7046558: G1: concurrent marking optimizations
Summary: Some optimizations to improve the concurrent marking phase: specialize the main oop closure, make sure a few methods in the fast path are properly inlined, a few more bits and pieces, and some cosmetic fixes.
Reviewed-by: stefank, johnc
/*
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_BITMAP_HPP
#define SHARE_VM_UTILITIES_BITMAP_HPP
#include "memory/allocation.hpp"
#include "utilities/top.hpp"
// Forward decl;
class BitMapClosure;
// Operations for bitmaps represented as arrays of unsigned integers.
// Bit offsets are numbered from 0 to size-1.
class BitMap VALUE_OBJ_CLASS_SPEC {
friend class BitMap2D;
public:
typedef size_t idx_t; // Type used for bit and word indices.
typedef uintptr_t bm_word_t; // Element type of array that represents
// the bitmap.
// Hints for range sizes.
typedef enum {
unknown_range, small_range, large_range
} RangeSizeHint;
private:
bm_word_t* _map; // First word in bitmap
idx_t _size; // Size of bitmap (in bits)
// Puts the given value at the given offset, using resize() to size
// the bitmap appropriately if needed using factor-of-two expansion.
void at_put_grow(idx_t index, bool value);
protected:
// Return the position of bit within the word that contains it (e.g., if
// bitmap words are 32 bits, return a number 0 <= n <= 31).
static idx_t bit_in_word(idx_t bit) { return bit & (BitsPerWord - 1); }
// Return a mask that will select the specified bit, when applied to the word
// containing the bit.
static bm_word_t bit_mask(idx_t bit) { return (bm_word_t)1 << bit_in_word(bit); }
// Return the index of the word containing the specified bit.
static idx_t word_index(idx_t bit) { return bit >> LogBitsPerWord; }
// Return the bit number of the first bit in the specified word.
static idx_t bit_index(idx_t word) { return word << LogBitsPerWord; }
// Return the array of bitmap words, or a specific word from it.
bm_word_t* map() const { return _map; }
bm_word_t map(idx_t word) const { return _map[word]; }
// Return a pointer to the word containing the specified bit.
bm_word_t* word_addr(idx_t bit) const { return map() + word_index(bit); }
// Set a word to a specified value or to all ones; clear a word.
void set_word (idx_t word, bm_word_t val) { _map[word] = val; }
void set_word (idx_t word) { set_word(word, ~(uintptr_t)0); }
void clear_word(idx_t word) { _map[word] = 0; }
// Utilities for ranges of bits. Ranges are half-open [beg, end).
// Ranges within a single word.
bm_word_t inverted_bit_mask_for_range(idx_t beg, idx_t end) const;
void set_range_within_word (idx_t beg, idx_t end);
void clear_range_within_word (idx_t beg, idx_t end);
void par_put_range_within_word (idx_t beg, idx_t end, bool value);
// Ranges spanning entire words.
void set_range_of_words (idx_t beg, idx_t end);
void clear_range_of_words (idx_t beg, idx_t end);
void set_large_range_of_words (idx_t beg, idx_t end);
void clear_large_range_of_words (idx_t beg, idx_t end);
// The index of the first full word in a range.
idx_t word_index_round_up(idx_t bit) const;
// Verification.
inline void verify_index(idx_t index) const NOT_DEBUG_RETURN;
inline void verify_range(idx_t beg_index, idx_t end_index) const
NOT_DEBUG_RETURN;
// Statistics.
static idx_t* _pop_count_table;
static void init_pop_count_table();
static idx_t num_set_bits(bm_word_t w);
static idx_t num_set_bits_from_table(unsigned char c);
public:
// Constructs a bitmap with no map, and size 0.
BitMap() : _map(NULL), _size(0) {}
// Constructs a bitmap with the given map and size.
BitMap(bm_word_t* map, idx_t size_in_bits);
// Constructs an empty bitmap of the given size (that is, this clears the
// new bitmap). Allocates the map array in resource area if
// "in_resource_area" is true, else in the C heap.
BitMap(idx_t size_in_bits, bool in_resource_area = true);
// Set the map and size.
void set_map(bm_word_t* map) { _map = map; }
void set_size(idx_t size_in_bits) { _size = size_in_bits; }
// Allocates necessary data structure, either in the resource area
// or in the C heap, as indicated by "in_resource_area."
// Preserves state currently in bit map by copying data.
// Zeros any newly-addressable bits.
// If "in_resource_area" is false, frees the current map.
// (Note that this assumes that all calls to "resize" on the same BitMap
// use the same value for "in_resource_area".)
void resize(idx_t size_in_bits, bool in_resource_area = true);
// Accessing
idx_t size() const { return _size; }
idx_t size_in_words() const {
return word_index(size() + BitsPerWord - 1);
}
bool at(idx_t index) const {
verify_index(index);
return (*word_addr(index) & bit_mask(index)) != 0;
}
// Align bit index up or down to the next bitmap word boundary, or check
// alignment.
static idx_t word_align_up(idx_t bit) {
return align_size_up(bit, BitsPerWord);
}
static idx_t word_align_down(idx_t bit) {
return align_size_down(bit, BitsPerWord);
}
static bool is_word_aligned(idx_t bit) {
return word_align_up(bit) == bit;
}
// Set or clear the specified bit.
inline void set_bit(idx_t bit);
inline void clear_bit(idx_t bit);
// Atomically set or clear the specified bit.
inline bool par_set_bit(idx_t bit);
inline bool par_clear_bit(idx_t bit);
// Put the given value at the given offset. The parallel version
// will CAS the value into the bitmap and is quite a bit slower.
// The parallel version also returns a value indicating if the
// calling thread was the one that changed the value of the bit.
void at_put(idx_t index, bool value);
bool par_at_put(idx_t index, bool value);
// Update a range of bits. Ranges are half-open [beg, end).
void set_range (idx_t beg, idx_t end);
void clear_range (idx_t beg, idx_t end);
void set_large_range (idx_t beg, idx_t end);
void clear_large_range (idx_t beg, idx_t end);
void at_put_range(idx_t beg, idx_t end, bool value);
void par_at_put_range(idx_t beg, idx_t end, bool value);
void at_put_large_range(idx_t beg, idx_t end, bool value);
void par_at_put_large_range(idx_t beg, idx_t end, bool value);
// Update a range of bits, using a hint about the size. Currently only
// inlines the predominant case of a 1-bit range. Works best when hint is a
// compile-time constant.
void set_range(idx_t beg, idx_t end, RangeSizeHint hint);
void clear_range(idx_t beg, idx_t end, RangeSizeHint hint);
void par_set_range(idx_t beg, idx_t end, RangeSizeHint hint);
void par_clear_range (idx_t beg, idx_t end, RangeSizeHint hint);
// It performs the union operation between subsets of equal length
// of two bitmaps (the target bitmap of the method and the
// from_bitmap) and stores the result to the target bitmap. The
// from_start_index represents the first bit index of the subrange
// of the from_bitmap. The to_start_index is the equivalent of the
// target bitmap. Both indexes should be word-aligned, i.e. they
// should correspond to the first bit on a bitmap word (it's up to
// the caller to ensure this; the method does check it). The length
// of the subset is specified with word_num and it is in number of
// bitmap words. The caller should ensure that this is at least 2
// (smaller ranges are not support to save extra checks). Again,
// this is checked in the method.
//
// Atomicity concerns: it is assumed that any contention on the
// target bitmap with other threads will happen on the first and
// last words; the ones in between will be "owned" exclusively by
// the calling thread and, in fact, they will already be 0. So, the
// method performs a CAS on the first word, copies the next
// word_num-2 words, and finally performs a CAS on the last word.
void mostly_disjoint_range_union(BitMap* from_bitmap,
idx_t from_start_index,
idx_t to_start_index,
size_t word_num);
// Clearing
void clear_large();
inline void clear();
// Iteration support. Returns "true" if the iteration completed, false
// if the iteration terminated early (because the closure "blk" returned
// false).
bool iterate(BitMapClosure* blk, idx_t leftIndex, idx_t rightIndex);
bool iterate(BitMapClosure* blk) {
// call the version that takes an interval
return iterate(blk, 0, size());
}
// Looking for 1's and 0's at indices equal to or greater than "l_index",
// stopping if none has been found before "r_index", and returning
// "r_index" (which must be at most "size") in that case.
idx_t get_next_one_offset_inline (idx_t l_index, idx_t r_index) const;
idx_t get_next_zero_offset_inline(idx_t l_index, idx_t r_index) const;
// Like "get_next_one_offset_inline", except requires that "r_index" is
// aligned to bitsizeof(bm_word_t).
idx_t get_next_one_offset_inline_aligned_right(idx_t l_index,
idx_t r_index) const;
// Non-inline versionsof the above.
idx_t get_next_one_offset (idx_t l_index, idx_t r_index) const;
idx_t get_next_zero_offset(idx_t l_index, idx_t r_index) const;
idx_t get_next_one_offset(idx_t offset) const {
return get_next_one_offset(offset, size());
}
idx_t get_next_zero_offset(idx_t offset) const {
return get_next_zero_offset(offset, size());
}
// Returns the number of bits set in the bitmap.
idx_t count_one_bits() const;
// Set operations.
void set_union(BitMap bits);
void set_difference(BitMap bits);
void set_intersection(BitMap bits);
// Returns true iff "this" is a superset of "bits".
bool contains(const BitMap bits) const;
// Returns true iff "this and "bits" have a non-empty intersection.
bool intersects(const BitMap bits) const;
// Returns result of whether this map changed
// during the operation
bool set_union_with_result(BitMap bits);
bool set_difference_with_result(BitMap bits);
bool set_intersection_with_result(BitMap bits);
// Requires the submap of "bits" starting at offset to be at least as
// large as "this". Modifies "this" to be the intersection of its
// current contents and the submap of "bits" starting at "offset" of the
// same length as "this."
// (For expedience, currently requires the offset to be aligned to the
// bitsize of a uintptr_t. This should go away in the future though it
// will probably remain a good case to optimize.)
void set_intersection_at_offset(BitMap bits, idx_t offset);
void set_from(BitMap bits);
bool is_same(BitMap bits);
// Test if all bits are set or cleared
bool is_full() const;
bool is_empty() const;
#ifndef PRODUCT
public:
// Printing
void print_on(outputStream* st) const;
#endif
};
// Convenience class wrapping BitMap which provides multiple bits per slot.
class BitMap2D VALUE_OBJ_CLASS_SPEC {
public:
typedef BitMap::idx_t idx_t; // Type used for bit and word indices.
typedef BitMap::bm_word_t bm_word_t; // Element type of array that
// represents the bitmap.
private:
BitMap _map;
idx_t _bits_per_slot;
idx_t bit_index(idx_t slot_index, idx_t bit_within_slot_index) const {
return slot_index * _bits_per_slot + bit_within_slot_index;
}
void verify_bit_within_slot_index(idx_t index) const {
assert(index < _bits_per_slot, "bit_within_slot index out of bounds");
}
public:
// Construction. bits_per_slot must be greater than 0.
BitMap2D(bm_word_t* map, idx_t size_in_slots, idx_t bits_per_slot);
// Allocates necessary data structure in resource area. bits_per_slot must be greater than 0.
BitMap2D(idx_t size_in_slots, idx_t bits_per_slot);
idx_t size_in_bits() {
return _map.size();
}
// Returns number of full slots that have been allocated
idx_t size_in_slots() {
// Round down
return _map.size() / _bits_per_slot;
}
bool is_valid_index(idx_t slot_index, idx_t bit_within_slot_index) {
verify_bit_within_slot_index(bit_within_slot_index);
return (bit_index(slot_index, bit_within_slot_index) < size_in_bits());
}
bool at(idx_t slot_index, idx_t bit_within_slot_index) const {
verify_bit_within_slot_index(bit_within_slot_index);
return _map.at(bit_index(slot_index, bit_within_slot_index));
}
void set_bit(idx_t slot_index, idx_t bit_within_slot_index) {
verify_bit_within_slot_index(bit_within_slot_index);
_map.set_bit(bit_index(slot_index, bit_within_slot_index));
}
void clear_bit(idx_t slot_index, idx_t bit_within_slot_index) {
verify_bit_within_slot_index(bit_within_slot_index);
_map.clear_bit(bit_index(slot_index, bit_within_slot_index));
}
void at_put(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
verify_bit_within_slot_index(bit_within_slot_index);
_map.at_put(bit_index(slot_index, bit_within_slot_index), value);
}
void at_put_grow(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
verify_bit_within_slot_index(bit_within_slot_index);
_map.at_put_grow(bit_index(slot_index, bit_within_slot_index), value);
}
void clear();
};
// Closure for iterating over BitMaps
class BitMapClosure VALUE_OBJ_CLASS_SPEC {
public:
// Callback when bit in map is set. Should normally return "true";
// return of false indicates that the bitmap iteration should terminate.
virtual bool do_bit(BitMap::idx_t offset) = 0;
};
#endif // SHARE_VM_UTILITIES_BITMAP_HPP