/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/copy.hpp"
#ifdef TARGET_OS_FAMILY_linux
# include "os_linux.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_solaris
# include "os_solaris.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_windows
# include "os_windows.inline.hpp"
#endif
BitMap::BitMap(bm_word_t* map, idx_t size_in_bits) :
_map(map), _size(size_in_bits)
{
assert(sizeof(bm_word_t) == BytesPerWord, "Implementation assumption.");
assert(size_in_bits >= 0, "just checking");
}
BitMap::BitMap(idx_t size_in_bits, bool in_resource_area) :
_map(NULL), _size(0)
{
assert(sizeof(bm_word_t) == BytesPerWord, "Implementation assumption.");
resize(size_in_bits, in_resource_area);
}
void BitMap::resize(idx_t size_in_bits, bool in_resource_area) {
assert(size_in_bits >= 0, "just checking");
idx_t old_size_in_words = size_in_words();
bm_word_t* old_map = map();
_size = size_in_bits;
idx_t new_size_in_words = size_in_words();
if (in_resource_area) {
_map = NEW_RESOURCE_ARRAY(bm_word_t, new_size_in_words);
} else {
if (old_map != NULL) FREE_C_HEAP_ARRAY(bm_word_t, _map);
_map = NEW_C_HEAP_ARRAY(bm_word_t, new_size_in_words);
}
Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) _map,
MIN2(old_size_in_words, new_size_in_words));
if (new_size_in_words > old_size_in_words) {
clear_range_of_words(old_size_in_words, size_in_words());
}
}
void BitMap::set_range_within_word(idx_t beg, idx_t end) {
// With a valid range (beg <= end), this test ensures that end != 0, as
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
if (beg != end) {
bm_word_t mask = inverted_bit_mask_for_range(beg, end);
*word_addr(beg) |= ~mask;
}
}
void BitMap::clear_range_within_word(idx_t beg, idx_t end) {
// With a valid range (beg <= end), this test ensures that end != 0, as
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
if (beg != end) {
bm_word_t mask = inverted_bit_mask_for_range(beg, end);
*word_addr(beg) &= mask;
}
}
void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) {
assert(value == 0 || value == 1, "0 for clear, 1 for set");
// With a valid range (beg <= end), this test ensures that end != 0, as
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
if (beg != end) {
intptr_t* pw = (intptr_t*)word_addr(beg);
intptr_t w = *pw;
intptr_t mr = (intptr_t)inverted_bit_mask_for_range(beg, end);
intptr_t nw = value ? (w | ~mr) : (w & mr);
while (true) {
intptr_t res = Atomic::cmpxchg_ptr(nw, pw, w);
if (res == w) break;
w = *pw;
nw = value ? (w | ~mr) : (w & mr);
}
}
}
void BitMap::set_range(idx_t beg, idx_t end) {
verify_range(beg, end);
idx_t beg_full_word = word_index_round_up(beg);
idx_t end_full_word = word_index(end);
if (beg_full_word < end_full_word) {
// The range includes at least one full word.
set_range_within_word(beg, bit_index(beg_full_word));
set_range_of_words(beg_full_word, end_full_word);
set_range_within_word(bit_index(end_full_word), end);
} else {
// The range spans at most 2 partial words.
idx_t boundary = MIN2(bit_index(beg_full_word), end);
set_range_within_word(beg, boundary);
set_range_within_word(boundary, end);
}
}
void BitMap::clear_range(idx_t beg, idx_t end) {
verify_range(beg, end);
idx_t beg_full_word = word_index_round_up(beg);
idx_t end_full_word = word_index(end);
if (beg_full_word < end_full_word) {
// The range includes at least one full word.
clear_range_within_word(beg, bit_index(beg_full_word));
clear_range_of_words(beg_full_word, end_full_word);
clear_range_within_word(bit_index(end_full_word), end);
} else {
// The range spans at most 2 partial words.
idx_t boundary = MIN2(bit_index(beg_full_word), end);
clear_range_within_word(beg, boundary);
clear_range_within_word(boundary, end);
}
}
void BitMap::set_large_range(idx_t beg, idx_t end) {
verify_range(beg, end);
idx_t beg_full_word = word_index_round_up(beg);
idx_t end_full_word = word_index(end);
assert(end_full_word - beg_full_word >= 32,
"the range must include at least 32 bytes");
// The range includes at least one full word.
set_range_within_word(beg, bit_index(beg_full_word));
set_large_range_of_words(beg_full_word, end_full_word);
set_range_within_word(bit_index(end_full_word), end);
}
void BitMap::clear_large_range(idx_t beg, idx_t end) {
verify_range(beg, end);
idx_t beg_full_word = word_index_round_up(beg);
idx_t end_full_word = word_index(end);
assert(end_full_word - beg_full_word >= 32,
"the range must include at least 32 bytes");
// The range includes at least one full word.
clear_range_within_word(beg, bit_index(beg_full_word));
clear_large_range_of_words(beg_full_word, end_full_word);
clear_range_within_word(bit_index(end_full_word), end);
}
void BitMap::mostly_disjoint_range_union(BitMap* from_bitmap,
idx_t from_start_index,
idx_t to_start_index,
size_t word_num) {
// Ensure that the parameters are correct.
// These shouldn't be that expensive to check, hence I left them as
// guarantees.
guarantee(from_bitmap->bit_in_word(from_start_index) == 0,
"it should be aligned on a word boundary");
guarantee(bit_in_word(to_start_index) == 0,
"it should be aligned on a word boundary");
guarantee(word_num >= 2, "word_num should be at least 2");
intptr_t* from = (intptr_t*) from_bitmap->word_addr(from_start_index);
intptr_t* to = (intptr_t*) word_addr(to_start_index);
if (*from != 0) {
// if it's 0, then there's no point in doing the CAS
while (true) {
intptr_t old_value = *to;
intptr_t new_value = old_value | *from;
intptr_t res = Atomic::cmpxchg_ptr(new_value, to, old_value);
if (res == old_value) break;
}
}
++from;
++to;
for (size_t i = 0; i < word_num - 2; ++i) {
if (*from != 0) {
// if it's 0, then there's no point in doing the CAS
assert(*to == 0, "nobody else should be writing here");
intptr_t new_value = *from;
*to = new_value;
}
++from;
++to;
}
if (*from != 0) {
// if it's 0, then there's no point in doing the CAS
while (true) {
intptr_t old_value = *to;
intptr_t new_value = old_value | *from;
intptr_t res = Atomic::cmpxchg_ptr(new_value, to, old_value);
if (res == old_value) break;
}
}
// the -1 is because we didn't advance them after the final CAS
assert(from ==
(intptr_t*) from_bitmap->word_addr(from_start_index) + word_num - 1,
"invariant");
assert(to == (intptr_t*) word_addr(to_start_index) + word_num - 1,
"invariant");
}
void BitMap::at_put(idx_t offset, bool value) {
if (value) {
set_bit(offset);
} else {
clear_bit(offset);
}
}
// Return true to indicate that this thread changed
// the bit, false to indicate that someone else did.
// In either case, the requested bit is in the
// requested state some time during the period that
// this thread is executing this call. More importantly,
// if no other thread is executing an action to
// change the requested bit to a state other than
// the one that this thread is trying to set it to,
// then the the bit is in the expected state
// at exit from this method. However, rather than
// make such a strong assertion here, based on
// assuming such constrained use (which though true
// today, could change in the future to service some
// funky parallel algorithm), we encourage callers
// to do such verification, as and when appropriate.
bool BitMap::par_at_put(idx_t bit, bool value) {
return value ? par_set_bit(bit) : par_clear_bit(bit);
}
void BitMap::at_put_grow(idx_t offset, bool value) {
if (offset >= size()) {
resize(2 * MAX2(size(), offset));
}
at_put(offset, value);
}
void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) {
if (value) {
set_range(start_offset, end_offset);
} else {
clear_range(start_offset, end_offset);
}
}
void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) {
verify_range(beg, end);
idx_t beg_full_word = word_index_round_up(beg);
idx_t end_full_word = word_index(end);
if (beg_full_word < end_full_word) {
// The range includes at least one full word.
par_put_range_within_word(beg, bit_index(beg_full_word), value);
if (value) {
set_range_of_words(beg_full_word, end_full_word);
} else {
clear_range_of_words(beg_full_word, end_full_word);
}
par_put_range_within_word(bit_index(end_full_word), end, value);
} else {
// The range spans at most 2 partial words.
idx_t boundary = MIN2(bit_index(beg_full_word), end);
par_put_range_within_word(beg, boundary, value);
par_put_range_within_word(boundary, end, value);
}
}
void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) {
if (value) {
set_large_range(beg, end);
} else {
clear_large_range(beg, end);
}
}
void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) {
verify_range(beg, end);
idx_t beg_full_word = word_index_round_up(beg);
idx_t end_full_word = word_index(end);
assert(end_full_word - beg_full_word >= 32,
"the range must include at least 32 bytes");
// The range includes at least one full word.
par_put_range_within_word(beg, bit_index(beg_full_word), value);
if (value) {
set_large_range_of_words(beg_full_word, end_full_word);
} else {
clear_large_range_of_words(beg_full_word, end_full_word);
}
par_put_range_within_word(bit_index(end_full_word), end, value);
}
bool BitMap::contains(const BitMap other) const {
assert(size() == other.size(), "must have same size");
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size_in_words(); index++) {
bm_word_t word_union = dest_map[index] | other_map[index];
// If this has more bits set than dest_map[index], then other is not a
// subset.
if (word_union != dest_map[index]) return false;
}
return true;
}
bool BitMap::intersects(const BitMap other) const {
assert(size() == other.size(), "must have same size");
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size_in_words(); index++) {
if ((dest_map[index] & other_map[index]) != 0) return true;
}
// Otherwise, no intersection.
return false;
}
void BitMap::set_union(BitMap other) {
assert(size() == other.size(), "must have same size");
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size_in_words(); index++) {
dest_map[index] = dest_map[index] | other_map[index];
}
}
void BitMap::set_difference(BitMap other) {
assert(size() == other.size(), "must have same size");
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size_in_words(); index++) {
dest_map[index] = dest_map[index] & ~(other_map[index]);
}
}
void BitMap::set_intersection(BitMap other) {
assert(size() == other.size(), "must have same size");
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size; index++) {
dest_map[index] = dest_map[index] & other_map[index];
}
}
void BitMap::set_intersection_at_offset(BitMap other, idx_t offset) {
assert(other.size() >= offset, "offset not in range");
assert(other.size() - offset >= size(), "other not large enough");
// XXX Ideally, we would remove this restriction.
guarantee((offset % (sizeof(bm_word_t) * BitsPerByte)) == 0,
"Only handle aligned cases so far.");
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t offset_word_ind = word_index(offset);
idx_t size = size_in_words();
for (idx_t index = 0; index < size; index++) {
dest_map[index] = dest_map[index] & other_map[offset_word_ind + index];
}
}
bool BitMap::set_union_with_result(BitMap other) {
assert(size() == other.size(), "must have same size");
bool changed = false;
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size; index++) {
idx_t temp = map(index) | other_map[index];
changed = changed || (temp != map(index));
map()[index] = temp;
}
return changed;
}
bool BitMap::set_difference_with_result(BitMap other) {
assert(size() == other.size(), "must have same size");
bool changed = false;
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size; index++) {
bm_word_t temp = dest_map[index] & ~(other_map[index]);
changed = changed || (temp != dest_map[index]);
dest_map[index] = temp;
}
return changed;
}
bool BitMap::set_intersection_with_result(BitMap other) {
assert(size() == other.size(), "must have same size");
bool changed = false;
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size; index++) {
bm_word_t orig = dest_map[index];
bm_word_t temp = orig & other_map[index];
changed = changed || (temp != orig);
dest_map[index] = temp;
}
return changed;
}
void BitMap::set_from(BitMap other) {
assert(size() == other.size(), "must have same size");
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size; index++) {
dest_map[index] = other_map[index];
}
}
bool BitMap::is_same(BitMap other) {
assert(size() == other.size(), "must have same size");
bm_word_t* dest_map = map();
bm_word_t* other_map = other.map();
idx_t size = size_in_words();
for (idx_t index = 0; index < size; index++) {
if (dest_map[index] != other_map[index]) return false;
}
return true;
}
bool BitMap::is_full() const {
bm_word_t* word = map();
idx_t rest = size();
for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) {
if (*word != (bm_word_t) AllBits) return false;
word++;
}
return rest == 0 || (*word | ~right_n_bits((int)rest)) == (bm_word_t) AllBits;
}
bool BitMap::is_empty() const {
bm_word_t* word = map();
idx_t rest = size();
for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) {
if (*word != (bm_word_t) NoBits) return false;
word++;
}
return rest == 0 || (*word & right_n_bits((int)rest)) == (bm_word_t) NoBits;
}
void BitMap::clear_large() {
clear_large_range_of_words(0, size_in_words());
}
// Note that if the closure itself modifies the bitmap
// then modifications in and to the left of the _bit_ being
// currently sampled will not be seen. Note also that the
// interval [leftOffset, rightOffset) is right open.
bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) {
verify_range(leftOffset, rightOffset);
idx_t startIndex = word_index(leftOffset);
idx_t endIndex = MIN2(word_index(rightOffset) + 1, size_in_words());
for (idx_t index = startIndex, offset = leftOffset;
offset < rightOffset && index < endIndex;
offset = (++index) << LogBitsPerWord) {
idx_t rest = map(index) >> (offset & (BitsPerWord - 1));
for (; offset < rightOffset && rest != (bm_word_t)NoBits; offset++) {
if (rest & 1) {
if (!blk->do_bit(offset)) return false;
// resample at each closure application
// (see, for instance, CMS bug 4525989)
rest = map(index) >> (offset & (BitsPerWord -1));
}
rest = rest >> 1;
}
}
return true;
}
BitMap::idx_t* BitMap::_pop_count_table = NULL;
void BitMap::init_pop_count_table() {
if (_pop_count_table == NULL) {
BitMap::idx_t *table = NEW_C_HEAP_ARRAY(idx_t, 256);
for (uint i = 0; i < 256; i++) {
table[i] = num_set_bits(i);
}
intptr_t res = Atomic::cmpxchg_ptr((intptr_t) table,
(intptr_t*) &_pop_count_table,
(intptr_t) NULL_WORD);
if (res != NULL_WORD) {
guarantee( _pop_count_table == (void*) res, "invariant" );
FREE_C_HEAP_ARRAY(bm_word_t, table);
}
}
}
BitMap::idx_t BitMap::num_set_bits(bm_word_t w) {
idx_t bits = 0;
while (w != 0) {
while ((w & 1) == 0) {
w >>= 1;
}
bits++;
w >>= 1;
}
return bits;
}
BitMap::idx_t BitMap::num_set_bits_from_table(unsigned char c) {
assert(_pop_count_table != NULL, "precondition");
return _pop_count_table[c];
}
BitMap::idx_t BitMap::count_one_bits() const {
init_pop_count_table(); // If necessary.
idx_t sum = 0;
typedef unsigned char uchar;
for (idx_t i = 0; i < size_in_words(); i++) {
bm_word_t w = map()[i];
for (size_t j = 0; j < sizeof(bm_word_t); j++) {
sum += num_set_bits_from_table(uchar(w & 255));
w >>= 8;
}
}
return sum;
}
#ifndef PRODUCT
void BitMap::print_on(outputStream* st) const {
tty->print("Bitmap(%d):", size());
for (idx_t index = 0; index < size(); index++) {
tty->print("%c", at(index) ? '1' : '0');
}
tty->cr();
}
#endif
BitMap2D::BitMap2D(bm_word_t* map, idx_t size_in_slots, idx_t bits_per_slot)
: _bits_per_slot(bits_per_slot)
, _map(map, size_in_slots * bits_per_slot)
{
}
BitMap2D::BitMap2D(idx_t size_in_slots, idx_t bits_per_slot)
: _bits_per_slot(bits_per_slot)
, _map(size_in_slots * bits_per_slot)
{
}