/*
* Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp"
#include "gc/shenandoah/shenandoahForwarding.hpp"
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.hpp"
#include "gc/shenandoah/shenandoahHeuristics.hpp"
#include "gc/shenandoah/shenandoahRuntime.hpp"
#include "gc/shenandoah/shenandoahThreadLocalData.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER1
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp"
#endif
#define __ masm->
address ShenandoahBarrierSetAssembler::_shenandoah_lrb = NULL;
void ShenandoahBarrierSetAssembler::arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count) {
bool dest_uninitialized = (decorators & IS_DEST_UNINITIALIZED) != 0;
if (is_reference_type(type)) {
if ((ShenandoahSATBBarrier && !dest_uninitialized) || ShenandoahLoadRefBarrier) {
#ifdef _LP64
Register thread = r15_thread;
#else
Register thread = rax;
if (thread == src || thread == dst || thread == count) {
thread = rbx;
}
if (thread == src || thread == dst || thread == count) {
thread = rcx;
}
if (thread == src || thread == dst || thread == count) {
thread = rdx;
}
__ push(thread);
__ get_thread(thread);
#endif
assert_different_registers(src, dst, count, thread);
Label done;
// Short-circuit if count == 0.
__ testptr(count, count);
__ jcc(Assembler::zero, done);
// Avoid runtime call when not marking.
Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
int flags = ShenandoahHeap::HAS_FORWARDED;
if (!dest_uninitialized) {
flags |= ShenandoahHeap::MARKING;
}
__ testb(gc_state, flags);
__ jcc(Assembler::zero, done);
__ pusha(); // push registers
#ifdef _LP64
assert(src == rdi, "expected");
assert(dst == rsi, "expected");
assert(count == rdx, "expected");
if (UseCompressedOops) {
if (dest_uninitialized) {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_duinit_narrow_oop_entry), src, dst, count);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_narrow_oop_entry), src, dst, count);
}
} else
#endif
{
if (dest_uninitialized) {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_duinit_oop_entry), src, dst, count);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_oop_entry), src, dst, count);
}
}
__ popa();
__ bind(done);
NOT_LP64(__ pop(thread);)
}
}
}
void ShenandoahBarrierSetAssembler::shenandoah_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
if (ShenandoahSATBBarrier) {
satb_write_barrier_pre(masm, obj, pre_val, thread, tmp, tosca_live, expand_call);
}
}
void ShenandoahBarrierSetAssembler::satb_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
// If expand_call is true then we expand the call_VM_leaf macro
// directly to skip generating the check by
// InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Label done;
Label runtime;
assert(pre_val != noreg, "check this code");
if (obj != noreg) {
assert_different_registers(obj, pre_val, tmp);
assert(pre_val != rax, "check this code");
}
Address in_progress(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset()));
Address index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()));
Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
__ testb(gc_state, ShenandoahHeap::MARKING | ShenandoahHeap::TRAVERSAL);
__ jcc(Assembler::zero, done);
// Do we need to load the previous value?
if (obj != noreg) {
__ load_heap_oop(pre_val, Address(obj, 0), noreg, noreg, AS_RAW);
}
// Is the previous value null?
__ cmpptr(pre_val, (int32_t) NULL_WORD);
__ jcc(Assembler::equal, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
__ movptr(tmp, index); // tmp := *index_adr
__ cmpptr(tmp, 0); // tmp == 0?
__ jcc(Assembler::equal, runtime); // If yes, goto runtime
__ subptr(tmp, wordSize); // tmp := tmp - wordSize
__ movptr(index, tmp); // *index_adr := tmp
__ addptr(tmp, buffer); // tmp := tmp + *buffer_adr
// Record the previous value
__ movptr(Address(tmp, 0), pre_val);
__ jmp(done);
__ bind(runtime);
// save the live input values
if(tosca_live) __ push(rax);
if (obj != noreg && obj != rax)
__ push(obj);
if (pre_val != rax)
__ push(pre_val);
// Calling the runtime using the regular call_VM_leaf mechanism generates
// code (generated by InterpreterMacroAssember::call_VM_leaf_base)
// that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
//
// If we care generating the pre-barrier without a frame (e.g. in the
// intrinsified Reference.get() routine) then ebp might be pointing to
// the caller frame and so this check will most likely fail at runtime.
//
// Expanding the call directly bypasses the generation of the check.
// So when we do not have have a full interpreter frame on the stack
// expand_call should be passed true.
NOT_LP64( __ push(thread); )
#ifdef _LP64
// We move pre_val into c_rarg0 early, in order to avoid smashing it, should
// pre_val be c_rarg1 (where the call prologue would copy thread argument).
// Note: this should not accidentally smash thread, because thread is always r15.
assert(thread != c_rarg0, "smashed arg");
if (c_rarg0 != pre_val) {
__ mov(c_rarg0, pre_val);
}
#endif
if (expand_call) {
LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
#ifdef _LP64
if (c_rarg1 != thread) {
__ mov(c_rarg1, thread);
}
// Already moved pre_val into c_rarg0 above
#else
__ push(thread);
__ push(pre_val);
#endif
__ MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), 2);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), LP64_ONLY(c_rarg0) NOT_LP64(pre_val), thread);
}
NOT_LP64( __ pop(thread); )
// save the live input values
if (pre_val != rax)
__ pop(pre_val);
if (obj != noreg && obj != rax)
__ pop(obj);
if(tosca_live) __ pop(rax);
__ bind(done);
}
void ShenandoahBarrierSetAssembler::load_reference_barrier_not_null(MacroAssembler* masm, Register dst, Address src) {
assert(ShenandoahLoadRefBarrier, "Should be enabled");
Label done;
#ifdef _LP64
Register thread = r15_thread;
#else
Register thread = rcx;
if (thread == dst) {
thread = rbx;
}
__ push(thread);
__ get_thread(thread);
#endif
Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
__ testb(gc_state, ShenandoahHeap::HAS_FORWARDED);
__ jccb(Assembler::zero, done);
// Use rsi for src address
const Register src_addr = rsi;
// Setup address parameter first, if it does not clobber oop in dst
bool need_addr_setup = (src_addr != dst);
if (need_addr_setup) {
__ push(src_addr);
__ lea(src_addr, src);
if (dst != rax) {
// Move obj into rax and save rax
__ push(rax);
__ movptr(rax, dst);
}
} else {
// dst == rsi
__ push(rax);
__ movptr(rax, dst);
// we can clobber it, since it is outgoing register
__ lea(src_addr, src);
}
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, ShenandoahBarrierSetAssembler::shenandoah_lrb())));
if (need_addr_setup) {
if (dst != rax) {
__ movptr(dst, rax);
__ pop(rax);
}
__ pop(src_addr);
} else {
__ movptr(dst, rax);
__ pop(rax);
}
__ bind(done);
#ifndef _LP64
__ pop(thread);
#endif
}
void ShenandoahBarrierSetAssembler::load_reference_barrier_native(MacroAssembler* masm, Register dst, Address src) {
if (!ShenandoahLoadRefBarrier) {
return;
}
Label done;
Label not_null;
Label slow_path;
__ block_comment("load_reference_barrier_native { ");
// null check
__ testptr(dst, dst);
__ jcc(Assembler::notZero, not_null);
__ jmp(done);
__ bind(not_null);
#ifdef _LP64
Register thread = r15_thread;
#else
Register thread = rcx;
if (thread == dst) {
thread = rbx;
}
__ push(thread);
__ get_thread(thread);
#endif
assert_different_registers(dst, thread);
Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
__ testb(gc_state, ShenandoahHeap::EVACUATION);
#ifndef _LP64
__ pop(thread);
#endif
__ jccb(Assembler::notZero, slow_path);
__ jmp(done);
__ bind(slow_path);
if (dst != rax) {
__ push(rax);
}
__ push(rcx);
__ push(rdx);
__ push(rdi);
__ push(rsi);
#ifdef _LP64
__ push(r8);
__ push(r9);
__ push(r10);
__ push(r11);
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
#endif
assert_different_registers(dst, rsi);
__ lea(rsi, src);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_native), dst, rsi);
#ifdef _LP64
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ pop(r11);
__ pop(r10);
__ pop(r9);
__ pop(r8);
#endif
__ pop(rsi);
__ pop(rdi);
__ pop(rdx);
__ pop(rcx);
if (dst != rax) {
__ movptr(dst, rax);
__ pop(rax);
}
__ bind(done);
__ block_comment("load_reference_barrier_native { ");
}
void ShenandoahBarrierSetAssembler::storeval_barrier(MacroAssembler* masm, Register dst, Register tmp) {
if (ShenandoahStoreValEnqueueBarrier) {
storeval_barrier_impl(masm, dst, tmp);
}
}
void ShenandoahBarrierSetAssembler::storeval_barrier_impl(MacroAssembler* masm, Register dst, Register tmp) {
assert(ShenandoahStoreValEnqueueBarrier, "should be enabled");
if (dst == noreg) return;
if (ShenandoahStoreValEnqueueBarrier) {
// The set of registers to be saved+restored is the same as in the write-barrier above.
// Those are the commonly used registers in the interpreter.
__ pusha();
// __ push_callee_saved_registers();
__ subptr(rsp, 2 * Interpreter::stackElementSize);
__ movdbl(Address(rsp, 0), xmm0);
#ifdef _LP64
Register thread = r15_thread;
#else
Register thread = rcx;
if (thread == dst || thread == tmp) {
thread = rdi;
}
if (thread == dst || thread == tmp) {
thread = rbx;
}
__ get_thread(thread);
#endif
assert_different_registers(dst, tmp, thread);
satb_write_barrier_pre(masm, noreg, dst, thread, tmp, true, false);
__ movdbl(xmm0, Address(rsp, 0));
__ addptr(rsp, 2 * Interpreter::stackElementSize);
//__ pop_callee_saved_registers();
__ popa();
}
}
void ShenandoahBarrierSetAssembler::load_reference_barrier(MacroAssembler* masm, Register dst, Address src) {
if (ShenandoahLoadRefBarrier) {
Label done;
__ testptr(dst, dst);
__ jcc(Assembler::zero, done);
load_reference_barrier_not_null(masm, dst, src);
__ bind(done);
}
}
void ShenandoahBarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread) {
bool on_oop = is_reference_type(type);
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool not_in_heap = (decorators & IN_NATIVE) != 0;
bool on_reference = on_weak || on_phantom;
bool is_traversal_mode = ShenandoahHeap::heap()->is_traversal_mode();
bool keep_alive = ((decorators & AS_NO_KEEPALIVE) == 0) || is_traversal_mode;
Register result_dst = dst;
bool use_tmp1_for_dst = false;
if (on_oop) {
// We want to preserve src
if (dst == src.base() || dst == src.index()) {
// Use tmp1 for dst if possible, as it is not used in BarrierAssembler::load_at()
if (tmp1->is_valid() && tmp1 != src.base() && tmp1 != src.index()) {
dst = tmp1;
use_tmp1_for_dst = true;
} else {
dst = rdi;
__ push(dst);
}
}
assert_different_registers(dst, src.base(), src.index());
}
BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
if (on_oop) {
if (not_in_heap && !is_traversal_mode) {
load_reference_barrier_native(masm, dst, src);
} else {
load_reference_barrier(masm, dst, src);
}
if (dst != result_dst) {
__ movptr(result_dst, dst);
if (!use_tmp1_for_dst) {
__ pop(dst);
}
dst = result_dst;
}
if (ShenandoahKeepAliveBarrier && on_reference && keep_alive) {
const Register thread = NOT_LP64(tmp_thread) LP64_ONLY(r15_thread);
assert_different_registers(dst, tmp1, tmp_thread);
NOT_LP64(__ get_thread(thread));
// Generate the SATB pre-barrier code to log the value of
// the referent field in an SATB buffer.
shenandoah_write_barrier_pre(masm /* masm */,
noreg /* obj */,
dst /* pre_val */,
thread /* thread */,
tmp1 /* tmp */,
true /* tosca_live */,
true /* expand_call */);
}
}
}
void ShenandoahBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
bool on_oop = is_reference_type(type);
bool in_heap = (decorators & IN_HEAP) != 0;
bool as_normal = (decorators & AS_NORMAL) != 0;
if (on_oop && in_heap) {
bool needs_pre_barrier = as_normal;
Register tmp3 = LP64_ONLY(r8) NOT_LP64(rsi);
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
// flatten object address if needed
// We do it regardless of precise because we need the registers
if (dst.index() == noreg && dst.disp() == 0) {
if (dst.base() != tmp1) {
__ movptr(tmp1, dst.base());
}
} else {
__ lea(tmp1, dst);
}
assert_different_registers(val, tmp1, tmp2, tmp3, rthread);
#ifndef _LP64
__ get_thread(rthread);
InterpreterMacroAssembler *imasm = static_cast<InterpreterMacroAssembler*>(masm);
imasm->save_bcp();
#endif
if (needs_pre_barrier) {
shenandoah_write_barrier_pre(masm /*masm*/,
tmp1 /* obj */,
tmp2 /* pre_val */,
rthread /* thread */,
tmp3 /* tmp */,
val != noreg /* tosca_live */,
false /* expand_call */);
}
if (val == noreg) {
BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg);
} else {
storeval_barrier(masm, val, tmp3);
BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg);
}
NOT_LP64(imasm->restore_bcp());
} else {
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2);
}
}
void ShenandoahBarrierSetAssembler::try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env,
Register obj, Register tmp, Label& slowpath) {
Label done;
// Resolve jobject
BarrierSetAssembler::try_resolve_jobject_in_native(masm, jni_env, obj, tmp, slowpath);
// Check for null.
__ testptr(obj, obj);
__ jcc(Assembler::zero, done);
Address gc_state(jni_env, ShenandoahThreadLocalData::gc_state_offset() - JavaThread::jni_environment_offset());
__ testb(gc_state, ShenandoahHeap::EVACUATION);
__ jccb(Assembler::notZero, slowpath);
__ bind(done);
}
// Special Shenandoah CAS implementation that handles false negatives
// due to concurrent evacuation.
void ShenandoahBarrierSetAssembler::cmpxchg_oop(MacroAssembler* masm,
Register res, Address addr, Register oldval, Register newval,
bool exchange, Register tmp1, Register tmp2) {
assert(ShenandoahCASBarrier, "Should only be used when CAS barrier is enabled");
assert(oldval == rax, "must be in rax for implicit use in cmpxchg");
assert_different_registers(oldval, newval, tmp1, tmp2);
Label L_success, L_failure;
// Remember oldval for retry logic below
#ifdef _LP64
if (UseCompressedOops) {
__ movl(tmp1, oldval);
} else
#endif
{
__ movptr(tmp1, oldval);
}
// Step 1. Fast-path.
//
// Try to CAS with given arguments. If successful, then we are done.
if (os::is_MP()) __ lock();
#ifdef _LP64
if (UseCompressedOops) {
__ cmpxchgl(newval, addr);
} else
#endif
{
__ cmpxchgptr(newval, addr);
}
__ jcc(Assembler::equal, L_success);
// Step 2. CAS had failed. This may be a false negative.
//
// The trouble comes when we compare the to-space pointer with the from-space
// pointer to the same object. To resolve this, it will suffice to resolve
// the value from memory -- this will give both to-space pointers.
// If they mismatch, then it was a legitimate failure.
//
// Before reaching to resolve sequence, see if we can avoid the whole shebang
// with filters.
// Filter: when offending in-memory value is NULL, the failure is definitely legitimate
__ testptr(oldval, oldval);
__ jcc(Assembler::zero, L_failure);
// Filter: when heap is stable, the failure is definitely legitimate
#ifdef _LP64
const Register thread = r15_thread;
#else
const Register thread = tmp2;
__ get_thread(thread);
#endif
Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
__ testb(gc_state, ShenandoahHeap::HAS_FORWARDED);
__ jcc(Assembler::zero, L_failure);
#ifdef _LP64
if (UseCompressedOops) {
__ movl(tmp2, oldval);
__ decode_heap_oop(tmp2);
} else
#endif
{
__ movptr(tmp2, oldval);
}
// Decode offending in-memory value.
// Test if-forwarded
__ testb(Address(tmp2, oopDesc::mark_offset_in_bytes()), markWord::marked_value);
__ jcc(Assembler::noParity, L_failure); // When odd number of bits, then not forwarded
__ jcc(Assembler::zero, L_failure); // When it is 00, then also not forwarded
// Load and mask forwarding pointer
__ movptr(tmp2, Address(tmp2, oopDesc::mark_offset_in_bytes()));
__ shrptr(tmp2, 2);
__ shlptr(tmp2, 2);
#ifdef _LP64
if (UseCompressedOops) {
__ decode_heap_oop(tmp1); // decode for comparison
}
#endif
// Now we have the forwarded offender in tmp2.
// Compare and if they don't match, we have legitimate failure
__ cmpptr(tmp1, tmp2);
__ jcc(Assembler::notEqual, L_failure);
// Step 3. Need to fix the memory ptr before continuing.
//
// At this point, we have from-space oldval in the register, and its to-space
// address is in tmp2. Let's try to update it into memory. We don't care if it
// succeeds or not. If it does, then the retrying CAS would see it and succeed.
// If this fixup fails, this means somebody else beat us to it, and necessarily
// with to-space ptr store. We still have to do the retry, because the GC might
// have updated the reference for us.
#ifdef _LP64
if (UseCompressedOops) {
__ encode_heap_oop(tmp2); // previously decoded at step 2.
}
#endif
if (os::is_MP()) __ lock();
#ifdef _LP64
if (UseCompressedOops) {
__ cmpxchgl(tmp2, addr);
} else
#endif
{
__ cmpxchgptr(tmp2, addr);
}
// Step 4. Try to CAS again.
//
// This is guaranteed not to have false negatives, because oldval is definitely
// to-space, and memory pointer is to-space as well. Nothing is able to store
// from-space ptr into memory anymore. Make sure oldval is restored, after being
// garbled during retries.
//
#ifdef _LP64
if (UseCompressedOops) {
__ movl(oldval, tmp2);
} else
#endif
{
__ movptr(oldval, tmp2);
}
if (os::is_MP()) __ lock();
#ifdef _LP64
if (UseCompressedOops) {
__ cmpxchgl(newval, addr);
} else
#endif
{
__ cmpxchgptr(newval, addr);
}
if (!exchange) {
__ jccb(Assembler::equal, L_success); // fastpath, peeking into Step 5, no need to jump
}
// Step 5. If we need a boolean result out of CAS, set the flag appropriately.
// and promote the result. Note that we handle the flag from both the 1st and 2nd CAS.
// Otherwise, failure witness for CAE is in oldval on all paths, and we can return.
if (exchange) {
__ bind(L_failure);
__ bind(L_success);
} else {
assert(res != NULL, "need result register");
Label exit;
__ bind(L_failure);
__ xorptr(res, res);
__ jmpb(exit);
__ bind(L_success);
__ movptr(res, 1);
__ bind(exit);
}
}
#undef __
#ifdef COMPILER1
#define __ ce->masm()->
void ShenandoahBarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, ShenandoahPreBarrierStub* stub) {
ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
// At this point we know that marking is in progress.
// If do_load() is true then we have to emit the
// load of the previous value; otherwise it has already
// been loaded into _pre_val.
__ bind(*stub->entry());
assert(stub->pre_val()->is_register(), "Precondition.");
Register pre_val_reg = stub->pre_val()->as_register();
if (stub->do_load()) {
ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/, false /*unaligned*/);
}
__ cmpptr(pre_val_reg, (int32_t)NULL_WORD);
__ jcc(Assembler::equal, *stub->continuation());
ce->store_parameter(stub->pre_val()->as_register(), 0);
__ call(RuntimeAddress(bs->pre_barrier_c1_runtime_code_blob()->code_begin()));
__ jmp(*stub->continuation());
}
void ShenandoahBarrierSetAssembler::gen_load_reference_barrier_stub(LIR_Assembler* ce, ShenandoahLoadReferenceBarrierStub* stub) {
ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
__ bind(*stub->entry());
Register obj = stub->obj()->as_register();
Register res = stub->result()->as_register();
Register addr = stub->addr()->as_register();
Register tmp1 = stub->tmp1()->as_register();
Register tmp2 = stub->tmp2()->as_register();
assert_different_registers(obj, res, addr, tmp1, tmp2);
Label slow_path;
assert(res == rax, "result must arrive in rax");
if (res != obj) {
__ mov(res, obj);
}
// Check for null.
__ testptr(res, res);
__ jcc(Assembler::zero, *stub->continuation());
// Check for object being in the collection set.
__ mov(tmp1, res);
__ shrptr(tmp1, ShenandoahHeapRegion::region_size_bytes_shift_jint());
__ movptr(tmp2, (intptr_t) ShenandoahHeap::in_cset_fast_test_addr());
#ifdef _LP64
__ movbool(tmp2, Address(tmp2, tmp1, Address::times_1));
__ testbool(tmp2);
#else
// On x86_32, C1 register allocator can give us the register without 8-bit support.
// Do the full-register access and test to avoid compilation failures.
__ movptr(tmp2, Address(tmp2, tmp1, Address::times_1));
__ testptr(tmp2, 0xFF);
#endif
__ jcc(Assembler::zero, *stub->continuation());
__ bind(slow_path);
ce->store_parameter(res, 0);
ce->store_parameter(addr, 1);
__ call(RuntimeAddress(bs->load_reference_barrier_rt_code_blob()->code_begin()));
__ jmp(*stub->continuation());
}
#undef __
#define __ sasm->
void ShenandoahBarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) {
__ prologue("shenandoah_pre_barrier", false);
// arg0 : previous value of memory
__ push(rax);
__ push(rdx);
const Register pre_val = rax;
const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
const Register tmp = rdx;
NOT_LP64(__ get_thread(thread);)
Address queue_index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()));
Label done;
Label runtime;
// Is SATB still active?
Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
__ testb(gc_state, ShenandoahHeap::MARKING | ShenandoahHeap::TRAVERSAL);
__ jcc(Assembler::zero, done);
// Can we store original value in the thread's buffer?
__ movptr(tmp, queue_index);
__ testptr(tmp, tmp);
__ jcc(Assembler::zero, runtime);
__ subptr(tmp, wordSize);
__ movptr(queue_index, tmp);
__ addptr(tmp, buffer);
// prev_val (rax)
__ load_parameter(0, pre_val);
__ movptr(Address(tmp, 0), pre_val);
__ jmp(done);
__ bind(runtime);
__ save_live_registers_no_oop_map(true);
// load the pre-value
__ load_parameter(0, rcx);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), rcx, thread);
__ restore_live_registers(true);
__ bind(done);
__ pop(rdx);
__ pop(rax);
__ epilogue();
}
void ShenandoahBarrierSetAssembler::generate_c1_load_reference_barrier_runtime_stub(StubAssembler* sasm) {
__ prologue("shenandoah_load_reference_barrier", false);
// arg0 : object to be resolved
__ save_live_registers_no_oop_map(true);
#ifdef _LP64
__ load_parameter(0, c_rarg0);
__ load_parameter(1, c_rarg1);
if (UseCompressedOops) {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow), c_rarg0, c_rarg1);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), c_rarg0, c_rarg1);
}
#else
__ load_parameter(0, rax);
__ load_parameter(1, rbx);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), rax, rbx);
#endif
__ restore_live_registers_except_rax(true);
__ epilogue();
}
#undef __
#endif // COMPILER1
address ShenandoahBarrierSetAssembler::shenandoah_lrb() {
assert(_shenandoah_lrb != NULL, "need load reference barrier stub");
return _shenandoah_lrb;
}
#define __ cgen->assembler()->
/*
* Incoming parameters:
* rax: oop
* rsi: load address
*/
address ShenandoahBarrierSetAssembler::generate_shenandoah_lrb(StubCodeGenerator* cgen) {
__ align(CodeEntryAlignment);
StubCodeMark mark(cgen, "StubRoutines", "shenandoah_lrb");
address start = __ pc();
Label resolve_oop, slow_path;
// We use RDI, which also serves as argument register for slow call.
// RAX always holds the src object ptr, except after the slow call,
// then it holds the result. R8/RBX is used as temporary register.
Register tmp1 = rdi;
Register tmp2 = LP64_ONLY(r8) NOT_LP64(rbx);
__ push(tmp1);
__ push(tmp2);
// Check for object being in the collection set.
__ mov(tmp1, rax);
__ shrptr(tmp1, ShenandoahHeapRegion::region_size_bytes_shift_jint());
__ movptr(tmp2, (intptr_t) ShenandoahHeap::in_cset_fast_test_addr());
__ movbool(tmp2, Address(tmp2, tmp1, Address::times_1));
__ testbool(tmp2);
__ jccb(Assembler::notZero, resolve_oop);
__ pop(tmp2);
__ pop(tmp1);
__ ret(0);
// Test if object is already resolved.
__ bind(resolve_oop);
__ movptr(tmp2, Address(rax, oopDesc::mark_offset_in_bytes()));
// Test if both lowest bits are set. We trick it by negating the bits
// then test for both bits clear.
__ notptr(tmp2);
__ testb(tmp2, markWord::marked_value);
__ jccb(Assembler::notZero, slow_path);
// Clear both lower bits. It's still inverted, so set them, and then invert back.
__ orptr(tmp2, markWord::marked_value);
__ notptr(tmp2);
// At this point, tmp2 contains the decoded forwarding pointer.
__ mov(rax, tmp2);
__ pop(tmp2);
__ pop(tmp1);
__ ret(0);
__ bind(slow_path);
__ push(rcx);
__ push(rdx);
__ push(rdi);
#ifdef _LP64
__ push(r8);
__ push(r9);
__ push(r10);
__ push(r11);
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
#endif
__ push(rbp);
__ movptr(rbp, rsp);
__ andptr(rsp, -StackAlignmentInBytes);
__ push_FPU_state();
if (UseCompressedOops) {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow), rax, rsi);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), rax, rsi);
}
__ pop_FPU_state();
__ movptr(rsp, rbp);
__ pop(rbp);
#ifdef _LP64
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ pop(r11);
__ pop(r10);
__ pop(r9);
__ pop(r8);
#endif
__ pop(rdi);
__ pop(rdx);
__ pop(rcx);
__ pop(tmp2);
__ pop(tmp1);
__ ret(0);
return start;
}
#undef __
void ShenandoahBarrierSetAssembler::barrier_stubs_init() {
if (ShenandoahLoadRefBarrier) {
int stub_code_size = 4096;
ResourceMark rm;
BufferBlob* bb = BufferBlob::create("shenandoah_barrier_stubs", stub_code_size);
CodeBuffer buf(bb);
StubCodeGenerator cgen(&buf);
_shenandoah_lrb = generate_shenandoah_lrb(&cgen);
}
}