rbx: exception handler
__ jmp(handler_addr);
}
OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
// use the maximum number of runtime-arguments here because it is difficult to
// distinguish each RT-Call.
// Note: This number affects also the RT-Call in generate_handle_exception because
// the oop-map is shared for all calls.
const int num_rt_args = 2; // thread + dummy
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
OopMap* oop_map = save_live_registers(sasm, num_rt_args);
#ifdef _LP64
const Register thread = r15_thread;
// No need to worry about dummy
__ mov(c_rarg0, thread);
#else
__ push(rax); // push dummy
const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
// push java thread (becomes first argument of C function)
__ get_thread(thread);
__ push(thread);
#endif // _LP64
__ set_last_Java_frame(thread, noreg, rbp, NULL);
// do the call
__ call(RuntimeAddress(target));
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(__ offset(), oop_map);
// verify callee-saved register
#ifdef ASSERT
guarantee(thread != rax, "change this code");
__ push(rax);
{ Label L;
__ get_thread(rax);
__ cmpptr(thread, rax);
__ jcc(Assembler::equal, L);
__ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
__ bind(L);
}
__ pop(rax);
#endif
__ reset_last_Java_frame(thread, true, false);
#ifndef _LP64
__ pop(rcx); // discard thread arg
__ pop(rcx); // discard dummy
#endif // _LP64
// check for pending exceptions
{ Label L;
__ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
// exception pending => remove activation and forward to exception handler
__ testptr(rax, rax); // have we deoptimized?
__ jump_cc(Assembler::equal,
RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
// the deopt blob expects exceptions in the special fields of
// JavaThread, so copy and clear pending exception.
// load and clear pending exception
__ movptr(rax, Address(thread, Thread::pending_exception_offset()));
__ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
// check that there is really a valid exception
__ verify_not_null_oop(rax);
// load throwing pc: this is the return address of the stub
__ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
#ifdef ASSERT
// check that fields in JavaThread for exception oop and issuing pc are empty
Label oop_empty;
__ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, oop_empty);
__ stop("exception oop must be empty");
__ bind(oop_empty);
Label pc_empty;
__ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, pc_empty);
__ stop("exception pc must be empty");
__ bind(pc_empty);
#endif
// store exception oop and throwing pc to JavaThread
__ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
__ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
restore_live_registers(sasm);
__ leave();
__ addptr(rsp, BytesPerWord); // remove return address from stack
// Forward the exception directly to deopt blob. We can blow no
// registers and must leave throwing pc on the stack. A patch may
// have values live in registers so the entry point with the
// exception in tls.
__ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
__ bind(L);
}
// Runtime will return true if the nmethod has been deoptimized during
// the patching process. In that case we must do a deopt reexecute instead.
Label reexecuteEntry, cont;
__ testptr(rax, rax); // have we deoptimized?
__ jcc(Assembler::equal, cont); // no
// Will reexecute. Proper return address is already on the stack we just restore
// registers, pop all of our frame but the return address and jump to the deopt blob
restore_live_registers(sasm);
__ leave();
__ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
__ bind(cont);
restore_live_registers(sasm);
__ leave();
__ ret(0);
return oop_maps;
}
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
// for better readability
const bool must_gc_arguments = true;
const bool dont_gc_arguments = false;
// default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
bool save_fpu_registers = true;
// stub code & info for the different stubs
OopMapSet* oop_maps = NULL;
switch (id) {
case forward_exception_id:
{
oop_maps = generate_handle_exception(id, sasm);
__ leave();
__ ret(0);
}
break;
case new_instance_id:
case fast_new_instance_id:
case fast_new_instance_init_check_id:
{
Register klass = rdx; // Incoming
Register obj = rax; // Result
if (id == new_instance_id) {
__ set_info("new_instance", dont_gc_arguments);
} else if (id == fast_new_instance_id) {
__ set_info("fast new_instance", dont_gc_arguments);
} else {
assert(id == fast_new_instance_init_check_id, "bad StubID");
__ set_info("fast new_instance init check", dont_gc_arguments);
}
if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
UseTLAB && FastTLABRefill) {
Label slow_path;
Register obj_size = rcx;
Register t1 = rbx;
Register t2 = rsi;
assert_different_registers(klass, obj, obj_size, t1, t2);
__ push(rdi);
__ push(rbx);
if (id == fast_new_instance_init_check_id) {
// make sure the klass is initialized
__ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
__ jcc(Assembler::notEqual, slow_path);
}
#ifdef ASSERT
// assert object can be fast path allocated
{
Label ok, not_ok;
__ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
__ cmpl(obj_size, 0); // make sure it's an instance (LH > 0)
__ jcc(Assembler::lessEqual, not_ok);
__ testl(obj_size, Klass::_lh_instance_slow_path_bit);
__ jcc(Assembler::zero, ok);
__ bind(not_ok);
__ stop("assert(can be fast path allocated)");
__ should_not_reach_here();
__ bind(ok);
}
#endif // ASSERT
// if we got here then the TLAB allocation failed, so try
// refilling the TLAB or allocating directly from eden.
Label retry_tlab, try_eden;
const Register thread =
__ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
__ bind(retry_tlab);
// get the instance size (size is postive so movl is fine for 64bit)
__ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
__ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
__ initialize_object(obj, klass, obj_size, 0, t1, t2);
__ verify_oop(obj);
__ pop(rbx);
__ pop(rdi);
__ ret(0);
__ bind(try_eden);
// get the instance size (size is postive so movl is fine for 64bit)
__ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
__ eden_allocate(obj, obj_size, 0, t1, slow_path);
__ incr_allocated_bytes(thread, obj_size, 0);
__ initialize_object(obj, klass, obj_size, 0, t1, t2);
__ verify_oop(obj);
__ pop(rbx);
__ pop(rdi);
__ ret(0);
__ bind(slow_path);
__ pop(rbx);
__ pop(rdi);
}
__ enter();
OopMap* map = save_live_registers(sasm, 2);
int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_rax(sasm);
__ verify_oop(obj);
__ leave();
__ ret(0);
// rax,: new instance
}
break;
case counter_overflow_id:
{
Register bci = rax, method = rbx;
__ enter();
OopMap* map = save_live_registers(sasm, 3);
// Retrieve bci
__ movl(bci, Address(rbp, 2*BytesPerWord));
// And a pointer to the Method*
__ movptr(method, Address(rbp, 3*BytesPerWord));
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm);
__ leave();
__ ret(0);
}
break;
case new_type_array_id:
case new_object_array_id:
{
Register length = rbx; // Incoming
Register klass = rdx; // Incoming
Register obj = rax; // Result
if (id == new_type_array_id) {
__ set_info("new_type_array", dont_gc_arguments);
} else {
__ set_info("new_object_array", dont_gc_arguments);
}
#ifdef ASSERT
// assert object type is really an array of the proper kind
{
Label ok;
Register t0 = obj;
__ movl(t0, Address(klass, Klass::layout_helper_offset()));
__ sarl(t0, Klass::_lh_array_tag_shift);
int tag = ((id == new_type_array_id)
? Klass::_lh_array_tag_type_value
: Klass::_lh_array_tag_obj_value);
__ cmpl(t0, tag);
__ jcc(Assembler::equal, ok);
__ stop("assert(is an array klass)");
__ should_not_reach_here();
__ bind(ok);
}
#endif // ASSERT
if (UseTLAB && FastTLABRefill) {
Register arr_size = rsi;
Register t1 = rcx; // must be rcx for use as shift count
Register t2 = rdi;
Label slow_path;
assert_different_registers(length, klass, obj, arr_size, t1, t2);
// check that array length is small enough for fast path.
__ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
__ jcc(Assembler::above, slow_path);
// if we got here then the TLAB allocation failed, so try
// refilling the TLAB or allocating directly from eden.
Label retry_tlab, try_eden;
const Register thread =
__ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
__ bind(retry_tlab);
// get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
// since size is positive movl does right thing on 64bit
__ movl(t1, Address(klass, Klass::layout_helper_offset()));
// since size is postive movl does right thing on 64bit
__ movl(arr_size, length);
assert(t1 == rcx, "fixed register usage");
__ shlptr(arr_size /* by t1=rcx, mod 32 */);
__ shrptr(t1, Klass::_lh_header_size_shift);
__ andptr(t1, Klass::_lh_header_size_mask);
__ addptr(arr_size, t1);
__ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
__ andptr(arr_size, ~MinObjAlignmentInBytesMask);
__ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path); // preserves arr_size
__ initialize_header(obj, klass, length, t1, t2);
__ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
__ andptr(t1, Klass::_lh_header_size_mask);
__ subptr(arr_size, t1); // body length
__ addptr(t1, obj); // body start
__ initialize_body(t1, arr_size, 0, t2);
__ verify_oop(obj);
__ ret(0);
__ bind(try_eden);
// get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
// since size is positive movl does right thing on 64bit
__ movl(t1, Address(klass, Klass::layout_helper_offset()));
// since size is postive movl does right thing on 64bit
__ movl(arr_size, length);
assert(t1 == rcx, "fixed register usage");
__ shlptr(arr_size /* by t1=rcx, mod 32 */);
__ shrptr(t1, Klass::_lh_header_size_shift);
__ andptr(t1, Klass::_lh_header_size_mask);
__ addptr(arr_size, t1);
__ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
__ andptr(arr_size, ~MinObjAlignmentInBytesMask);
__ eden_allocate(obj, arr_size, 0, t1, slow_path); // preserves arr_size
__ incr_allocated_bytes(thread, arr_size, 0);
__ initialize_header(obj, klass, length, t1, t2);
__ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
__ andptr(t1, Klass::_lh_header_size_mask);
__ subptr(arr_size, t1); // body length
__ addptr(t1, obj); // body start
__ initialize_body(t1, arr_size, 0, t2);
__ verify_oop(obj);
__ ret(0);
__ bind(slow_path);
}
__ enter();
OopMap* map = save_live_registers(sasm, 3);
int call_offset;
if (id == new_type_array_id) {
call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
} else {
call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
}
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_rax(sasm);
__ verify_oop(obj);
__ leave();
__ ret(0);
// rax,: new array
}
break;
case new_multi_array_id:
{ StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
// rax,: klass
// rbx,: rank
// rcx: address of 1st dimension
OopMap* map = save_live_registers(sasm, 4);
int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_rax(sasm);
// rax,: new multi array
__ verify_oop(rax);
}
break;
case register_finalizer_id:
{
__ set_info("register_finalizer", dont_gc_arguments);
// This is called via call_runtime so the arguments
// will be place in C abi locations
#ifdef _LP64
__ verify_oop(c_rarg0);
__ mov(rax, c_rarg0);
#else
// The object is passed on the stack and we haven't pushed a
// frame yet so it's one work away from top of stack.
__ movptr(rax, Address(rsp, 1 * BytesPerWord));
__ verify_oop(rax);
#endif // _LP64
// load the klass and check the has finalizer flag
Label register_finalizer;
Register t = rsi;
__ load_klass(t, rax);
__ movl(t, Address(t, Klass::access_flags_offset()));
__ testl(t, JVM_ACC_HAS_FINALIZER);
__ jcc(Assembler::notZero, register_finalizer);
__ ret(0);
__ bind(register_finalizer);
__ enter();
OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
// Now restore all the live registers
restore_live_registers(sasm);
__ leave();
__ ret(0);
}
break;
case throw_range_check_failed_id:
{ StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
}
break;
case throw_index_exception_id:
{ StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
}
break;
case throw_div0_exception_id:
{ StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
}
break;
case throw_null_pointer_exception_id:
{ StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
}
break;
case handle_exception_nofpu_id:
case handle_exception_id:
{ StubFrame f(sasm, "handle_exception", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case handle_exception_from_callee_id:
{ StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case unwind_exception_id:
{ __ set_info("unwind_exception", dont_gc_arguments);
// note: no stubframe since we are about to leave the current
// activation and we are calling a leaf VM function only.
generate_unwind_exception(sasm);
}
break;
case throw_array_store_exception_id:
{ StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
// tos + 0: link
// + 1: return address
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
}
break;
case throw_class_cast_exception_id:
{ StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
}
break;
case throw_incompatible_class_change_error_id:
{ StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
}
break;
case slow_subtype_check_id:
{
// Typical calling sequence:
// __ push(klass_RInfo); // object klass or other subclass
// __ push(sup_k_RInfo); // array element klass or other superclass
// __ call(slow_subtype_check);
// Note that the subclass is pushed first, and is therefore deepest.
// Previous versions of this code reversed the names 'sub' and 'super'.
// This was operationally harmless but made the code unreadable.
enum layout {
rax_off, SLOT2(raxH_off)
rcx_off, SLOT2(rcxH_off)
rsi_off, SLOT2(rsiH_off)
rdi_off, SLOT2(rdiH_off)
// saved_rbp_off, SLOT2(saved_rbpH_off)
return_off, SLOT2(returnH_off)
sup_k_off, SLOT2(sup_kH_off)
klass_off, SLOT2(superH_off)
framesize,
result_off = klass_off // deepest argument is also the return value
};
__ set_info("slow_subtype_check", dont_gc_arguments);
__ push(rdi);
__ push(rsi);
__ push(rcx);
__ push(rax);
// This is called by pushing args and not with C abi
__ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
__ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
Label miss;
__ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
// fallthrough on success:
__ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
__ pop(rax);
__ pop(rcx);
__ pop(rsi);
__ pop(rdi);
__ ret(0);
__ bind(miss);
__ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
__ pop(rax);
__ pop(rcx);
__ pop(rsi);
__ pop(rdi);
__ ret(0);
}
break;
case monitorenter_nofpu_id:
save_fpu_registers = false;
// fall through
case monitorenter_id:
{
StubFrame f(sasm, "monitorenter", dont_gc_arguments);
OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
// Called with store_parameter and not C abi
f.load_argument(1, rax); // rax,: object
f.load_argument(0, rbx); // rbx,: lock address
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm, save_fpu_registers);
}
break;
case monitorexit_nofpu_id:
save_fpu_registers = false;
// fall through
case monitorexit_id:
{
StubFrame f(sasm, "monitorexit", dont_gc_arguments);
OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
// Called with store_parameter and not C abi
f.load_argument(0, rax); // rax,: lock address
// note: really a leaf routine but must setup last java sp
// => use call_RT for now (speed can be improved by
// doing last java sp setup manually)
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm, save_fpu_registers);
}
break;
case deoptimize_id:
{
StubFrame f(sasm, "deoptimize", dont_gc_arguments);
const int num_rt_args = 2; // thread, trap_request
OopMap* oop_map = save_live_registers(sasm, num_rt_args);
f.load_argument(0, rax);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ leave();
__ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
}
break;
case access_field_patching_id:
{ StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
}
break;
case load_klass_patching_id:
{ StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
}
break;
case load_mirror_patching_id:
{ StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
}
break;
case load_appendix_patching_id:
{ StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
}
break;
case dtrace_object_alloc_id:
{ // rax,: object
StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
// we can't gc here so skip the oopmap but make sure that all
// the live registers get saved.
save_live_registers(sasm, 1);
__ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
NOT_LP64(__ pop(rax));
restore_live_registers(sasm);
}
break;
case fpu2long_stub_id:
{
// rax, and rdx are destroyed, but should be free since the result is returned there
// preserve rsi,ecx
__ push(rsi);
__ push(rcx);
LP64_ONLY(__ push(rdx);)
// check for NaN
Label return0, do_return, return_min_jlong, do_convert;
Address value_high_word(rsp, wordSize + 4);
Address value_low_word(rsp, wordSize);
Address result_high_word(rsp, 3*wordSize + 4);
Address result_low_word(rsp, 3*wordSize);
__ subptr(rsp, 32); // more than enough on 32bit
__ fst_d(value_low_word);
__ movl(rax, value_high_word);
__ andl(rax, 0x7ff00000);
__ cmpl(rax, 0x7ff00000);
__ jcc(Assembler::notEqual, do_convert);
__ movl(rax, value_high_word);
__ andl(rax, 0xfffff);
__ orl(rax, value_low_word);
__ jcc(Assembler::notZero, return0);
__ bind(do_convert);
__ fnstcw(Address(rsp, 0));
__ movzwl(rax, Address(rsp, 0));
__ orl(rax, 0xc00);
__ movw(Address(rsp, 2), rax);
__ fldcw(Address(rsp, 2));
__ fwait();
__ fistp_d(result_low_word);
__ fldcw(Address(rsp, 0));
__ fwait();
// This gets the entire long in rax on 64bit
__ movptr(rax, result_low_word);
// testing of high bits
__ movl(rdx, result_high_word);
__ mov(rcx, rax);
// What the heck is the point of the next instruction???
__ xorl(rcx, 0x0);
__ movl(rsi, 0x80000000);
__ xorl(rsi, rdx);
__ orl(rcx, rsi);
__ jcc(Assembler::notEqual, do_return);
__ fldz();
__ fcomp_d(value_low_word);
__ fnstsw_ax();
#ifdef _LP64
__ testl(rax, 0x4100); // ZF & CF == 0
__ jcc(Assembler::equal, return_min_jlong);
#else
__ sahf();
__ jcc(Assembler::above, return_min_jlong);
#endif // _LP64
// return max_jlong
#ifndef _LP64
__ movl(rdx, 0x7fffffff);
__ movl(rax, 0xffffffff);
#else
__ mov64(rax, CONST64(0x7fffffffffffffff));
#endif // _LP64
__ jmp(do_return);
__ bind(return_min_jlong);
#ifndef _LP64
__ movl(rdx, 0x80000000);
__ xorl(rax, rax);
#else
__ mov64(rax, UCONST64(0x8000000000000000));
#endif // _LP64
__ jmp(do_return);
__ bind(return0);
__ fpop();
#ifndef _LP64
__ xorptr(rdx,rdx);
__ xorptr(rax,rax);
#else
__ xorptr(rax, rax);
#endif // _LP64
__ bind(do_return);
__ addptr(rsp, 32);
LP64_ONLY(__ pop(rdx);)
__ pop(rcx);
__ pop(rsi);
__ ret(0);
}
break;
#if INCLUDE_ALL_GCS
case g1_pre_barrier_slow_id:
{
StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
// arg0 : previous value of memory
BarrierSet* bs = Universe::heap()->barrier_set();
if (bs->kind() != BarrierSet::G1SATBCTLogging) {
__ movptr(rax, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
__ should_not_reach_here();
break;
}
__ push(rax);
__ push(rdx);
const Register pre_val = rax;
const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
const Register tmp = rdx;
NOT_LP64(__ get_thread(thread);)
Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_buf()));
Label done;
Label runtime;
// Can we store original value in the thread's buffer?
__ movptr(tmp, queue_index);
__ testptr(tmp, tmp);
__ jcc(Assembler::zero, runtime);
__ subptr(tmp, wordSize);
__ movptr(queue_index, tmp);
__ addptr(tmp, buffer);
// prev_val (rax)
f.load_argument(0, pre_val);
__ movptr(Address(tmp, 0), pre_val);
__ jmp(done);
__ bind(runtime);
__ push(rcx);
#ifdef _LP64
__ push(r8);
__ push(r9);
__ push(r10);
__ push(r11);
# ifndef _WIN64
__ push(rdi);
__ push(rsi);
# endif
#endif
// load the pre-value
f.load_argument(0, rcx);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
#ifdef _LP64
# ifndef _WIN64
__ pop(rsi);
__ pop(rdi);
# endif
__ pop(r11);
__ pop(r10);
__ pop(r9);
__ pop(r8);
#endif
__ pop(rcx);
__ bind(done);
__ pop(rdx);
__ pop(rax);
}
break;
case g1_post_barrier_slow_id:
{
StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
// arg0: store_address
Address store_addr(rbp, 2*BytesPerWord);
CardTableModRefBS* ct =
barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
Label done;
Label enqueued;
Label runtime;
// At this point we know new_value is non-NULL and the new_value crosses regions.
// Must check to see if card is already dirty
const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_buf()));
__ push(rax);
__ push(rcx);
const Register cardtable = rax;
const Register card_addr = rcx;
f.load_argument(0, card_addr);
__ shrptr(card_addr, CardTableModRefBS::card_shift);
// Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
// a valid address and therefore is not properly handled by the relocation code.
__ movptr(cardtable, (intptr_t)ct->byte_map_base);
__ addptr(card_addr, cardtable);
NOT_LP64(__ get_thread(thread);)
__ cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
__ jcc(Assembler::equal, done);
__ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
__ cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
__ jcc(Assembler::equal, done);
// storing region crossing non-NULL, card is clean.
// dirty card and log.
__ movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
const Register tmp = rdx;
__ push(rdx);
__ movptr(tmp, queue_index);
__ testptr(tmp, tmp);
__ jcc(Assembler::zero, runtime);
__ subptr(tmp, wordSize);
__ movptr(queue_index, tmp);
__ addptr(tmp, buffer);
__ movptr(Address(tmp, 0), card_addr);
__ jmp(enqueued);
__ bind(runtime);
#ifdef _LP64
__ push(r8);
__ push(r9);
__ push(r10);
__ push(r11);
# ifndef _WIN64
__ push(rdi);
__ push(rsi);
# endif
#endif
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
#ifdef _LP64
# ifndef _WIN64
__ pop(rsi);
__ pop(rdi);
# endif
__ pop(r11);
__ pop(r10);
__ pop(r9);
__ pop(r8);
#endif
__ bind(enqueued);
__ pop(rdx);
__ bind(done);
__ pop(rcx);
__ pop(rax);
}
break;
#endif // INCLUDE_ALL_GCS
case predicate_failed_trap_id:
{
StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
OopMap* map = save_live_registers(sasm, 1);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm);
__ leave();
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
}
break;
default:
{ StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
__ movptr(rax, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
__ should_not_reach_here();
}
break;
}
return oop_maps;
}
#undef __
const char *Runtime1::pd_name_for_address(address entry) {
return "<unknown function>";
}