8198949: Modularize arraycopy stub routine GC barriers
Reviewed-by: rkennke, pliden
/*
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.inline.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interp_masm_arm.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "logging/log.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markOop.hpp"
#include "oops/method.hpp"
#include "oops/methodData.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
//--------------------------------------------------------------------
// Implementation of InterpreterMacroAssembler
InterpreterMacroAssembler::InterpreterMacroAssembler(CodeBuffer* code) : MacroAssembler(code) {
}
void InterpreterMacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
#if defined(ASSERT) && !defined(AARCH64)
// Ensure that last_sp is not filled.
{ Label L;
ldr(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
cbz(Rtemp, L);
stop("InterpreterMacroAssembler::call_VM_helper: last_sp != NULL");
bind(L);
}
#endif // ASSERT && !AARCH64
// Rbcp must be saved/restored since it may change due to GC.
save_bcp();
#ifdef AARCH64
check_no_cached_stack_top(Rtemp);
save_stack_top();
check_extended_sp(Rtemp);
cut_sp_before_call();
#endif // AARCH64
// super call
MacroAssembler::call_VM_helper(oop_result, entry_point, number_of_arguments, check_exceptions);
#ifdef AARCH64
// Restore SP to extended SP
restore_sp_after_call(Rtemp);
check_stack_top();
clear_cached_stack_top();
#endif // AARCH64
// Restore interpreter specific registers.
restore_bcp();
restore_method();
}
void InterpreterMacroAssembler::jump_to_entry(address entry) {
assert(entry, "Entry must have been generated by now");
b(entry);
}
void InterpreterMacroAssembler::check_and_handle_popframe() {
if (can_pop_frame()) {
Label L;
const Register popframe_cond = R2_tmp;
// Initiate popframe handling only if it is not already being processed. If the flag
// has the popframe_processing bit set, it means that this code is called *during* popframe
// handling - we don't want to reenter.
ldr_s32(popframe_cond, Address(Rthread, JavaThread::popframe_condition_offset()));
tbz(popframe_cond, exact_log2(JavaThread::popframe_pending_bit), L);
tbnz(popframe_cond, exact_log2(JavaThread::popframe_processing_bit), L);
// Call Interpreter::remove_activation_preserving_args_entry() to get the
// address of the same-named entrypoint in the generated interpreter code.
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
// Call indirectly to avoid generation ordering problem.
jump(R0);
bind(L);
}
}
// Blows R2, Rtemp. Sets TOS cached value.
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
const Register thread_state = R2_tmp;
ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
const Address tos_addr(thread_state, JvmtiThreadState::earlyret_tos_offset());
const Address oop_addr(thread_state, JvmtiThreadState::earlyret_oop_offset());
const Address val_addr(thread_state, JvmtiThreadState::earlyret_value_offset());
#ifndef AARCH64
const Address val_addr_hi(thread_state, JvmtiThreadState::earlyret_value_offset()
+ in_ByteSize(wordSize));
#endif // !AARCH64
Register zero = zero_register(Rtemp);
switch (state) {
case atos: ldr(R0_tos, oop_addr);
str(zero, oop_addr);
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
break;
#ifdef AARCH64
case ltos: ldr(R0_tos, val_addr); break;
#else
case ltos: ldr(R1_tos_hi, val_addr_hi); // fall through
#endif // AARCH64
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: ldr_s32(R0_tos, val_addr); break;
#ifdef __SOFTFP__
case dtos: ldr(R1_tos_hi, val_addr_hi); // fall through
case ftos: ldr(R0_tos, val_addr); break;
#else
case ftos: ldr_float (S0_tos, val_addr); break;
case dtos: ldr_double(D0_tos, val_addr); break;
#endif // __SOFTFP__
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
// Clean up tos value in the thread object
str(zero, val_addr);
#ifndef AARCH64
str(zero, val_addr_hi);
#endif // !AARCH64
mov(Rtemp, (int) ilgl);
str_32(Rtemp, tos_addr);
}
// Blows R2, Rtemp.
void InterpreterMacroAssembler::check_and_handle_earlyret() {
if (can_force_early_return()) {
Label L;
const Register thread_state = R2_tmp;
ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
cbz(thread_state, L); // if (thread->jvmti_thread_state() == NULL) exit;
// Initiate earlyret handling only if it is not already being processed.
// If the flag has the earlyret_processing bit set, it means that this code
// is called *during* earlyret handling - we don't want to reenter.
ldr_s32(Rtemp, Address(thread_state, JvmtiThreadState::earlyret_state_offset()));
cmp(Rtemp, JvmtiThreadState::earlyret_pending);
b(L, ne);
// Call Interpreter::remove_activation_early_entry() to get the address of the
// same-named entrypoint in the generated interpreter code.
ldr_s32(R0, Address(thread_state, JvmtiThreadState::earlyret_tos_offset()));
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), R0);
jump(R0);
bind(L);
}
}
// Sets reg. Blows Rtemp.
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
assert(reg != Rtemp, "should be different registers");
ldrb(Rtemp, Address(Rbcp, bcp_offset));
ldrb(reg, Address(Rbcp, bcp_offset+1));
orr(reg, reg, AsmOperand(Rtemp, lsl, BitsPerByte));
}
void InterpreterMacroAssembler::get_index_at_bcp(Register index, int bcp_offset, Register tmp_reg, size_t index_size) {
assert_different_registers(index, tmp_reg);
if (index_size == sizeof(u2)) {
// load bytes of index separately to avoid unaligned access
ldrb(index, Address(Rbcp, bcp_offset+1));
ldrb(tmp_reg, Address(Rbcp, bcp_offset));
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
} else if (index_size == sizeof(u4)) {
// TODO-AARCH64: consider using unaligned access here
ldrb(index, Address(Rbcp, bcp_offset+3));
ldrb(tmp_reg, Address(Rbcp, bcp_offset+2));
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
ldrb(tmp_reg, Address(Rbcp, bcp_offset+1));
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
ldrb(tmp_reg, Address(Rbcp, bcp_offset));
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
// Check if the secondary index definition is still ~x, otherwise
// we have to change the following assembler code to calculate the
// plain index.
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
mvn_32(index, index); // convert to plain index
} else if (index_size == sizeof(u1)) {
ldrb(index, Address(Rbcp, bcp_offset));
} else {
ShouldNotReachHere();
}
}
// Sets cache, index.
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset, size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
assert_different_registers(cache, index);
get_index_at_bcp(index, bcp_offset, cache, index_size);
// load constant pool cache pointer
ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
// convert from field index to ConstantPoolCacheEntry index
assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
// TODO-AARCH64 merge this shift with shift "add(..., Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord))" after this method is called
logical_shift_left(index, index, 2);
}
// Sets cache, index, bytecode.
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size) {
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
// caution index and bytecode can be the same
add(bytecode, cache, AsmOperand(index, lsl, LogBytesPerWord));
#ifdef AARCH64
add(bytecode, bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
ldarb(bytecode, bytecode);
#else
ldrb(bytecode, Address(bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())));
TemplateTable::volatile_barrier(MacroAssembler::LoadLoad, noreg, true);
#endif // AARCH64
}
// Sets cache. Blows reg_tmp.
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register reg_tmp, int bcp_offset, size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
assert_different_registers(cache, reg_tmp);
get_index_at_bcp(reg_tmp, bcp_offset, cache, index_size);
// load constant pool cache pointer
ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
// skip past the header
add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
// convert from field index to ConstantPoolCacheEntry index
// and from word offset to byte offset
assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
add(cache, cache, AsmOperand(reg_tmp, lsl, 2 + LogBytesPerWord));
}
// Load object from cpool->resolved_references(index)
void InterpreterMacroAssembler::load_resolved_reference_at_index(
Register result, Register index) {
assert_different_registers(result, index);
get_constant_pool(result);
Register cache = result;
// load pointer for resolved_references[] objArray
ldr(cache, Address(result, ConstantPool::cache_offset_in_bytes()));
ldr(cache, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
resolve_oop_handle(cache);
// Add in the index
// convert from field index to resolved_references() index and from
// word index to byte offset. Since this is a java object, it can be compressed
add(cache, cache, AsmOperand(index, lsl, LogBytesPerHeapOop));
load_heap_oop(result, Address(cache, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
}
void InterpreterMacroAssembler::load_resolved_klass_at_offset(
Register Rcpool, Register Rindex, Register Rklass) {
add(Rtemp, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
ldrh(Rtemp, Address(Rtemp, sizeof(ConstantPool))); // Rtemp = resolved_klass_index
ldr(Rklass, Address(Rcpool, ConstantPool::resolved_klasses_offset_in_bytes())); // Rklass = cpool->_resolved_klasses
add(Rklass, Rklass, AsmOperand(Rtemp, lsl, LogBytesPerWord));
ldr(Rklass, Address(Rklass, Array<Klass*>::base_offset_in_bytes()));
}
// Generate a subtype check: branch to not_subtype if sub_klass is
// not a subtype of super_klass.
// Profiling code for the subtype check failure (profile_typecheck_failed)
// should be explicitly generated by the caller in the not_subtype case.
// Blows Rtemp, tmp1, tmp2.
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
Register Rsuper_klass,
Label ¬_subtype,
Register tmp1,
Register tmp2) {
assert_different_registers(Rsub_klass, Rsuper_klass, tmp1, tmp2, Rtemp);
Label ok_is_subtype, loop, update_cache;
const Register super_check_offset = tmp1;
const Register cached_super = tmp2;
// Profile the not-null value's klass.
profile_typecheck(tmp1, Rsub_klass);
// Load the super-klass's check offset into
ldr_u32(super_check_offset, Address(Rsuper_klass, Klass::super_check_offset_offset()));
// Check for self
cmp(Rsub_klass, Rsuper_klass);
// Load from the sub-klass's super-class display list, or a 1-word cache of
// the secondary superclass list, or a failing value with a sentinel offset
// if the super-klass is an interface or exceptionally deep in the Java
// hierarchy and we have to scan the secondary superclass list the hard way.
// See if we get an immediate positive hit
ldr(cached_super, Address(Rsub_klass, super_check_offset));
cond_cmp(Rsuper_klass, cached_super, ne);
b(ok_is_subtype, eq);
// Check for immediate negative hit
cmp(super_check_offset, in_bytes(Klass::secondary_super_cache_offset()));
b(not_subtype, ne);
// Now do a linear scan of the secondary super-klass chain.
const Register supers_arr = tmp1;
const Register supers_cnt = tmp2;
const Register cur_super = Rtemp;
// Load objArrayOop of secondary supers.
ldr(supers_arr, Address(Rsub_klass, Klass::secondary_supers_offset()));
ldr_u32(supers_cnt, Address(supers_arr, Array<Klass*>::length_offset_in_bytes())); // Load the array length
#ifdef AARCH64
cbz(supers_cnt, not_subtype);
add(supers_arr, supers_arr, Array<Klass*>::base_offset_in_bytes());
#else
cmp(supers_cnt, 0);
// Skip to the start of array elements and prefetch the first super-klass.
ldr(cur_super, Address(supers_arr, Array<Klass*>::base_offset_in_bytes(), pre_indexed), ne);
b(not_subtype, eq);
#endif // AARCH64
bind(loop);
#ifdef AARCH64
ldr(cur_super, Address(supers_arr, wordSize, post_indexed));
#endif // AARCH64
cmp(cur_super, Rsuper_klass);
b(update_cache, eq);
subs(supers_cnt, supers_cnt, 1);
#ifndef AARCH64
ldr(cur_super, Address(supers_arr, wordSize, pre_indexed), ne);
#endif // !AARCH64
b(loop, ne);
b(not_subtype);
bind(update_cache);
// Must be equal but missed in cache. Update cache.
str(Rsuper_klass, Address(Rsub_klass, Klass::secondary_super_cache_offset()));
bind(ok_is_subtype);
}
// The 1st part of the store check.
// Sets card_table_base register.
void InterpreterMacroAssembler::store_check_part1(Register card_table_base) {
// Check barrier set type (should be card table) and element size
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableBarrierSet,
"Wrong barrier set kind");
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "Adjust store check code");
// Load card table base address.
/* Performance note.
There is an alternative way of loading card table base address
from thread descriptor, which may look more efficient:
ldr(card_table_base, Address(Rthread, JavaThread::card_table_base_offset()));
However, performance measurements of micro benchmarks and specJVM98
showed that loading of card table base from thread descriptor is
7-18% slower compared to loading of literal embedded into the code.
Possible cause is a cache miss (card table base address resides in a
rarely accessed area of thread descriptor).
*/
// TODO-AARCH64 Investigate if mov_slow is faster than ldr from Rthread on AArch64
mov_address(card_table_base, (address)ct->byte_map_base(), symbolic_Relocation::card_table_reference);
}
// The 2nd part of the store check.
void InterpreterMacroAssembler::store_check_part2(Register obj, Register card_table_base, Register tmp) {
assert_different_registers(obj, card_table_base, tmp);
assert(CardTable::dirty_card_val() == 0, "Dirty card value must be 0 due to optimizations.");
#ifdef AARCH64
add(card_table_base, card_table_base, AsmOperand(obj, lsr, CardTable::card_shift));
Address card_table_addr(card_table_base);
#else
Address card_table_addr(card_table_base, obj, lsr, CardTable::card_shift);
#endif
if (UseCondCardMark) {
if (UseConcMarkSweepGC) {
membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad), noreg);
}
Label already_dirty;
ldrb(tmp, card_table_addr);
cbz(tmp, already_dirty);
set_card(card_table_base, card_table_addr, tmp);
bind(already_dirty);
} else {
if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore), noreg);
}
set_card(card_table_base, card_table_addr, tmp);
}
}
void InterpreterMacroAssembler::set_card(Register card_table_base, Address card_table_addr, Register tmp) {
#ifdef AARCH64
strb(ZR, card_table_addr);
#else
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(Universe::heap()->barrier_set());
CardTable* ct = ctbs->card_table();
if ((((uintptr_t)ct->byte_map_base() & 0xff) == 0)) {
// Card table is aligned so the lowest byte of the table address base is zero.
// This works only if the code is not saved for later use, possibly
// in a context where the base would no longer be aligned.
strb(card_table_base, card_table_addr);
} else {
mov(tmp, 0);
strb(tmp, card_table_addr);
}
#endif // AARCH64
}
//////////////////////////////////////////////////////////////////////////////////
// Java Expression Stack
void InterpreterMacroAssembler::pop_ptr(Register r) {
assert(r != Rstack_top, "unpredictable instruction");
ldr(r, Address(Rstack_top, wordSize, post_indexed));
}
void InterpreterMacroAssembler::pop_i(Register r) {
assert(r != Rstack_top, "unpredictable instruction");
ldr_s32(r, Address(Rstack_top, wordSize, post_indexed));
zap_high_non_significant_bits(r);
}
#ifdef AARCH64
void InterpreterMacroAssembler::pop_l(Register r) {
assert(r != Rstack_top, "unpredictable instruction");
ldr(r, Address(Rstack_top, 2*wordSize, post_indexed));
}
#else
void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
assert_different_registers(lo, hi);
assert(lo < hi, "lo must be < hi");
pop(RegisterSet(lo) | RegisterSet(hi));
}
#endif // AARCH64
void InterpreterMacroAssembler::pop_f(FloatRegister fd) {
#ifdef AARCH64
ldr_s(fd, Address(Rstack_top, wordSize, post_indexed));
#else
fpops(fd);
#endif // AARCH64
}
void InterpreterMacroAssembler::pop_d(FloatRegister fd) {
#ifdef AARCH64
ldr_d(fd, Address(Rstack_top, 2*wordSize, post_indexed));
#else
fpopd(fd);
#endif // AARCH64
}
// Transition vtos -> state. Blows R0, R1. Sets TOS cached value.
void InterpreterMacroAssembler::pop(TosState state) {
switch (state) {
case atos: pop_ptr(R0_tos); break;
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: pop_i(R0_tos); break;
#ifdef AARCH64
case ltos: pop_l(R0_tos); break;
#else
case ltos: pop_l(R0_tos_lo, R1_tos_hi); break;
#endif // AARCH64
#ifdef __SOFTFP__
case ftos: pop_i(R0_tos); break;
case dtos: pop_l(R0_tos_lo, R1_tos_hi); break;
#else
case ftos: pop_f(S0_tos); break;
case dtos: pop_d(D0_tos); break;
#endif // __SOFTFP__
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
}
void InterpreterMacroAssembler::push_ptr(Register r) {
assert(r != Rstack_top, "unpredictable instruction");
str(r, Address(Rstack_top, -wordSize, pre_indexed));
check_stack_top_on_expansion();
}
void InterpreterMacroAssembler::push_i(Register r) {
assert(r != Rstack_top, "unpredictable instruction");
str_32(r, Address(Rstack_top, -wordSize, pre_indexed));
check_stack_top_on_expansion();
}
#ifdef AARCH64
void InterpreterMacroAssembler::push_l(Register r) {
assert(r != Rstack_top, "unpredictable instruction");
stp(r, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
check_stack_top_on_expansion();
}
#else
void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
assert_different_registers(lo, hi);
assert(lo < hi, "lo must be < hi");
push(RegisterSet(lo) | RegisterSet(hi));
}
#endif // AARCH64
void InterpreterMacroAssembler::push_f() {
#ifdef AARCH64
str_s(S0_tos, Address(Rstack_top, -wordSize, pre_indexed));
check_stack_top_on_expansion();
#else
fpushs(S0_tos);
#endif // AARCH64
}
void InterpreterMacroAssembler::push_d() {
#ifdef AARCH64
str_d(D0_tos, Address(Rstack_top, -2*wordSize, pre_indexed));
check_stack_top_on_expansion();
#else
fpushd(D0_tos);
#endif // AARCH64
}
// Transition state -> vtos. Blows Rtemp.
void InterpreterMacroAssembler::push(TosState state) {
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
switch (state) {
case atos: push_ptr(R0_tos); break;
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: push_i(R0_tos); break;
#ifdef AARCH64
case ltos: push_l(R0_tos); break;
#else
case ltos: push_l(R0_tos_lo, R1_tos_hi); break;
#endif // AARCH64
#ifdef __SOFTFP__
case ftos: push_i(R0_tos); break;
case dtos: push_l(R0_tos_lo, R1_tos_hi); break;
#else
case ftos: push_f(); break;
case dtos: push_d(); break;
#endif // __SOFTFP__
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
}
#ifndef AARCH64
// Converts return value in R0/R1 (interpreter calling conventions) to TOS cached value.
void InterpreterMacroAssembler::convert_retval_to_tos(TosState state) {
#if (!defined __SOFTFP__ && !defined __ABI_HARD__)
// According to interpreter calling conventions, result is returned in R0/R1,
// but templates expect ftos in S0, and dtos in D0.
if (state == ftos) {
fmsr(S0_tos, R0);
} else if (state == dtos) {
fmdrr(D0_tos, R0, R1);
}
#endif // !__SOFTFP__ && !__ABI_HARD__
}
// Converts TOS cached value to return value in R0/R1 (according to interpreter calling conventions).
void InterpreterMacroAssembler::convert_tos_to_retval(TosState state) {
#if (!defined __SOFTFP__ && !defined __ABI_HARD__)
// According to interpreter calling conventions, result is returned in R0/R1,
// so ftos (S0) and dtos (D0) are moved to R0/R1.
if (state == ftos) {
fmrs(R0, S0_tos);
} else if (state == dtos) {
fmrrd(R0, R1, D0_tos);
}
#endif // !__SOFTFP__ && !__ABI_HARD__
}
#endif // !AARCH64
// Helpers for swap and dup
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
ldr(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
}
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
str(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
}
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
#ifdef AARCH64
check_no_cached_stack_top(Rtemp);
save_stack_top();
cut_sp_before_call();
mov(Rparams, Rstack_top);
#endif // AARCH64
// set sender sp
mov(Rsender_sp, SP);
#ifndef AARCH64
// record last_sp
str(Rsender_sp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // !AARCH64
}
// Jump to from_interpreted entry of a call unless single stepping is possible
// in this thread in which case we must call the i2i entry
void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
assert_different_registers(method, Rtemp);
prepare_to_jump_from_interpreted();
if (can_post_interpreter_events()) {
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
#ifdef AARCH64
{
Label not_interp_only_mode;
cbz(Rtemp, not_interp_only_mode);
indirect_jump(Address(method, Method::interpreter_entry_offset()), Rtemp);
bind(not_interp_only_mode);
}
#else
cmp(Rtemp, 0);
ldr(PC, Address(method, Method::interpreter_entry_offset()), ne);
#endif // AARCH64
}
indirect_jump(Address(method, Method::from_interpreted_offset()), Rtemp);
}
void InterpreterMacroAssembler::restore_dispatch() {
mov_slow(RdispatchTable, (address)Interpreter::dispatch_table(vtos));
}
// The following two routines provide a hook so that an implementation
// can schedule the dispatch in two parts.
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
// Nothing ARM-specific to be done here.
}
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
dispatch_next(state, step);
}
void InterpreterMacroAssembler::dispatch_base(TosState state,
DispatchTableMode table_mode,
bool verifyoop) {
if (VerifyActivationFrameSize) {
Label L;
#ifdef AARCH64
mov(Rtemp, SP);
sub(Rtemp, FP, Rtemp);
#else
sub(Rtemp, FP, SP);
#endif // AARCH64
int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
cmp(Rtemp, min_frame_size);
b(L, ge);
stop("broken stack frame");
bind(L);
}
if (verifyoop) {
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
}
if((state == itos) || (state == btos) || (state == ztos) || (state == ctos) || (state == stos)) {
zap_high_non_significant_bits(R0_tos);
}
#ifdef ASSERT
Label L;
mov_slow(Rtemp, (address)Interpreter::dispatch_table(vtos));
cmp(Rtemp, RdispatchTable);
b(L, eq);
stop("invalid RdispatchTable");
bind(L);
#endif
if (table_mode == DispatchDefault) {
if (state == vtos) {
indirect_jump(Address::indexed_ptr(RdispatchTable, R3_bytecode), Rtemp);
} else {
#ifdef AARCH64
sub(Rtemp, R3_bytecode, (Interpreter::distance_from_dispatch_table(vtos) -
Interpreter::distance_from_dispatch_table(state)));
indirect_jump(Address::indexed_ptr(RdispatchTable, Rtemp), Rtemp);
#else
// on 32-bit ARM this method is faster than the one above.
sub(Rtemp, RdispatchTable, (Interpreter::distance_from_dispatch_table(vtos) -
Interpreter::distance_from_dispatch_table(state)) * wordSize);
indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
#endif
}
} else {
assert(table_mode == DispatchNormal, "invalid dispatch table mode");
address table = (address) Interpreter::normal_table(state);
mov_slow(Rtemp, table);
indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
}
nop(); // to avoid filling CPU pipeline with invalid instructions
nop();
}
void InterpreterMacroAssembler::dispatch_only(TosState state) {
dispatch_base(state, DispatchDefault);
}
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
dispatch_base(state, DispatchNormal);
}
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
dispatch_base(state, DispatchNormal, false);
}
void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
// load next bytecode and advance Rbcp
ldrb(R3_bytecode, Address(Rbcp, step, pre_indexed));
dispatch_base(state, DispatchDefault);
}
void InterpreterMacroAssembler::narrow(Register result) {
// mask integer result to narrower return type.
const Register Rtmp = R2;
// get method type
ldr(Rtmp, Address(Rmethod, Method::const_offset()));
ldrb(Rtmp, Address(Rtmp, ConstMethod::result_type_offset()));
Label notBool, notByte, notChar, done;
cmp(Rtmp, T_INT);
b(done, eq);
cmp(Rtmp, T_BOOLEAN);
b(notBool, ne);
and_32(result, result, 1);
b(done);
bind(notBool);
cmp(Rtmp, T_BYTE);
b(notByte, ne);
sign_extend(result, result, 8);
b(done);
bind(notByte);
cmp(Rtmp, T_CHAR);
b(notChar, ne);
zero_extend(result, result, 16);
b(done);
bind(notChar);
// cmp(Rtmp, T_SHORT);
// b(done, ne);
sign_extend(result, result, 16);
// Nothing to do
bind(done);
}
// remove activation
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
bool throw_monitor_exception,
bool install_monitor_exception,
bool notify_jvmdi) {
Label unlock, unlocked, no_unlock;
// Note: Registers R0, R1, S0 and D0 (TOS cached value) may be in use for the result.
const Address do_not_unlock_if_synchronized(Rthread,
JavaThread::do_not_unlock_if_synchronized_offset());
const Register Rflag = R2;
const Register Raccess_flags = R3;
restore_method();
ldrb(Rflag, do_not_unlock_if_synchronized);
// get method access flags
ldr_u32(Raccess_flags, Address(Rmethod, Method::access_flags_offset()));
strb(zero_register(Rtemp), do_not_unlock_if_synchronized); // reset the flag
// check if method is synchronized
tbz(Raccess_flags, JVM_ACC_SYNCHRONIZED_BIT, unlocked);
// Don't unlock anything if the _do_not_unlock_if_synchronized flag is set.
cbnz(Rflag, no_unlock);
// unlock monitor
push(state); // save result
// BasicObjectLock will be first in list, since this is a synchronized method. However, need
// to check that the object has not been unlocked by an explicit monitorexit bytecode.
const Register Rmonitor = R1; // fixed in unlock_object()
const Register Robj = R2;
// address of first monitor
sub(Rmonitor, FP, - frame::interpreter_frame_monitor_block_bottom_offset * wordSize + (int)sizeof(BasicObjectLock));
ldr(Robj, Address(Rmonitor, BasicObjectLock::obj_offset_in_bytes()));
cbnz(Robj, unlock);
pop(state);
if (throw_monitor_exception) {
// Entry already unlocked, need to throw exception
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Monitor already unlocked during a stack unroll.
// If requested, install an illegal_monitor_state_exception.
// Continue with stack unrolling.
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
}
b(unlocked);
}
// Exception case for the check that all monitors are unlocked.
const Register Rcur = R2;
Label restart_check_monitors_unlocked, exception_monitor_is_still_locked;
bind(exception_monitor_is_still_locked);
// Monitor entry is still locked, need to throw exception.
// Rcur: monitor entry.
if (throw_monitor_exception) {
// Throw exception
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Stack unrolling. Unlock object and install illegal_monitor_exception
// Unlock does not block, so don't have to worry about the frame
push(state);
mov(R1, Rcur);
unlock_object(R1);
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
}
pop(state);
b(restart_check_monitors_unlocked);
}
bind(unlock);
unlock_object(Rmonitor);
pop(state);
// Check that for block-structured locking (i.e., that all locked objects has been unlocked)
bind(unlocked);
// Check that all monitors are unlocked
{
Label loop;
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
const Register Rbottom = R3;
const Register Rcur_obj = Rtemp;
bind(restart_check_monitors_unlocked);
ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
// points to current entry, starting with top-most entry
sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
// points to word before bottom of monitor block
cmp(Rcur, Rbottom); // check if there are no monitors
#ifndef AARCH64
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
// prefetch monitor's object
#endif // !AARCH64
b(no_unlock, eq);
bind(loop);
#ifdef AARCH64
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
#endif // AARCH64
// check if current entry is used
cbnz(Rcur_obj, exception_monitor_is_still_locked);
add(Rcur, Rcur, entry_size); // otherwise advance to next entry
cmp(Rcur, Rbottom); // check if bottom reached
#ifndef AARCH64
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
// prefetch monitor's object
#endif // !AARCH64
b(loop, ne); // if not at bottom then check this entry
}
bind(no_unlock);
// jvmti support
if (notify_jvmdi) {
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
} else {
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
}
// remove activation
#ifdef AARCH64
ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
ldp(FP, LR, Address(FP));
mov(SP, Rtemp);
#else
mov(Rtemp, FP);
ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
#endif
if (ret_addr != LR) {
mov(ret_addr, LR);
}
}
// At certain points in the method invocation the monitor of
// synchronized methods hasn't been entered yet.
// To correctly handle exceptions at these points, we set the thread local
// variable _do_not_unlock_if_synchronized to true. The remove_activation will
// check this flag.
void InterpreterMacroAssembler::set_do_not_unlock_if_synchronized(bool flag, Register tmp) {
const Address do_not_unlock_if_synchronized(Rthread,
JavaThread::do_not_unlock_if_synchronized_offset());
if (flag) {
mov(tmp, 1);
strb(tmp, do_not_unlock_if_synchronized);
} else {
strb(zero_register(tmp), do_not_unlock_if_synchronized);
}
}
// Lock object
//
// Argument: R1 : Points to BasicObjectLock to be used for locking.
// Must be initialized with object to lock.
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
void InterpreterMacroAssembler::lock_object(Register Rlock) {
assert(Rlock == R1, "the second argument");
if (UseHeavyMonitors) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
} else {
Label done;
const Register Robj = R2;
const Register Rmark = R3;
assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
Label already_locked, slow_case;
// Load object pointer
ldr(Robj, Address(Rlock, obj_offset));
if (UseBiasedLocking) {
biased_locking_enter(Robj, Rmark/*scratched*/, R0, false, Rtemp, done, slow_case);
}
#ifdef AARCH64
assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
ldr(Rmark, Robj);
// Test if object is already locked
assert(markOopDesc::unlocked_value == 1, "adjust this code");
tbz(Rmark, exact_log2(markOopDesc::unlocked_value), already_locked);
#else // AARCH64
// On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
// That would be acceptable as ether CAS or slow case path is taken in that case.
// Exception to that is if the object is locked by the calling thread, then the recursive test will pass (guaranteed as
// loads are satisfied from a store queue if performed on the same processor).
assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
ldr(Rmark, Address(Robj, oopDesc::mark_offset_in_bytes()));
// Test if object is already locked
tst(Rmark, markOopDesc::unlocked_value);
b(already_locked, eq);
#endif // !AARCH64
// Save old object->mark() into BasicLock's displaced header
str(Rmark, Address(Rlock, mark_offset));
cas_for_lock_acquire(Rmark, Rlock, Robj, Rtemp, slow_case);
#ifndef PRODUCT
if (PrintBiasedLockingStatistics) {
cond_atomic_inc32(al, BiasedLocking::fast_path_entry_count_addr());
}
#endif //!PRODUCT
b(done);
// If we got here that means the object is locked by ether calling thread or another thread.
bind(already_locked);
// Handling of locked objects: recursive locks and slow case.
// Fast check for recursive lock.
//
// Can apply the optimization only if this is a stack lock
// allocated in this thread. For efficiency, we can focus on
// recently allocated stack locks (instead of reading the stack
// base and checking whether 'mark' points inside the current
// thread stack):
// 1) (mark & 3) == 0
// 2) SP <= mark < SP + os::pagesize()
//
// Warning: SP + os::pagesize can overflow the stack base. We must
// neither apply the optimization for an inflated lock allocated
// just above the thread stack (this is why condition 1 matters)
// nor apply the optimization if the stack lock is inside the stack
// of another thread. The latter is avoided even in case of overflow
// because we have guard pages at the end of all stacks. Hence, if
// we go over the stack base and hit the stack of another thread,
// this should not be in a writeable area that could contain a
// stack lock allocated by that thread. As a consequence, a stack
// lock less than page size away from SP is guaranteed to be
// owned by the current thread.
//
// Note: assuming SP is aligned, we can check the low bits of
// (mark-SP) instead of the low bits of mark. In that case,
// assuming page size is a power of 2, we can merge the two
// conditions into a single test:
// => ((mark - SP) & (3 - os::pagesize())) == 0
#ifdef AARCH64
// Use the single check since the immediate is OK for AARCH64
sub(R0, Rmark, Rstack_top);
intptr_t mask = ((intptr_t)3) - ((intptr_t)os::vm_page_size());
Assembler::LogicalImmediate imm(mask, false);
ands(R0, R0, imm);
// For recursive case store 0 into lock record.
// It is harmless to store it unconditionally as lock record contains some garbage
// value in its _displaced_header field by this moment.
str(ZR, Address(Rlock, mark_offset));
#else // AARCH64
// (3 - os::pagesize()) cannot be encoded as an ARM immediate operand.
// Check independently the low bits and the distance to SP.
// -1- test low 2 bits
movs(R0, AsmOperand(Rmark, lsl, 30));
// -2- test (mark - SP) if the low two bits are 0
sub(R0, Rmark, SP, eq);
movs(R0, AsmOperand(R0, lsr, exact_log2(os::vm_page_size())), eq);
// If still 'eq' then recursive locking OK: store 0 into lock record
str(R0, Address(Rlock, mark_offset), eq);
#endif // AARCH64
#ifndef PRODUCT
if (PrintBiasedLockingStatistics) {
cond_atomic_inc32(eq, BiasedLocking::fast_path_entry_count_addr());
}
#endif // !PRODUCT
b(done, eq);
bind(slow_case);
// Call the runtime routine for slow case
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
bind(done);
}
}
// Unlocks an object. Used in monitorexit bytecode and remove_activation.
//
// Argument: R1: Points to BasicObjectLock structure for lock
// Throw an IllegalMonitorException if object is not locked by current thread
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
void InterpreterMacroAssembler::unlock_object(Register Rlock) {
assert(Rlock == R1, "the second argument");
if (UseHeavyMonitors) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
} else {
Label done, slow_case;
const Register Robj = R2;
const Register Rmark = R3;
const Register Rresult = R0;
assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
const Register Rzero = zero_register(Rtemp);
// Load oop into Robj
ldr(Robj, Address(Rlock, obj_offset));
// Free entry
str(Rzero, Address(Rlock, obj_offset));
if (UseBiasedLocking) {
biased_locking_exit(Robj, Rmark, done);
}
// Load the old header from BasicLock structure
ldr(Rmark, Address(Rlock, mark_offset));
// Test for recursion (zero mark in BasicLock)
cbz(Rmark, done);
bool allow_fallthrough_on_failure = true;
cas_for_lock_release(Rlock, Rmark, Robj, Rtemp, slow_case, allow_fallthrough_on_failure);
b(done, eq);
bind(slow_case);
// Call the runtime routine for slow case.
str(Robj, Address(Rlock, obj_offset)); // restore obj
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
bind(done);
}
}
// Test ImethodDataPtr. If it is null, continue at the specified label
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
ldr(mdp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
cbz(mdp, zero_continue);
}
// Set the method data pointer for the current bcp.
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label set_mdp;
// Test MDO to avoid the call if it is NULL.
ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
cbz(Rtemp, set_mdp);
mov(R0, Rmethod);
mov(R1, Rbcp);
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R0, R1);
// R0/W0: mdi
// mdo is guaranteed to be non-zero here, we checked for it before the call.
ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()));
add_ptr_scaled_int32(Rtemp, Rtemp, R0, 0);
bind(set_mdp);
str(Rtemp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::verify_method_data_pointer() {
assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
Label verify_continue;
save_caller_save_registers();
const Register Rmdp = R2;
test_method_data_pointer(Rmdp, verify_continue); // If mdp is zero, continue
// If the mdp is valid, it will point to a DataLayout header which is
// consistent with the bcp. The converse is highly probable also.
ldrh(R3, Address(Rmdp, DataLayout::bci_offset()));
ldr(Rtemp, Address(Rmethod, Method::const_offset()));
add(R3, R3, Rtemp);
add(R3, R3, in_bytes(ConstMethod::codes_offset()));
cmp(R3, Rbcp);
b(verify_continue, eq);
mov(R0, Rmethod);
mov(R1, Rbcp);
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), R0, R1, Rmdp);
bind(verify_continue);
restore_caller_save_registers();
#endif // ASSERT
}
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int offset, Register value) {
assert(ProfileInterpreter, "must be profiling interpreter");
assert_different_registers(mdp_in, value);
str(value, Address(mdp_in, offset));
}
// Increments mdp data. Sets bumped_count register to adjusted counter.
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
int offset,
Register bumped_count,
bool decrement) {
assert(ProfileInterpreter, "must be profiling interpreter");
// Counter address
Address data(mdp_in, offset);
assert_different_registers(mdp_in, bumped_count);
increment_mdp_data_at(data, bumped_count, decrement);
}
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
assert_different_registers(mdp_in, Rtemp);
assert(ProfileInterpreter, "must be profiling interpreter");
assert((0 < flag_byte_constant) && (flag_byte_constant < (1 << BitsPerByte)), "flag mask is out of range");
// Set the flag
ldrb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
orr(Rtemp, Rtemp, (unsigned)flag_byte_constant);
strb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
}
// Increments mdp data. Sets bumped_count register to adjusted counter.
void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
Register bumped_count,
bool decrement) {
assert(ProfileInterpreter, "must be profiling interpreter");
ldr(bumped_count, data);
if (decrement) {
// Decrement the register. Set condition codes.
subs(bumped_count, bumped_count, DataLayout::counter_increment);
// Avoid overflow.
#ifdef AARCH64
assert(DataLayout::counter_increment == 1, "required for cinc");
cinc(bumped_count, bumped_count, pl);
#else
add(bumped_count, bumped_count, DataLayout::counter_increment, pl);
#endif // AARCH64
} else {
// Increment the register. Set condition codes.
adds(bumped_count, bumped_count, DataLayout::counter_increment);
// Avoid overflow.
#ifdef AARCH64
assert(DataLayout::counter_increment == 1, "required for cinv");
cinv(bumped_count, bumped_count, mi); // inverts 0x80..00 back to 0x7f..ff
#else
sub(bumped_count, bumped_count, DataLayout::counter_increment, mi);
#endif // AARCH64
}
str(bumped_count, data);
}
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
int offset,
Register value,
Register test_value_out,
Label& not_equal_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
assert_different_registers(mdp_in, test_value_out, value);
ldr(test_value_out, Address(mdp_in, offset));
cmp(test_value_out, value);
b(not_equal_continue, ne);
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp, Register reg_temp) {
assert(ProfileInterpreter, "must be profiling interpreter");
assert_different_registers(mdp_in, reg_temp);
ldr(reg_temp, Address(mdp_in, offset_of_disp));
add(mdp_in, mdp_in, reg_temp);
str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg_offset, Register reg_tmp) {
assert(ProfileInterpreter, "must be profiling interpreter");
assert_different_registers(mdp_in, reg_offset, reg_tmp);
ldr(reg_tmp, Address(mdp_in, reg_offset));
add(mdp_in, mdp_in, reg_tmp);
str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
add(mdp_in, mdp_in, constant);
str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
}
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
assert(ProfileInterpreter, "must be profiling interpreter");
assert_different_registers(return_bci, R0, R1, R2, R3, Rtemp);
mov(R1, return_bci);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), R1);
}
// Sets mdp, bumped_count registers, blows Rtemp.
void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
assert_different_registers(mdp, bumped_count);
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
// Otherwise, assign to mdp
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the taken count.
increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()), bumped_count);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()), Rtemp);
bind (profile_continue);
}
}
// Sets mdp, blows Rtemp.
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
assert_different_registers(mdp, Rtemp);
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the not taken count.
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Rtemp);
// The method data pointer needs to be updated to correspond to the next bytecode
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
bind (profile_continue);
}
}
// Sets mdp, blows Rtemp.
void InterpreterMacroAssembler::profile_call(Register mdp) {
assert_different_registers(mdp, Rtemp);
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
bind (profile_continue);
}
}
// Sets mdp, blows Rtemp.
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
bind (profile_continue);
}
}
// Sets mdp, blows Rtemp.
void InterpreterMacroAssembler::profile_virtual_call(Register mdp, Register receiver, bool receiver_can_be_null) {
assert_different_registers(mdp, receiver, Rtemp);
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
Label skip_receiver_profile;
if (receiver_can_be_null) {
Label not_null;
cbnz(receiver, not_null);
// We are making a call. Increment the count for null receiver.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
b(skip_receiver_profile);
bind(not_null);
}
// Record the receiver type.
record_klass_in_profile(receiver, mdp, Rtemp, true);
bind(skip_receiver_profile);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::record_klass_in_profile_helper(
Register receiver, Register mdp,
Register reg_tmp,
int start_row, Label& done, bool is_virtual_call) {
if (TypeProfileWidth == 0)
return;
assert_different_registers(receiver, mdp, reg_tmp);
int last_row = VirtualCallData::row_limit() - 1;
assert(start_row <= last_row, "must be work left to do");
// Test this row for both the receiver and for null.
// Take any of three different outcomes:
// 1. found receiver => increment count and goto done
// 2. found null => keep looking for case 1, maybe allocate this cell
// 3. found something else => keep looking for cases 1 and 2
// Case 3 is handled by a recursive call.
for (int row = start_row; row <= last_row; row++) {
Label next_test;
// See if the receiver is receiver[n].
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
test_mdp_data_at(mdp, recvr_offset, receiver, reg_tmp, next_test);
// The receiver is receiver[n]. Increment count[n].
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
increment_mdp_data_at(mdp, count_offset, reg_tmp);
b(done);
bind(next_test);
// reg_tmp now contains the receiver from the CallData.
if (row == start_row) {
Label found_null;
// Failed the equality check on receiver[n]... Test for null.
if (start_row == last_row) {
// The only thing left to do is handle the null case.
if (is_virtual_call) {
cbz(reg_tmp, found_null);
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), reg_tmp);
b(done);
bind(found_null);
} else {
cbnz(reg_tmp, done);
}
break;
}
// Since null is rare, make it be the branch-taken case.
cbz(reg_tmp, found_null);
// Put all the "Case 3" tests here.
record_klass_in_profile_helper(receiver, mdp, reg_tmp, start_row + 1, done, is_virtual_call);
// Found a null. Keep searching for a matching receiver,
// but remember that this is an empty (unused) slot.
bind(found_null);
}
}
// In the fall-through case, we found no matching receiver, but we
// observed the receiver[start_row] is NULL.
// Fill in the receiver field and increment the count.
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
set_mdp_data_at(mdp, recvr_offset, receiver);
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
mov(reg_tmp, DataLayout::counter_increment);
set_mdp_data_at(mdp, count_offset, reg_tmp);
if (start_row > 0) {
b(done);
}
}
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
Register mdp,
Register reg_tmp,
bool is_virtual_call) {
assert(ProfileInterpreter, "must be profiling");
assert_different_registers(receiver, mdp, reg_tmp);
Label done;
record_klass_in_profile_helper(receiver, mdp, reg_tmp, 0, done, is_virtual_call);
bind (done);
}
// Sets mdp, blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
void InterpreterMacroAssembler::profile_ret(Register mdp, Register return_bci) {
assert_different_registers(mdp, return_bci, Rtemp, R0, R1, R2, R3);
if (ProfileInterpreter) {
Label profile_continue;
uint row;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the total ret count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
for (row = 0; row < RetData::row_limit(); row++) {
Label next_test;
// See if return_bci is equal to bci[n]:
test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
Rtemp, next_test);
// return_bci is equal to bci[n]. Increment the count.
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)), Rtemp);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)), Rtemp);
b(profile_continue);
bind(next_test);
}
update_mdp_for_ret(return_bci);
bind(profile_continue);
}
}
// Sets mdp.
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
}
update_mdp_by_constant(mdp, mdp_delta);
bind (profile_continue);
}
}
// Sets mdp, blows Rtemp.
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
assert_different_registers(mdp, Rtemp);
if (ProfileInterpreter && TypeProfileCasts) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
int count_offset = in_bytes(CounterData::count_offset());
// Back up the address, since we have already bumped the mdp.
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
// *Decrement* the counter. We expect to see zero or small negatives.
increment_mdp_data_at(mdp, count_offset, Rtemp, true);
bind (profile_continue);
}
}
// Sets mdp, blows Rtemp.
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass)
{
assert_different_registers(mdp, klass, Rtemp);
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
// Record the object type.
record_klass_in_profile(klass, mdp, Rtemp, false);
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
// Sets mdp, blows Rtemp.
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
assert_different_registers(mdp, Rtemp);
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the default case count
increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()), Rtemp);
// The method data pointer needs to be updated.
update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()), Rtemp);
bind(profile_continue);
}
}
// Sets mdp. Blows reg_tmp1, reg_tmp2. Index could be the same as reg_tmp2.
void InterpreterMacroAssembler::profile_switch_case(Register mdp, Register index, Register reg_tmp1, Register reg_tmp2) {
assert_different_registers(mdp, reg_tmp1, reg_tmp2);
assert_different_registers(mdp, reg_tmp1, index);
if (ProfileInterpreter) {
Label profile_continue;
const int count_offset = in_bytes(MultiBranchData::case_array_offset()) +
in_bytes(MultiBranchData::relative_count_offset());
const int displacement_offset = in_bytes(MultiBranchData::case_array_offset()) +
in_bytes(MultiBranchData::relative_displacement_offset());
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Build the base (index * per_case_size_in_bytes())
logical_shift_left(reg_tmp1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
// Update the case count
add(reg_tmp1, reg_tmp1, count_offset);
increment_mdp_data_at(Address(mdp, reg_tmp1), reg_tmp2);
// The method data pointer needs to be updated.
add(reg_tmp1, reg_tmp1, displacement_offset - count_offset);
update_mdp_by_offset(mdp, reg_tmp1, reg_tmp2);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::byteswap_u32(Register r, Register rtmp1, Register rtmp2) {
#ifdef AARCH64
rev_w(r, r);
#else
if (VM_Version::supports_rev()) {
rev(r, r);
} else {
eor(rtmp1, r, AsmOperand(r, ror, 16));
mvn(rtmp2, 0x0000ff00);
andr(rtmp1, rtmp2, AsmOperand(rtmp1, lsr, 8));
eor(r, rtmp1, AsmOperand(r, ror, 8));
}
#endif // AARCH64
}
void InterpreterMacroAssembler::inc_global_counter(address address_of_counter, int offset, Register tmp1, Register tmp2, bool avoid_overflow) {
const intx addr = (intx) (address_of_counter + offset);
assert ((addr & 0x3) == 0, "address of counter should be aligned");
const intx offset_mask = right_n_bits(AARCH64_ONLY(12 + 2) NOT_AARCH64(12));
const address base = (address) (addr & ~offset_mask);
const int offs = (int) (addr & offset_mask);
const Register addr_base = tmp1;
const Register val = tmp2;
mov_slow(addr_base, base);
ldr_s32(val, Address(addr_base, offs));
if (avoid_overflow) {
adds_32(val, val, 1);
#ifdef AARCH64
Label L;
b(L, mi);
str_32(val, Address(addr_base, offs));
bind(L);
#else
str(val, Address(addr_base, offs), pl);
#endif // AARCH64
} else {
add_32(val, val, 1);
str_32(val, Address(addr_base, offs));
}
}
void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char *file, int line) {
if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop", file, line); }
}
// Inline assembly for:
//
// if (thread is in interp_only_mode) {
// InterpreterRuntime::post_method_entry();
// }
// if (DTraceMethodProbes) {
// SharedRuntime::dtrace_method_entry(method, receiver);
// }
// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
// SharedRuntime::rc_trace_method_entry(method, receiver);
// }
void InterpreterMacroAssembler::notify_method_entry() {
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
// track stack depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (can_post_interpreter_events()) {
Label L;
ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
cbz(Rtemp, L);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
bind(L);
}
// Note: Disable DTrace runtime check for now to eliminate overhead on each method entry
if (DTraceMethodProbes) {
Label Lcontinue;
ldrb_global(Rtemp, (address)&DTraceMethodProbes);
cbz(Rtemp, Lcontinue);
mov(R0, Rthread);
mov(R1, Rmethod);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), R0, R1);
bind(Lcontinue);
}
// RedefineClasses() tracing support for obsolete method entry
if (log_is_enabled(Trace, redefine, class, obsolete)) {
mov(R0, Rthread);
mov(R1, Rmethod);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
R0, R1);
}
}
void InterpreterMacroAssembler::notify_method_exit(
TosState state, NotifyMethodExitMode mode,
bool native, Register result_lo, Register result_hi, FloatRegister result_fp) {
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
// track stack depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (mode == NotifyJVMTI && can_post_interpreter_events()) {
Label L;
// Note: frame::interpreter_frame_result has a dependency on how the
// method result is saved across the call to post_method_exit. If this
// is changed then the interpreter_frame_result implementation will
// need to be updated too.
ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
cbz(Rtemp, L);
if (native) {
// For c++ and template interpreter push both result registers on the
// stack in native, we don't know the state.
// On AArch64 result registers are stored into the frame at known locations.
// See frame::interpreter_frame_result for code that gets the result values from here.
assert(result_lo != noreg, "result registers should be defined");
#ifdef AARCH64
assert(result_hi == noreg, "result_hi is not used on AArch64");
assert(result_fp != fnoreg, "FP result register must be defined");
str_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
str(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
#else
assert(result_hi != noreg, "result registers should be defined");
#ifdef __ABI_HARD__
assert(result_fp != fnoreg, "FP result register must be defined");
sub(SP, SP, 2 * wordSize);
fstd(result_fp, Address(SP));
#endif // __ABI_HARD__
push(RegisterSet(result_lo) | RegisterSet(result_hi));
#endif // AARCH64
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
#ifdef AARCH64
ldr_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
ldr(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
#else
pop(RegisterSet(result_lo) | RegisterSet(result_hi));
#ifdef __ABI_HARD__
fldd(result_fp, Address(SP));
add(SP, SP, 2 * wordSize);
#endif // __ABI_HARD__
#endif // AARCH64
} else {
// For the template interpreter, the value on tos is the size of the
// state. (c++ interpreter calls jvmti somewhere else).
push(state);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
pop(state);
}
bind(L);
}
// Note: Disable DTrace runtime check for now to eliminate overhead on each method exit
if (DTraceMethodProbes) {
Label Lcontinue;
ldrb_global(Rtemp, (address)&DTraceMethodProbes);
cbz(Rtemp, Lcontinue);
push(state);
mov(R0, Rthread);
mov(R1, Rmethod);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), R0, R1);
pop(state);
bind(Lcontinue);
}
}
#ifndef PRODUCT
void InterpreterMacroAssembler::trace_state(const char* msg) {
int push_size = save_caller_save_registers();
Label Lcontinue;
InlinedString Lmsg0("%s: FP=" INTPTR_FORMAT ", SP=" INTPTR_FORMAT "\n");
InlinedString Lmsg(msg);
InlinedAddress Lprintf((address)printf);
ldr_literal(R0, Lmsg0);
ldr_literal(R1, Lmsg);
mov(R2, FP);
add(R3, SP, push_size); // original SP (without saved registers)
ldr_literal(Rtemp, Lprintf);
call(Rtemp);
b(Lcontinue);
bind_literal(Lmsg0);
bind_literal(Lmsg);
bind_literal(Lprintf);
bind(Lcontinue);
restore_caller_save_registers();
}
#endif
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
int increment, Address mask_addr,
Register scratch, Register scratch2,
AsmCondition cond, Label* where) {
// caution: scratch2 and base address of counter_addr can be the same
assert_different_registers(scratch, scratch2);
ldr_u32(scratch, counter_addr);
add(scratch, scratch, increment);
str_32(scratch, counter_addr);
#ifdef AARCH64
ldr_u32(scratch2, mask_addr);
ands_w(ZR, scratch, scratch2);
#else
ldr(scratch2, mask_addr);
andrs(scratch, scratch, scratch2);
#endif // AARCH64
b(*where, cond);
}
void InterpreterMacroAssembler::get_method_counters(Register method,
Register Rcounters,
Label& skip,
bool saveRegs,
Register reg1,
Register reg2,
Register reg3) {
const Address method_counters(method, Method::method_counters_offset());
Label has_counters;
ldr(Rcounters, method_counters);
cbnz(Rcounters, has_counters);
if (saveRegs) {
// Save and restore in use caller-saved registers since they will be trashed by call_VM
assert(reg1 != noreg, "must specify reg1");
assert(reg2 != noreg, "must specify reg2");
#ifdef AARCH64
assert(reg3 != noreg, "must specify reg3");
stp(reg1, reg2, Address(Rstack_top, -2*wordSize, pre_indexed));
stp(reg3, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
#else
assert(reg3 == noreg, "must not specify reg3");
push(RegisterSet(reg1) | RegisterSet(reg2));
#endif
}
mov(R1, method);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), R1);
if (saveRegs) {
#ifdef AARCH64
ldp(reg3, ZR, Address(Rstack_top, 2*wordSize, post_indexed));
ldp(reg1, reg2, Address(Rstack_top, 2*wordSize, post_indexed));
#else
pop(RegisterSet(reg1) | RegisterSet(reg2));
#endif
}
ldr(Rcounters, method_counters);
cbz(Rcounters, skip); // No MethodCounters created, OutOfMemory
bind(has_counters);
}