8175085: [REDO] G1 Needs pre barrier on dereference of weak JNI handles
Reviewed-by: kbarrett, dcubed, tschatzl
/*
* Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_ARM_VM_MACROASSEMBLER_ARM_HPP
#define CPU_ARM_VM_MACROASSEMBLER_ARM_HPP
#include "code/relocInfo.hpp"
#include "code/relocInfo_ext.hpp"
class BiasedLockingCounters;
// Introduced AddressLiteral and its subclasses to ease portability from
// x86 and avoid relocation issues
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
RelocationHolder _rspec;
// Typically we use AddressLiterals we want to use their rval
// However in some situations we want the lval (effect address) of the item.
// We provide a special factory for making those lvals.
bool _is_lval;
address _target;
private:
static relocInfo::relocType reloc_for_target(address target) {
// Used for ExternalAddress or when the type is not specified
// Sometimes ExternalAddress is used for values which aren't
// exactly addresses, like the card table base.
// external_word_type can't be used for values in the first page
// so just skip the reloc in that case.
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
}
void set_rspec(relocInfo::relocType rtype);
protected:
// creation
AddressLiteral()
: _is_lval(false),
_target(NULL)
{}
public:
AddressLiteral(address target, relocInfo::relocType rtype) {
_is_lval = false;
_target = target;
set_rspec(rtype);
}
AddressLiteral(address target, RelocationHolder const& rspec)
: _rspec(rspec),
_is_lval(false),
_target(target)
{}
AddressLiteral(address target) {
_is_lval = false;
_target = target;
set_rspec(reloc_for_target(target));
}
AddressLiteral addr() {
AddressLiteral ret = *this;
ret._is_lval = true;
return ret;
}
private:
address target() { return _target; }
bool is_lval() { return _is_lval; }
relocInfo::relocType reloc() const { return _rspec.type(); }
const RelocationHolder& rspec() const { return _rspec; }
friend class Assembler;
friend class MacroAssembler;
friend class Address;
friend class LIR_Assembler;
friend class InlinedAddress;
};
class ExternalAddress: public AddressLiteral {
public:
ExternalAddress(address target) : AddressLiteral(target) {}
};
class InternalAddress: public AddressLiteral {
public:
InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
};
// Inlined constants, for use with ldr_literal / bind_literal
// Note: InlinedInteger not supported (use move_slow(Register,int[,cond]))
class InlinedLiteral: StackObj {
public:
Label label; // need to be public for direct access with &
InlinedLiteral() {
}
};
class InlinedMetadata: public InlinedLiteral {
private:
Metadata *_data;
public:
InlinedMetadata(Metadata *data): InlinedLiteral() {
_data = data;
}
Metadata *data() { return _data; }
};
// Currently unused
// class InlinedOop: public InlinedLiteral {
// private:
// jobject _jobject;
//
// public:
// InlinedOop(jobject target): InlinedLiteral() {
// _jobject = target;
// }
// jobject jobject() { return _jobject; }
// };
class InlinedAddress: public InlinedLiteral {
private:
AddressLiteral _literal;
public:
InlinedAddress(jobject object): InlinedLiteral(), _literal((address)object, relocInfo::oop_type) {
ShouldNotReachHere(); // use mov_oop (or implement InlinedOop)
}
InlinedAddress(Metadata *data): InlinedLiteral(), _literal((address)data, relocInfo::metadata_type) {
ShouldNotReachHere(); // use InlinedMetadata or mov_metadata
}
InlinedAddress(address target, const RelocationHolder &rspec): InlinedLiteral(), _literal(target, rspec) {
assert(rspec.type() != relocInfo::oop_type, "Do not use InlinedAddress for oops");
assert(rspec.type() != relocInfo::metadata_type, "Do not use InlinedAddress for metadatas");
}
InlinedAddress(address target, relocInfo::relocType rtype): InlinedLiteral(), _literal(target, rtype) {
assert(rtype != relocInfo::oop_type, "Do not use InlinedAddress for oops");
assert(rtype != relocInfo::metadata_type, "Do not use InlinedAddress for metadatas");
}
// Note: default is relocInfo::none for InlinedAddress
InlinedAddress(address target): InlinedLiteral(), _literal(target, relocInfo::none) {
}
address target() { return _literal.target(); }
const RelocationHolder& rspec() const { return _literal.rspec(); }
};
class InlinedString: public InlinedLiteral {
private:
const char* _msg;
public:
InlinedString(const char* msg): InlinedLiteral() {
_msg = msg;
}
const char* msg() { return _msg; }
};
class MacroAssembler: public Assembler {
protected:
// Support for VM calls
//
// This is the base routine called by the different versions of call_VM_leaf.
void call_VM_leaf_helper(address entry_point, int number_of_arguments);
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
virtual void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions);
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
// The implementation is only non-empty for the InterpreterMacroAssembler,
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
virtual void check_and_handle_popframe() {}
virtual void check_and_handle_earlyret() {}
public:
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
// By default, we do not need relocation information for non
// patchable absolute addresses. However, when needed by some
// extensions, ignore_non_patchable_relocations can be modified,
// returning false to preserve all relocation information.
inline bool ignore_non_patchable_relocations() { return true; }
// Initially added to the Assembler interface as a pure virtual:
// RegisterConstant delayed_value(..)
// for:
// 6812678 macro assembler needs delayed binding of a few constants (for 6655638)
// this was subsequently modified to its present name and return type
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
#ifdef AARCH64
# define NOT_IMPLEMENTED() unimplemented("NYI at " __FILE__ ":" XSTR(__LINE__))
# define NOT_TESTED() warn("Not tested at " __FILE__ ":" XSTR(__LINE__))
#endif
void align(int modulus);
// Support for VM calls
//
// It is imperative that all calls into the VM are handled via the call_VM methods.
// They make sure that the stack linkage is setup correctly. call_VM's correspond
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
// The following methods are required by templateTable.cpp,
// but not used on ARM.
void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
// Note: The super_call_VM calls are not used on ARM
// Raw call, without saving/restoring registers, exception handling, etc.
// Mainly used from various stubs.
// Note: if 'save_R9_if_scratched' is true, call_VM may on some
// platforms save values on the stack. Set it to false (and handle
// R9 in the callers) if the top of the stack must not be modified
// by call_VM.
void call_VM(address entry_point, bool save_R9_if_scratched);
void call_VM_leaf(address entry_point);
void call_VM_leaf(address entry_point, Register arg_1);
void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
void get_vm_result(Register oop_result, Register tmp);
void get_vm_result_2(Register metadata_result, Register tmp);
// Always sets/resets sp, which default to SP if (last_sp == noreg)
// Optionally sets/resets fp (use noreg to avoid setting it)
// Always sets/resets pc on AArch64; optionally sets/resets pc on 32-bit ARM depending on save_last_java_pc flag
// Note: when saving PC, set_last_Java_frame returns PC's offset in the code section
// (for oop_maps offset computation)
int set_last_Java_frame(Register last_sp, Register last_fp, bool save_last_java_pc, Register tmp);
void reset_last_Java_frame(Register tmp);
// status set in set_last_Java_frame for reset_last_Java_frame
bool _fp_saved;
bool _pc_saved;
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) __ stop(error)
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#define STOP(error) __ block_comment(error); __ stop(error)
#endif
void lookup_virtual_method(Register recv_klass,
Register vtable_index,
Register method_result);
// Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow.
// One of the three labels can be NULL, meaning take the fall-through.
// No registers are killed, except temp_regs.
void check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp_reg2,
Label* L_success,
Label* L_failure,
Label* L_slow_path);
// The rest of the type check; must be wired to a corresponding fast path.
// It does not repeat the fast path logic, so don't use it standalone.
// temp_reg3 can be noreg, if no temps are available.
// Updates the sub's secondary super cache as necessary.
// If set_cond_codes:
// - condition codes will be Z on success, NZ on failure.
// - temp_reg will be 0 on success, non-0 on failure
void check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp_reg2,
Register temp_reg3, // auto assigned if noreg
Label* L_success,
Label* L_failure,
bool set_cond_codes = false);
// Simplified, combined version, good for typical uses.
// temp_reg3 can be noreg, if no temps are available. It is used only on slow path.
// Falls through on failure.
void check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp_reg2,
Register temp_reg3, // auto assigned on slow path if noreg
Label& L_success);
// Returns address of receiver parameter, using tmp as base register. tmp and params_count can be the same.
Address receiver_argument_address(Register params_base, Register params_count, Register tmp);
void _verify_oop(Register reg, const char* s, const char* file, int line);
void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
// TODO: verify method and klass metadata (compare against vptr?)
void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop ", __FILE__, __LINE__)
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
void null_check(Register reg, Register tmp, int offset = -1);
inline void null_check(Register reg) { null_check(reg, noreg, -1); } // for C1 lir_null_check
// Puts address of allocated object into register `obj` and end of allocated object into register `obj_end`.
void eden_allocate(Register obj, Register obj_end, Register tmp1, Register tmp2,
RegisterOrConstant size_expression, Label& slow_case);
void tlab_allocate(Register obj, Register obj_end, Register tmp1,
RegisterOrConstant size_expression, Label& slow_case);
void tlab_refill(Register top, Register tmp1, Register tmp2, Register tmp3, Register tmp4,
Label& try_eden, Label& slow_case);
void zero_memory(Register start, Register end, Register tmp);
void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register tmp);
static bool needs_explicit_null_check(intptr_t offset);
void arm_stack_overflow_check(int frame_size_in_bytes, Register tmp);
void arm_stack_overflow_check(Register Rsize, Register tmp);
void bang_stack_with_offset(int offset) {
ShouldNotReachHere();
}
// Biased locking support
// lock_reg and obj_reg must be loaded up with the appropriate values.
// swap_reg must be supplied.
// tmp_reg must be supplied.
// Optional slow case is for implementations (interpreter and C1) which branch to
// slow case directly. If slow_case is NULL, then leaves condition
// codes set (for C2's Fast_Lock node) and jumps to done label.
// Falls through for the fast locking attempt.
// Returns offset of first potentially-faulting instruction for null
// check info (currently consumed only by C1). If
// swap_reg_contains_mark is true then returns -1 as it is assumed
// the calling code has already passed any potential faults.
// Notes:
// - swap_reg and tmp_reg are scratched
// - Rtemp was (implicitly) scratched and can now be specified as the tmp2
int biased_locking_enter(Register obj_reg, Register swap_reg, Register tmp_reg,
bool swap_reg_contains_mark,
Register tmp2,
Label& done, Label& slow_case,
BiasedLockingCounters* counters = NULL);
void biased_locking_exit(Register obj_reg, Register temp_reg, Label& done);
// Building block for CAS cases of biased locking: makes CAS and records statistics.
// Optional slow_case label is used to transfer control if CAS fails. Otherwise leaves condition codes set.
void biased_locking_enter_with_cas(Register obj_reg, Register old_mark_reg, Register new_mark_reg,
Register tmp, Label& slow_case, int* counter_addr);
void resolve_jobject(Register value, Register tmp1, Register tmp2);
#if INCLUDE_ALL_GCS
// G1 pre-barrier.
// Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
// If store_addr != noreg, then previous value is loaded from [store_addr];
// in such case store_addr and new_val registers are preserved;
// otherwise pre_val register is preserved.
void g1_write_barrier_pre(Register store_addr,
Register new_val,
Register pre_val,
Register tmp1,
Register tmp2);
// G1 post-barrier.
// Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
void g1_write_barrier_post(Register store_addr,
Register new_val,
Register tmp1,
Register tmp2,
Register tmp3);
#endif // INCLUDE_ALL_GCS
#ifndef AARCH64
void nop() {
mov(R0, R0);
}
void push(Register rd, AsmCondition cond = al) {
assert(rd != SP, "unpredictable instruction");
str(rd, Address(SP, -wordSize, pre_indexed), cond);
}
void push(RegisterSet reg_set, AsmCondition cond = al) {
assert(!reg_set.contains(SP), "unpredictable instruction");
stmdb(SP, reg_set, writeback, cond);
}
void pop(Register rd, AsmCondition cond = al) {
assert(rd != SP, "unpredictable instruction");
ldr(rd, Address(SP, wordSize, post_indexed), cond);
}
void pop(RegisterSet reg_set, AsmCondition cond = al) {
assert(!reg_set.contains(SP), "unpredictable instruction");
ldmia(SP, reg_set, writeback, cond);
}
void fpushd(FloatRegister fd, AsmCondition cond = al) {
fstmdbd(SP, FloatRegisterSet(fd), writeback, cond);
}
void fpushs(FloatRegister fd, AsmCondition cond = al) {
fstmdbs(SP, FloatRegisterSet(fd), writeback, cond);
}
void fpopd(FloatRegister fd, AsmCondition cond = al) {
fldmiad(SP, FloatRegisterSet(fd), writeback, cond);
}
void fpops(FloatRegister fd, AsmCondition cond = al) {
fldmias(SP, FloatRegisterSet(fd), writeback, cond);
}
#endif // !AARCH64
// Order access primitives
enum Membar_mask_bits {
StoreStore = 1 << 3,
LoadStore = 1 << 2,
StoreLoad = 1 << 1,
LoadLoad = 1 << 0
};
#ifdef AARCH64
// tmp register is not used on AArch64, this parameter is provided solely for better compatibility with 32-bit ARM
void membar(Membar_mask_bits order_constraint, Register tmp = noreg);
#else
void membar(Membar_mask_bits mask,
Register tmp,
bool preserve_flags = true,
Register load_tgt = noreg);
#endif
void breakpoint(AsmCondition cond = al);
void stop(const char* msg);
// prints msg and continues
void warn(const char* msg);
void unimplemented(const char* what = "");
void should_not_reach_here() { stop("should not reach here"); }
static void debug(const char* msg, const intx* registers);
// Create a walkable frame to help tracking down who called this code.
// Returns the frame size in words.
int should_not_call_this() {
raw_push(FP, LR);
should_not_reach_here();
flush();
return 2; // frame_size_in_words (FP+LR)
}
int save_all_registers();
void restore_all_registers();
int save_caller_save_registers();
void restore_caller_save_registers();
void add_rc(Register dst, Register arg1, RegisterOrConstant arg2);
// add_slow and mov_slow are used to manipulate offsets larger than 1024,
// these functions are not expected to handle all possible constants,
// only those that can really occur during compilation
void add_slow(Register rd, Register rn, int c);
void sub_slow(Register rd, Register rn, int c);
#ifdef AARCH64
static int mov_slow_helper(Register rd, intptr_t c, MacroAssembler* masm /* optional */);
#endif
void mov_slow(Register rd, intptr_t c NOT_AARCH64_ARG(AsmCondition cond = al));
void mov_slow(Register rd, const char *string);
void mov_slow(Register rd, address addr);
void patchable_mov_oop(Register rd, jobject o, int oop_index) {
mov_oop(rd, o, oop_index AARCH64_ONLY_ARG(true));
}
void mov_oop(Register rd, jobject o, int index = 0
AARCH64_ONLY_ARG(bool patchable = false)
NOT_AARCH64_ARG(AsmCondition cond = al));
void patchable_mov_metadata(Register rd, Metadata* o, int index) {
mov_metadata(rd, o, index AARCH64_ONLY_ARG(true));
}
void mov_metadata(Register rd, Metadata* o, int index = 0 AARCH64_ONLY_ARG(bool patchable = false));
void mov_float(FloatRegister fd, jfloat c NOT_AARCH64_ARG(AsmCondition cond = al));
void mov_double(FloatRegister fd, jdouble c NOT_AARCH64_ARG(AsmCondition cond = al));
#ifdef AARCH64
int mov_pc_to(Register rd) {
Label L;
adr(rd, L);
bind(L);
return offset();
}
#endif
// Note: this variant of mov_address assumes the address moves with
// the code. Do *not* implement it with non-relocated instructions,
// unless PC-relative.
#ifdef AARCH64
void mov_relative_address(Register rd, address addr) {
adr(rd, addr);
}
#else
void mov_relative_address(Register rd, address addr, AsmCondition cond = al) {
int offset = addr - pc() - 8;
assert((offset & 3) == 0, "bad alignment");
if (offset >= 0) {
assert(AsmOperand::is_rotated_imm(offset), "addr too far");
add(rd, PC, offset, cond);
} else {
assert(AsmOperand::is_rotated_imm(-offset), "addr too far");
sub(rd, PC, -offset, cond);
}
}
#endif // AARCH64
// Runtime address that may vary from one execution to another. The
// symbolic_reference describes what the address is, allowing
// the address to be resolved in a different execution context.
// Warning: do not implement as a PC relative address.
void mov_address(Register rd, address addr, symbolic_Relocation::symbolic_reference t) {
mov_address(rd, addr, RelocationHolder::none);
}
// rspec can be RelocationHolder::none (for ignored symbolic_Relocation).
// In that case, the address is absolute and the generated code need
// not be relocable.
void mov_address(Register rd, address addr, RelocationHolder const& rspec) {
assert(rspec.type() != relocInfo::runtime_call_type, "do not use mov_address for runtime calls");
assert(rspec.type() != relocInfo::static_call_type, "do not use mov_address for relocable calls");
if (rspec.type() == relocInfo::none) {
// absolute address, relocation not needed
mov_slow(rd, (intptr_t)addr);
return;
}
#ifndef AARCH64
if (VM_Version::supports_movw()) {
relocate(rspec);
int c = (int)addr;
movw(rd, c & 0xffff);
if ((unsigned int)c >> 16) {
movt(rd, (unsigned int)c >> 16);
}
return;
}
#endif
Label skip_literal;
InlinedAddress addr_literal(addr, rspec);
ldr_literal(rd, addr_literal);
b(skip_literal);
bind_literal(addr_literal);
// AARCH64 WARNING: because of alignment padding, extra padding
// may be required to get a consistent size for C2, or rules must
// overestimate size see MachEpilogNode::size
bind(skip_literal);
}
// Note: Do not define mov_address for a Label
//
// Load from addresses potentially within the code are now handled
// InlinedLiteral subclasses (to allow more flexibility on how the
// ldr_literal is performed).
void ldr_literal(Register rd, InlinedAddress& L) {
assert(L.rspec().type() != relocInfo::runtime_call_type, "avoid ldr_literal for calls");
assert(L.rspec().type() != relocInfo::static_call_type, "avoid ldr_literal for calls");
relocate(L.rspec());
#ifdef AARCH64
ldr(rd, target(L.label));
#else
ldr(rd, Address(PC, target(L.label) - pc() - 8));
#endif
}
void ldr_literal(Register rd, InlinedString& L) {
const char* msg = L.msg();
if (code()->consts()->contains((address)msg)) {
// string address moves with the code
#ifdef AARCH64
ldr(rd, (address)msg);
#else
ldr(rd, Address(PC, ((address)msg) - pc() - 8));
#endif
return;
}
// Warning: use external strings with care. They are not relocated
// if the code moves. If needed, use code_string to move them
// to the consts section.
#ifdef AARCH64
ldr(rd, target(L.label));
#else
ldr(rd, Address(PC, target(L.label) - pc() - 8));
#endif
}
void ldr_literal(Register rd, InlinedMetadata& L) {
// relocation done in the bind_literal for metadatas
#ifdef AARCH64
ldr(rd, target(L.label));
#else
ldr(rd, Address(PC, target(L.label) - pc() - 8));
#endif
}
void bind_literal(InlinedAddress& L) {
AARCH64_ONLY(align(wordSize));
bind(L.label);
assert(L.rspec().type() != relocInfo::metadata_type, "Must use InlinedMetadata");
// We currently do not use oop 'bound' literals.
// If the code evolves and the following assert is triggered,
// we need to implement InlinedOop (see InlinedMetadata).
assert(L.rspec().type() != relocInfo::oop_type, "Inlined oops not supported");
// Note: relocation is handled by relocate calls in ldr_literal
AbstractAssembler::emit_address((address)L.target());
}
void bind_literal(InlinedString& L) {
const char* msg = L.msg();
if (code()->consts()->contains((address)msg)) {
// The Label should not be used; avoid binding it
// to detect errors.
return;
}
AARCH64_ONLY(align(wordSize));
bind(L.label);
AbstractAssembler::emit_address((address)L.msg());
}
void bind_literal(InlinedMetadata& L) {
AARCH64_ONLY(align(wordSize));
bind(L.label);
relocate(metadata_Relocation::spec_for_immediate());
AbstractAssembler::emit_address((address)L.data());
}
void load_mirror(Register mirror, Register method, Register tmp);
// Porting layer between 32-bit ARM and AArch64
#define COMMON_INSTR_1(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg_type) \
void common_mnemonic(arg_type arg) { \
AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg); \
}
#define COMMON_INSTR_2(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg1_type, arg2_type) \
void common_mnemonic(arg1_type arg1, arg2_type arg2) { \
AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg1, arg2); \
}
#define COMMON_INSTR_3(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg1_type, arg2_type, arg3_type) \
void common_mnemonic(arg1_type arg1, arg2_type arg2, arg3_type arg3) { \
AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg1, arg2, arg3); \
}
COMMON_INSTR_1(jump, br, bx, Register)
COMMON_INSTR_1(call, blr, blx, Register)
COMMON_INSTR_2(cbz_32, cbz_w, cbz, Register, Label&)
COMMON_INSTR_2(cbnz_32, cbnz_w, cbnz, Register, Label&)
COMMON_INSTR_2(ldr_u32, ldr_w, ldr, Register, Address)
COMMON_INSTR_2(ldr_s32, ldrsw, ldr, Register, Address)
COMMON_INSTR_2(str_32, str_w, str, Register, Address)
COMMON_INSTR_2(mvn_32, mvn_w, mvn, Register, Register)
COMMON_INSTR_2(cmp_32, cmp_w, cmp, Register, Register)
COMMON_INSTR_2(neg_32, neg_w, neg, Register, Register)
COMMON_INSTR_2(clz_32, clz_w, clz, Register, Register)
COMMON_INSTR_2(rbit_32, rbit_w, rbit, Register, Register)
COMMON_INSTR_2(cmp_32, cmp_w, cmp, Register, int)
COMMON_INSTR_2(cmn_32, cmn_w, cmn, Register, int)
COMMON_INSTR_3(add_32, add_w, add, Register, Register, Register)
COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, Register)
COMMON_INSTR_3(subs_32, subs_w, subs, Register, Register, Register)
COMMON_INSTR_3(mul_32, mul_w, mul, Register, Register, Register)
COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, Register)
COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, Register)
COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, Register)
COMMON_INSTR_3(add_32, add_w, add, Register, Register, AsmOperand)
COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, AsmOperand)
COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, AsmOperand)
COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, AsmOperand)
COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, AsmOperand)
COMMON_INSTR_3(add_32, add_w, add, Register, Register, int)
COMMON_INSTR_3(adds_32, adds_w, adds, Register, Register, int)
COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, int)
COMMON_INSTR_3(subs_32, subs_w, subs, Register, Register, int)
COMMON_INSTR_2(tst_32, tst_w, tst, Register, unsigned int)
COMMON_INSTR_2(tst_32, tst_w, tst, Register, AsmOperand)
COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, uint)
COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, uint)
COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, uint)
COMMON_INSTR_1(cmp_zero_float, fcmp0_s, fcmpzs, FloatRegister)
COMMON_INSTR_1(cmp_zero_double, fcmp0_d, fcmpzd, FloatRegister)
COMMON_INSTR_2(ldr_float, ldr_s, flds, FloatRegister, Address)
COMMON_INSTR_2(str_float, str_s, fsts, FloatRegister, Address)
COMMON_INSTR_2(mov_float, fmov_s, fcpys, FloatRegister, FloatRegister)
COMMON_INSTR_2(neg_float, fneg_s, fnegs, FloatRegister, FloatRegister)
COMMON_INSTR_2(abs_float, fabs_s, fabss, FloatRegister, FloatRegister)
COMMON_INSTR_2(sqrt_float, fsqrt_s, fsqrts, FloatRegister, FloatRegister)
COMMON_INSTR_2(cmp_float, fcmp_s, fcmps, FloatRegister, FloatRegister)
COMMON_INSTR_3(add_float, fadd_s, fadds, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(sub_float, fsub_s, fsubs, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(mul_float, fmul_s, fmuls, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(div_float, fdiv_s, fdivs, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_2(ldr_double, ldr_d, fldd, FloatRegister, Address)
COMMON_INSTR_2(str_double, str_d, fstd, FloatRegister, Address)
COMMON_INSTR_2(mov_double, fmov_d, fcpyd, FloatRegister, FloatRegister)
COMMON_INSTR_2(neg_double, fneg_d, fnegd, FloatRegister, FloatRegister)
COMMON_INSTR_2(cmp_double, fcmp_d, fcmpd, FloatRegister, FloatRegister)
COMMON_INSTR_2(abs_double, fabs_d, fabsd, FloatRegister, FloatRegister)
COMMON_INSTR_2(sqrt_double, fsqrt_d, fsqrtd, FloatRegister, FloatRegister)
COMMON_INSTR_3(add_double, fadd_d, faddd, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(sub_double, fsub_d, fsubd, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(mul_double, fmul_d, fmuld, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(div_double, fdiv_d, fdivd, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_2(convert_f2d, fcvt_ds, fcvtds, FloatRegister, FloatRegister)
COMMON_INSTR_2(convert_d2f, fcvt_sd, fcvtsd, FloatRegister, FloatRegister)
COMMON_INSTR_2(mov_fpr2gpr_float, fmov_ws, fmrs, Register, FloatRegister)
#undef COMMON_INSTR_1
#undef COMMON_INSTR_2
#undef COMMON_INSTR_3
#ifdef AARCH64
void mov(Register dst, Register src, AsmCondition cond) {
if (cond == al) {
mov(dst, src);
} else {
csel(dst, src, dst, cond);
}
}
// Propagate other overloaded "mov" methods from Assembler.
void mov(Register dst, Register src) { Assembler::mov(dst, src); }
void mov(Register rd, int imm) { Assembler::mov(rd, imm); }
void mov(Register dst, int imm, AsmCondition cond) {
assert(imm == 0 || imm == 1, "");
if (imm == 0) {
mov(dst, ZR, cond);
} else if (imm == 1) {
csinc(dst, dst, ZR, inverse(cond));
} else if (imm == -1) {
csinv(dst, dst, ZR, inverse(cond));
} else {
fatal("illegal mov(R%d,%d,cond)", dst->encoding(), imm);
}
}
void movs(Register dst, Register src) { adds(dst, src, 0); }
#else // AARCH64
void tbz(Register rt, int bit, Label& L) {
assert(0 <= bit && bit < BitsPerWord, "bit number is out of range");
tst(rt, 1 << bit);
b(L, eq);
}
void tbnz(Register rt, int bit, Label& L) {
assert(0 <= bit && bit < BitsPerWord, "bit number is out of range");
tst(rt, 1 << bit);
b(L, ne);
}
void cbz(Register rt, Label& L) {
cmp(rt, 0);
b(L, eq);
}
void cbz(Register rt, address target) {
cmp(rt, 0);
b(target, eq);
}
void cbnz(Register rt, Label& L) {
cmp(rt, 0);
b(L, ne);
}
void ret(Register dst = LR) {
bx(dst);
}
#endif // AARCH64
Register zero_register(Register tmp) {
#ifdef AARCH64
return ZR;
#else
mov(tmp, 0);
return tmp;
#endif
}
void logical_shift_left(Register dst, Register src, int shift) {
#ifdef AARCH64
_lsl(dst, src, shift);
#else
mov(dst, AsmOperand(src, lsl, shift));
#endif
}
void logical_shift_left_32(Register dst, Register src, int shift) {
#ifdef AARCH64
_lsl_w(dst, src, shift);
#else
mov(dst, AsmOperand(src, lsl, shift));
#endif
}
void logical_shift_right(Register dst, Register src, int shift) {
#ifdef AARCH64
_lsr(dst, src, shift);
#else
mov(dst, AsmOperand(src, lsr, shift));
#endif
}
void arith_shift_right(Register dst, Register src, int shift) {
#ifdef AARCH64
_asr(dst, src, shift);
#else
mov(dst, AsmOperand(src, asr, shift));
#endif
}
void asr_32(Register dst, Register src, int shift) {
#ifdef AARCH64
_asr_w(dst, src, shift);
#else
mov(dst, AsmOperand(src, asr, shift));
#endif
}
// If <cond> holds, compares r1 and r2. Otherwise, flags are set so that <cond> does not hold.
void cond_cmp(Register r1, Register r2, AsmCondition cond) {
#ifdef AARCH64
ccmp(r1, r2, flags_for_condition(inverse(cond)), cond);
#else
cmp(r1, r2, cond);
#endif
}
// If <cond> holds, compares r and imm. Otherwise, flags are set so that <cond> does not hold.
void cond_cmp(Register r, int imm, AsmCondition cond) {
#ifdef AARCH64
ccmp(r, imm, flags_for_condition(inverse(cond)), cond);
#else
cmp(r, imm, cond);
#endif
}
void align_reg(Register dst, Register src, int align) {
assert (is_power_of_2(align), "should be");
#ifdef AARCH64
andr(dst, src, ~(uintx)(align-1));
#else
bic(dst, src, align-1);
#endif
}
void prefetch_read(Address addr) {
#ifdef AARCH64
prfm(pldl1keep, addr);
#else
pld(addr);
#endif
}
void raw_push(Register r1, Register r2) {
#ifdef AARCH64
stp(r1, r2, Address(SP, -2*wordSize, pre_indexed));
#else
assert(r1->encoding() < r2->encoding(), "should be ordered");
push(RegisterSet(r1) | RegisterSet(r2));
#endif
}
void raw_pop(Register r1, Register r2) {
#ifdef AARCH64
ldp(r1, r2, Address(SP, 2*wordSize, post_indexed));
#else
assert(r1->encoding() < r2->encoding(), "should be ordered");
pop(RegisterSet(r1) | RegisterSet(r2));
#endif
}
void raw_push(Register r1, Register r2, Register r3) {
#ifdef AARCH64
raw_push(r1, r2);
raw_push(r3, ZR);
#else
assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered");
push(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3));
#endif
}
void raw_pop(Register r1, Register r2, Register r3) {
#ifdef AARCH64
raw_pop(r3, ZR);
raw_pop(r1, r2);
#else
assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered");
pop(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3));
#endif
}
// Restores registers r1 and r2 previously saved by raw_push(r1, r2, ret_addr) and returns by ret_addr. Clobbers LR.
void raw_pop_and_ret(Register r1, Register r2) {
#ifdef AARCH64
raw_pop(r1, r2, LR);
ret();
#else
raw_pop(r1, r2, PC);
#endif
}
void indirect_jump(Address addr, Register scratch) {
#ifdef AARCH64
ldr(scratch, addr);
br(scratch);
#else
ldr(PC, addr);
#endif
}
void indirect_jump(InlinedAddress& literal, Register scratch) {
#ifdef AARCH64
ldr_literal(scratch, literal);
br(scratch);
#else
ldr_literal(PC, literal);
#endif
}
#ifndef AARCH64
void neg(Register dst, Register src) {
rsb(dst, src, 0);
}
#endif
void branch_if_negative_32(Register r, Label& L) {
// Note about branch_if_negative_32() / branch_if_any_negative_32() implementation for AArch64:
// tbnz is not used instead of tst & b.mi because destination may be out of tbnz range (+-32KB)
// since these methods are used in LIR_Assembler::emit_arraycopy() to jump to stub entry.
tst_32(r, r);
b(L, mi);
}
void branch_if_any_negative_32(Register r1, Register r2, Register tmp, Label& L) {
#ifdef AARCH64
orr_32(tmp, r1, r2);
tst_32(tmp, tmp);
#else
orrs(tmp, r1, r2);
#endif
b(L, mi);
}
void branch_if_any_negative_32(Register r1, Register r2, Register r3, Register tmp, Label& L) {
orr_32(tmp, r1, r2);
#ifdef AARCH64
orr_32(tmp, tmp, r3);
tst_32(tmp, tmp);
#else
orrs(tmp, tmp, r3);
#endif
b(L, mi);
}
void add_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) {
#ifdef AARCH64
add(dst, r1, r2, ex_sxtw, shift);
#else
add(dst, r1, AsmOperand(r2, lsl, shift));
#endif
}
void sub_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) {
#ifdef AARCH64
sub(dst, r1, r2, ex_sxtw, shift);
#else
sub(dst, r1, AsmOperand(r2, lsl, shift));
#endif
}
// klass oop manipulations if compressed
#ifdef AARCH64
void load_klass(Register dst_klass, Register src_oop);
#else
void load_klass(Register dst_klass, Register src_oop, AsmCondition cond = al);
#endif // AARCH64
void store_klass(Register src_klass, Register dst_oop);
#ifdef AARCH64
void store_klass_gap(Register dst);
#endif // AARCH64
// oop manipulations
void load_heap_oop(Register dst, Address src);
void store_heap_oop(Register src, Address dst);
void store_heap_oop(Address dst, Register src) {
store_heap_oop(src, dst);
}
void store_heap_oop_null(Register src, Address dst);
#ifdef AARCH64
void encode_heap_oop(Register dst, Register src);
void encode_heap_oop(Register r) {
encode_heap_oop(r, r);
}
void decode_heap_oop(Register dst, Register src);
void decode_heap_oop(Register r) {
decode_heap_oop(r, r);
}
#ifdef COMPILER2
void encode_heap_oop_not_null(Register dst, Register src);
void decode_heap_oop_not_null(Register dst, Register src);
void set_narrow_klass(Register dst, Klass* k);
void set_narrow_oop(Register dst, jobject obj);
#endif
void encode_klass_not_null(Register r);
void encode_klass_not_null(Register dst, Register src);
void decode_klass_not_null(Register r);
void decode_klass_not_null(Register dst, Register src);
void reinit_heapbase();
#ifdef ASSERT
void verify_heapbase(const char* msg);
#endif // ASSERT
static int instr_count_for_mov_slow(intptr_t c);
static int instr_count_for_mov_slow(address addr);
static int instr_count_for_decode_klass_not_null();
#endif // AARCH64
void ldr_global_ptr(Register reg, address address_of_global);
void ldr_global_s32(Register reg, address address_of_global);
void ldrb_global(Register reg, address address_of_global);
// address_placeholder_instruction is invalid instruction and is used
// as placeholder in code for address of label
enum { address_placeholder_instruction = 0xFFFFFFFF };
void emit_address(Label& L) {
assert(!L.is_bound(), "otherwise address will not be patched");
target(L); // creates relocation which will be patched later
assert ((offset() & (wordSize-1)) == 0, "should be aligned by word size");
#ifdef AARCH64
emit_int32(address_placeholder_instruction);
emit_int32(address_placeholder_instruction);
#else
AbstractAssembler::emit_address((address)address_placeholder_instruction);
#endif
}
void b(address target, AsmCondition cond = al) {
Assembler::b(target, cond); \
}
void b(Label& L, AsmCondition cond = al) {
// internal jumps
Assembler::b(target(L), cond);
}
void bl(address target NOT_AARCH64_ARG(AsmCondition cond = al)) {
Assembler::bl(target NOT_AARCH64_ARG(cond));
}
void bl(Label& L NOT_AARCH64_ARG(AsmCondition cond = al)) {
// internal calls
Assembler::bl(target(L) NOT_AARCH64_ARG(cond));
}
#ifndef AARCH64
void adr(Register dest, Label& L, AsmCondition cond = al) {
int delta = target(L) - pc() - 8;
if (delta >= 0) {
add(dest, PC, delta, cond);
} else {
sub(dest, PC, -delta, cond);
}
}
#endif // !AARCH64
// Variable-length jump and calls. We now distinguish only the
// patchable case from the other cases. Patchable must be
// distinguised from relocable. Relocable means the generated code
// containing the jump/call may move. Patchable means that the
// targeted address may be changed later.
// Non patchable versions.
// - used only for relocInfo::runtime_call_type and relocInfo::none
// - may use relative or absolute format (do not use relocInfo::none
// if the generated code may move)
// - the implementation takes into account switch to THUMB mode if the
// destination is a THUMB address
// - the implementation supports far targets
//
// To reduce regression risk, scratch still defaults to noreg on
// arm32. This results in patchable instructions. However, if
// patching really matters, the call sites should be modified and
// use patchable_call or patchable_jump. If patching is not required
// and if a register can be cloberred, it should be explicitly
// specified to allow future optimizations.
void jump(address target,
relocInfo::relocType rtype = relocInfo::runtime_call_type,
Register scratch = AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg)
#ifndef AARCH64
, AsmCondition cond = al
#endif
);
void call(address target,
RelocationHolder rspec
NOT_AARCH64_ARG(AsmCondition cond = al));
void call(address target,
relocInfo::relocType rtype = relocInfo::runtime_call_type
NOT_AARCH64_ARG(AsmCondition cond = al)) {
call(target, Relocation::spec_simple(rtype) NOT_AARCH64_ARG(cond));
}
void jump(AddressLiteral dest) {
jump(dest.target(), dest.reloc());
}
#ifndef AARCH64
void jump(address dest, relocInfo::relocType rtype, AsmCondition cond) {
jump(dest, rtype, Rtemp, cond);
}
#endif
void call(AddressLiteral dest) {
call(dest.target(), dest.reloc());
}
// Patchable version:
// - set_destination can be used to atomically change the target
//
// The targets for patchable_jump and patchable_call must be in the
// code cache.
// [ including possible extensions of the code cache, like AOT code ]
//
// To reduce regression risk, scratch still defaults to noreg on
// arm32. If a register can be cloberred, it should be explicitly
// specified to allow future optimizations.
void patchable_jump(address target,
relocInfo::relocType rtype = relocInfo::runtime_call_type,
Register scratch = AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg)
#ifndef AARCH64
, AsmCondition cond = al
#endif
);
// patchable_call may scratch Rtemp
int patchable_call(address target,
RelocationHolder const& rspec,
bool c2 = false);
int patchable_call(address target,
relocInfo::relocType rtype,
bool c2 = false) {
return patchable_call(target, Relocation::spec_simple(rtype), c2);
}
#if defined(AARCH64) && defined(COMPILER2)
static int call_size(address target, bool far, bool patchable);
#endif
#ifdef AARCH64
static bool page_reachable_from_cache(address target);
#endif
static bool _reachable_from_cache(address target);
static bool _cache_fully_reachable();
bool cache_fully_reachable();
bool reachable_from_cache(address target);
void zero_extend(Register rd, Register rn, int bits);
void sign_extend(Register rd, Register rn, int bits);
inline void zap_high_non_significant_bits(Register r) {
#ifdef AARCH64
if(ZapHighNonSignificantBits) {
movk(r, 0xBAAD, 48);
movk(r, 0xF00D, 32);
}
#endif
}
#ifndef AARCH64
void long_move(Register rd_lo, Register rd_hi,
Register rn_lo, Register rn_hi,
AsmCondition cond = al);
void long_shift(Register rd_lo, Register rd_hi,
Register rn_lo, Register rn_hi,
AsmShift shift, Register count);
void long_shift(Register rd_lo, Register rd_hi,
Register rn_lo, Register rn_hi,
AsmShift shift, int count);
void atomic_cas(Register tmpreg1, Register tmpreg2, Register oldval, Register newval, Register base, int offset);
void atomic_cas_bool(Register oldval, Register newval, Register base, int offset, Register tmpreg);
void atomic_cas64(Register temp_lo, Register temp_hi, Register temp_result, Register oldval_lo, Register oldval_hi, Register newval_lo, Register newval_hi, Register base, int offset);
#endif // !AARCH64
void cas_for_lock_acquire(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false);
void cas_for_lock_release(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false);
#ifndef PRODUCT
// Preserves flags and all registers.
// On SMP the updated value might not be visible to external observers without a sychronization barrier
void cond_atomic_inc32(AsmCondition cond, int* counter_addr);
#endif // !PRODUCT
// unconditional non-atomic increment
void inc_counter(address counter_addr, Register tmpreg1, Register tmpreg2);
void inc_counter(int* counter_addr, Register tmpreg1, Register tmpreg2) {
inc_counter((address) counter_addr, tmpreg1, tmpreg2);
}
void pd_patch_instruction(address branch, address target);
// Loading and storing values by size and signed-ness;
// size must not exceed wordSize (i.e. 8-byte values are not supported on 32-bit ARM);
// each of these calls generates exactly one load or store instruction,
// so src can be pre- or post-indexed address.
#ifdef AARCH64
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
void store_sized_value(Register src, Address dst, size_t size_in_bytes);
#else
// 32-bit ARM variants also support conditional execution
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, AsmCondition cond = al);
void store_sized_value(Register src, Address dst, size_t size_in_bytes, AsmCondition cond = al);
#endif
void lookup_interface_method(Register recv_klass,
Register intf_klass,
Register itable_index,
Register method_result,
Register temp_reg1,
Register temp_reg2,
Label& L_no_such_interface);
// Compare char[] arrays aligned to 4 bytes.
void char_arrays_equals(Register ary1, Register ary2,
Register limit, Register result,
Register chr1, Register chr2, Label& Ldone);
void floating_cmp(Register dst);
// improved x86 portability (minimizing source code changes)
void ldr_literal(Register rd, AddressLiteral addr) {
relocate(addr.rspec());
#ifdef AARCH64
ldr(rd, addr.target());
#else
ldr(rd, Address(PC, addr.target() - pc() - 8));
#endif
}
void lea(Register Rd, AddressLiteral addr) {
// Never dereferenced, as on x86 (lval status ignored)
mov_address(Rd, addr.target(), addr.rspec());
}
void restore_default_fp_mode();
#ifdef COMPILER2
#ifdef AARCH64
// Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
void fast_lock(Register obj, Register box, Register scratch, Register scratch2, Register scratch3);
void fast_unlock(Register obj, Register box, Register scratch, Register scratch2, Register scratch3);
#else
void fast_lock(Register obj, Register box, Register scratch, Register scratch2);
void fast_unlock(Register obj, Register box, Register scratch, Register scratch2);
#endif
#endif
#ifdef AARCH64
#define F(mnemonic) \
void mnemonic(Register rt, address target) { \
Assembler::mnemonic(rt, target); \
} \
void mnemonic(Register rt, Label& L) { \
Assembler::mnemonic(rt, target(L)); \
}
F(cbz_w);
F(cbnz_w);
F(cbz);
F(cbnz);
#undef F
#define F(mnemonic) \
void mnemonic(Register rt, int bit, address target) { \
Assembler::mnemonic(rt, bit, target); \
} \
void mnemonic(Register rt, int bit, Label& L) { \
Assembler::mnemonic(rt, bit, target(L)); \
}
F(tbz);
F(tbnz);
#undef F
#endif // AARCH64
};
// The purpose of this class is to build several code fragments of the same size
// in order to allow fast table branch.
class FixedSizeCodeBlock VALUE_OBJ_CLASS_SPEC {
public:
FixedSizeCodeBlock(MacroAssembler* masm, int size_in_instrs, bool enabled);
~FixedSizeCodeBlock();
private:
MacroAssembler* _masm;
address _start;
int _size_in_instrs;
bool _enabled;
};
#endif // CPU_ARM_VM_MACROASSEMBLER_ARM_HPP