Add doubunder on solaris in two places.
/*
* Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2019, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_Instruction.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_LIRGenerator.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArray.hpp"
#include "ci/ciObjArrayKlass.hpp"
#include "ci/ciTypeArrayKlass.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "vmreg_ppc.inline.hpp"
#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif
void LIRItem::load_byte_item() {
// Byte loads use same registers as other loads.
load_item();
}
void LIRItem::load_nonconstant() {
LIR_Opr r = value()->operand();
if (_gen->can_inline_as_constant(value())) {
if (!r->is_constant()) {
r = LIR_OprFact::value_type(value()->type());
}
_result = r;
} else {
load_item();
}
}
//--------------------------------------------------------------
// LIRGenerator
//--------------------------------------------------------------
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::R3_oop_opr; }
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::R4_opr; }
LIR_Opr LIRGenerator::syncLockOpr() { return FrameMap::R5_opr; } // Need temp effect for MonitorEnterStub.
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::R4_oop_opr; } // Need temp effect for MonitorEnterStub.
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } // not needed
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
LIR_Opr opr;
switch (type->tag()) {
case intTag: opr = FrameMap::R3_opr; break;
case objectTag: opr = FrameMap::R3_oop_opr; break;
case longTag: opr = FrameMap::R3_long_opr; break;
case floatTag: opr = FrameMap::F1_opr; break;
case doubleTag: opr = FrameMap::F1_double_opr; break;
case addressTag:
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
}
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
return opr;
}
LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
ShouldNotReachHere();
return LIR_OprFact::illegalOpr;
}
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
return new_register(T_INT);
}
//--------- loading items into registers --------------------------------
// PPC cannot inline all constants.
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
if (v->type()->as_IntConstant() != NULL) {
return Assembler::is_simm16(v->type()->as_IntConstant()->value());
} else if (v->type()->as_LongConstant() != NULL) {
return Assembler::is_simm16(v->type()->as_LongConstant()->value());
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else {
return false;
}
}
// Only simm16 constants can be inlined.
bool LIRGenerator::can_inline_as_constant(Value i) const {
return can_store_as_constant(i, as_BasicType(i->type()));
}
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
if (c->type() == T_INT) {
return Assembler::is_simm16(c->as_jint());
}
if (c->type() == T_LONG) {
return Assembler::is_simm16(c->as_jlong());
}
if (c->type() == T_OBJECT) {
return c->as_jobject() == NULL;
}
return false;
}
LIR_Opr LIRGenerator::safepoint_poll_register() {
return new_register(T_INT);
}
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
int shift, int disp, BasicType type) {
assert(base->is_register(), "must be");
intx large_disp = disp;
// Accumulate fixed displacements.
if (index->is_constant()) {
LIR_Const *constant = index->as_constant_ptr();
if (constant->type() == T_LONG) {
large_disp += constant->as_jlong() << shift;
} else {
large_disp += (intx)(constant->as_jint()) << shift;
}
index = LIR_OprFact::illegalOpr;
}
if (index->is_register()) {
// Apply the shift and accumulate the displacement.
if (shift > 0) {
LIR_Opr tmp = new_pointer_register();
__ shift_left(index, shift, tmp);
index = tmp;
}
if (large_disp != 0) {
LIR_Opr tmp = new_pointer_register();
if (Assembler::is_simm16(large_disp)) {
__ add(index, LIR_OprFact::intptrConst(large_disp), tmp);
index = tmp;
} else {
__ move(LIR_OprFact::intptrConst(large_disp), tmp);
__ add(tmp, index, tmp);
index = tmp;
}
large_disp = 0;
}
} else if (!Assembler::is_simm16(large_disp)) {
// Index is illegal so replace it with the displacement loaded into a register.
index = new_pointer_register();
__ move(LIR_OprFact::intptrConst(large_disp), index);
large_disp = 0;
}
// At this point we either have base + index or base + displacement.
if (large_disp == 0) {
return new LIR_Address(base, index, type);
} else {
assert(Assembler::is_simm16(large_disp), "must be");
return new LIR_Address(base, large_disp, type);
}
}
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
BasicType type) {
int elem_size = type2aelembytes(type);
int shift = exact_log2(elem_size);
LIR_Opr base_opr;
intx offset = arrayOopDesc::base_offset_in_bytes(type);
if (index_opr->is_constant()) {
intx i = index_opr->as_constant_ptr()->as_jint();
intx array_offset = i * elem_size;
if (Assembler::is_simm16(array_offset + offset)) {
base_opr = array_opr;
offset = array_offset + offset;
} else {
base_opr = new_pointer_register();
if (Assembler::is_simm16(array_offset)) {
__ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
} else {
__ move(LIR_OprFact::intptrConst(array_offset), base_opr);
__ add(base_opr, array_opr, base_opr);
}
}
} else {
#ifdef _LP64
if (index_opr->type() == T_INT) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index_opr, tmp);
index_opr = tmp;
}
#endif
base_opr = new_pointer_register();
assert (index_opr->is_register(), "Must be register");
if (shift > 0) {
__ shift_left(index_opr, shift, base_opr);
__ add(base_opr, array_opr, base_opr);
} else {
__ add(index_opr, array_opr, base_opr);
}
}
return new LIR_Address(base_opr, offset, type);
}
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
LIR_Opr r = NULL;
if (type == T_LONG) {
r = LIR_OprFact::longConst(x);
} else if (type == T_INT) {
r = LIR_OprFact::intConst(x);
} else {
ShouldNotReachHere();
}
if (!Assembler::is_simm16(x)) {
LIR_Opr tmp = new_register(type);
__ move(r, tmp);
return tmp;
}
return r;
}
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
LIR_Opr pointer = new_pointer_register();
__ move(LIR_OprFact::intptrConst(counter), pointer);
LIR_Address* addr = new LIR_Address(pointer, type);
increment_counter(addr, step);
}
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
LIR_Opr temp = new_register(addr->type());
__ move(addr, temp);
__ add(temp, load_immediate(step, addr->type()), temp);
__ move(temp, addr);
}
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
LIR_Opr tmp = FrameMap::R0_opr;
__ load(new LIR_Address(base, disp, T_INT), tmp, info);
__ cmp(condition, tmp, c);
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base,
int disp, BasicType type, CodeEmitInfo* info) {
LIR_Opr tmp = FrameMap::R0_opr;
__ load(new LIR_Address(base, disp, type), tmp, info);
__ cmp(condition, reg, tmp);
}
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
assert(left != result, "should be different registers");
if (is_power_of_2(c + 1)) {
__ shift_left(left, log2_int(c + 1), result);
__ sub(result, left, result);
return true;
} else if (is_power_of_2(c - 1)) {
__ shift_left(left, log2_int(c - 1), result);
__ add(result, left, result);
return true;
}
return false;
}
void LIRGenerator::store_stack_parameter(LIR_Opr item, ByteSize offset_from_sp) {
BasicType t = item->type();
LIR_Opr sp_opr = FrameMap::SP_opr;
if ((t == T_LONG || t == T_DOUBLE) &&
((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
__ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
} else {
__ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
}
}
//----------------------------------------------------------------------
// visitor functions
//----------------------------------------------------------------------
void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
// Following registers are used by slow_subtype_check:
LIR_Opr tmp1 = FrameMap::R4_opr; // super_klass
LIR_Opr tmp2 = FrameMap::R5_opr; // sub_klass
LIR_Opr tmp3 = FrameMap::R6_opr; // temp
__ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
}
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.load_item();
set_no_result(x);
// We use R4+R5 in order to get a temp effect. These regs are used in slow path (MonitorEnterStub).
LIR_Opr lock = FrameMap::R5_opr;
LIR_Opr scratch = FrameMap::R4_opr;
LIR_Opr hdr = FrameMap::R6_opr;
CodeEmitInfo* info_for_exception = NULL;
if (x->needs_null_check()) {
info_for_exception = state_for(x);
}
// This CodeEmitInfo must not have the xhandlers because here the
// object is already locked (xhandlers expects object to be unlocked).
CodeEmitInfo* info = state_for(x, x->state(), true);
monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
}
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.dont_load_item();
set_no_result(x);
LIR_Opr lock = FrameMap::R5_opr;
LIR_Opr hdr = FrameMap::R4_opr; // Used for slow path (MonitorExitStub).
LIR_Opr obj_temp = FrameMap::R6_opr;
monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
}
// _ineg, _lneg, _fneg, _dneg
void LIRGenerator::do_NegateOp(NegateOp* x) {
LIRItem value(x->x(), this);
value.load_item();
LIR_Opr reg = rlock_result(x);
__ negate(value.result(), reg);
}
// for _fadd, _fmul, _fsub, _fdiv, _frem
// _dadd, _dmul, _dsub, _ddiv, _drem
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
switch (x->op()) {
case Bytecodes::_fadd:
case Bytecodes::_fmul:
case Bytecodes::_fsub:
case Bytecodes::_fdiv:
case Bytecodes::_dadd:
case Bytecodes::_dmul:
case Bytecodes::_dsub:
case Bytecodes::_ddiv: {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_item();
rlock_result(x);
arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
}
break;
case Bytecodes::_frem:
case Bytecodes::_drem: {
address entry = NULL;
switch (x->op()) {
case Bytecodes::_frem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
break;
case Bytecodes::_drem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
set_result(x, result);
}
break;
default: ShouldNotReachHere();
}
}
// for _ladd, _lmul, _lsub, _ldiv, _lrem
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
bool is_div_rem = x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem;
LIRItem right(x->y(), this);
// Missing test if instr is commutative and if we should swap.
if (right.value()->type()->as_LongConstant() &&
(x->op() == Bytecodes::_lsub && right.value()->type()->as_LongConstant()->value() == ((-1)<<15)) ) {
// Sub is implemented by addi and can't support min_simm16 as constant..
right.load_item();
} else {
right.load_nonconstant();
}
assert(right.is_constant() || right.is_register(), "wrong state of right");
if (is_div_rem) {
LIR_Opr divisor = right.result();
if (divisor->is_register()) {
CodeEmitInfo* null_check_info = state_for(x);
__ cmp(lir_cond_equal, divisor, LIR_OprFact::longConst(0));
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(null_check_info));
} else {
jlong const_divisor = divisor->as_constant_ptr()->as_jlong();
if (const_divisor == 0) {
CodeEmitInfo* null_check_info = state_for(x);
__ jump(new DivByZeroStub(null_check_info));
rlock_result(x);
__ move(LIR_OprFact::longConst(0), x->operand()); // dummy
return;
}
if (x->op() == Bytecodes::_lrem && !is_power_of_2(const_divisor) && const_divisor != -1) {
// Remainder computation would need additional tmp != R0.
right.load_item();
}
}
}
LIRItem left(x->x(), this);
left.load_item();
rlock_result(x);
if (is_div_rem) {
CodeEmitInfo* info = NULL; // Null check already done above.
LIR_Opr tmp = FrameMap::R0_opr;
if (x->op() == Bytecodes::_lrem) {
__ irem(left.result(), right.result(), x->operand(), tmp, info);
} else if (x->op() == Bytecodes::_ldiv) {
__ idiv(left.result(), right.result(), x->operand(), tmp, info);
}
} else {
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
}
}
// for: _iadd, _imul, _isub, _idiv, _irem
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
LIRItem right(x->y(), this);
// Missing test if instr is commutative and if we should swap.
if (right.value()->type()->as_IntConstant() &&
(x->op() == Bytecodes::_isub && right.value()->type()->as_IntConstant()->value() == ((-1)<<15)) ) {
// Sub is implemented by addi and can't support min_simm16 as constant.
right.load_item();
} else {
right.load_nonconstant();
}
assert(right.is_constant() || right.is_register(), "wrong state of right");
if (is_div_rem) {
LIR_Opr divisor = right.result();
if (divisor->is_register()) {
CodeEmitInfo* null_check_info = state_for(x);
__ cmp(lir_cond_equal, divisor, LIR_OprFact::intConst(0));
__ branch(lir_cond_equal, T_INT, new DivByZeroStub(null_check_info));
} else {
jint const_divisor = divisor->as_constant_ptr()->as_jint();
if (const_divisor == 0) {
CodeEmitInfo* null_check_info = state_for(x);
__ jump(new DivByZeroStub(null_check_info));
rlock_result(x);
__ move(LIR_OprFact::intConst(0), x->operand()); // dummy
return;
}
if (x->op() == Bytecodes::_irem && !is_power_of_2(const_divisor) && const_divisor != -1) {
// Remainder computation would need additional tmp != R0.
right.load_item();
}
}
}
LIRItem left(x->x(), this);
left.load_item();
rlock_result(x);
if (is_div_rem) {
CodeEmitInfo* info = NULL; // Null check already done above.
LIR_Opr tmp = FrameMap::R0_opr;
if (x->op() == Bytecodes::_irem) {
__ irem(left.result(), right.result(), x->operand(), tmp, info);
} else if (x->op() == Bytecodes::_idiv) {
__ idiv(left.result(), right.result(), x->operand(), tmp, info);
}
} else {
arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::R0_opr);
}
}
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
ValueTag tag = x->type()->tag();
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
switch (tag) {
case floatTag:
case doubleTag: do_ArithmeticOp_FPU(x); return;
case longTag: do_ArithmeticOp_Long(x); return;
case intTag: do_ArithmeticOp_Int(x); return;
default: ShouldNotReachHere();
}
}
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
LIRItem value(x->x(), this);
LIRItem count(x->y(), this);
value.load_item();
LIR_Opr reg = rlock_result(x);
LIR_Opr mcount;
if (count.result()->is_register()) {
mcount = FrameMap::R0_opr;
} else {
mcount = LIR_OprFact::illegalOpr;
}
shift_op(x->op(), reg, value.result(), count.result(), mcount);
}
inline bool can_handle_logic_op_as_uimm(ValueType *type, Bytecodes::Code bc) {
jlong int_or_long_const;
if (type->as_IntConstant()) {
int_or_long_const = type->as_IntConstant()->value();
} else if (type->as_LongConstant()) {
int_or_long_const = type->as_LongConstant()->value();
} else if (type->as_ObjectConstant()) {
return type->as_ObjectConstant()->value()->is_null_object();
} else {
return false;
}
if (Assembler::is_uimm(int_or_long_const, 16)) return true;
if ((int_or_long_const & 0xFFFF) == 0 &&
Assembler::is_uimm((jlong)((julong)int_or_long_const >> 16), 16)) return true;
// see Assembler::andi
if (bc == Bytecodes::_iand &&
(is_power_of_2_long(int_or_long_const+1) ||
is_power_of_2_long(int_or_long_const) ||
is_power_of_2_long(-int_or_long_const))) return true;
if (bc == Bytecodes::_land &&
(is_power_of_2_long(int_or_long_const+1) ||
(Assembler::is_uimm(int_or_long_const, 32) && is_power_of_2_long(int_or_long_const)) ||
(int_or_long_const != min_jlong && is_power_of_2_long(-int_or_long_const)))) return true;
// special case: xor -1
if ((bc == Bytecodes::_ixor || bc == Bytecodes::_lxor) &&
int_or_long_const == -1) return true;
return false;
}
// _iand, _land, _ior, _lor, _ixor, _lxor
void LIRGenerator::do_LogicOp(LogicOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
Value rval = right.value();
LIR_Opr r = rval->operand();
ValueType *type = rval->type();
// Logic instructions use unsigned immediate values.
if (can_handle_logic_op_as_uimm(type, x->op())) {
if (!r->is_constant()) {
r = LIR_OprFact::value_type(type);
rval->set_operand(r);
}
right.set_result(r);
} else {
right.load_item();
}
LIR_Opr reg = rlock_result(x);
logic_op(x->op(), reg, left.result(), right.result());
}
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
void LIRGenerator::do_CompareOp(CompareOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_item();
LIR_Opr reg = rlock_result(x);
if (x->x()->type()->is_float_kind()) {
Bytecodes::Code code = x->op();
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
} else if (x->x()->type()->tag() == longTag) {
__ lcmp2int(left.result(), right.result(), reg);
} else {
Unimplemented();
}
}
LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
LIR_Opr result = new_register(T_INT);
LIR_Opr t1 = LIR_OprFact::illegalOpr;
LIR_Opr t2 = LIR_OprFact::illegalOpr;
cmp_value.load_item();
new_value.load_item();
// Volatile load may be followed by Unsafe CAS.
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ membar();
} else {
__ membar_release();
}
if (is_reference_type(type)) {
if (UseCompressedOops) {
t1 = new_register(T_OBJECT);
t2 = new_register(T_OBJECT);
}
__ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
} else if (type == T_INT) {
__ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
} else if (type == T_LONG) {
__ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
} else {
Unimplemented();
}
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
result, type);
return result;
}
LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
LIR_Opr result = new_register(type);
LIR_Opr tmp = FrameMap::R0_opr;
value.load_item();
// Volatile load may be followed by Unsafe CAS.
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ membar();
} else {
__ membar_release();
}
__ xchg(addr, value.result(), result, tmp);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ membar_acquire();
} else {
__ membar();
}
return result;
}
LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
LIR_Opr result = new_register(type);
LIR_Opr tmp = FrameMap::R0_opr;
value.load_item();
// Volatile load may be followed by Unsafe CAS.
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ membar(); // To be safe. Unsafe semantics are unclear.
} else {
__ membar_release();
}
__ xadd(addr, value.result(), result, tmp);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ membar_acquire();
} else {
__ membar();
}
return result;
}
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
switch (x->id()) {
case vmIntrinsics::_dabs: {
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem value(x->argument_at(0), this);
value.load_item();
LIR_Opr dst = rlock_result(x);
__ abs(value.result(), dst, LIR_OprFact::illegalOpr);
break;
}
case vmIntrinsics::_dsqrt: {
if (VM_Version::has_fsqrt()) {
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem value(x->argument_at(0), this);
value.load_item();
LIR_Opr dst = rlock_result(x);
__ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
break;
} // else fallthru
}
case vmIntrinsics::_dsin: // fall through
case vmIntrinsics::_dcos: // fall through
case vmIntrinsics::_dtan: // fall through
case vmIntrinsics::_dlog: // fall through
case vmIntrinsics::_dlog10: // fall through
case vmIntrinsics::_dexp: {
assert(x->number_of_arguments() == 1, "wrong type");
address runtime_entry = NULL;
switch (x->id()) {
case vmIntrinsics::_dsqrt:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);
break;
case vmIntrinsics::_dsin:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
break;
case vmIntrinsics::_dcos:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
break;
case vmIntrinsics::_dtan:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
break;
case vmIntrinsics::_dlog:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
break;
case vmIntrinsics::_dlog10:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
break;
case vmIntrinsics::_dexp:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
set_result(x, result);
break;
}
case vmIntrinsics::_dpow: {
assert(x->number_of_arguments() == 2, "wrong type");
address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
set_result(x, result);
break;
}
default:
break;
}
}
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
assert(x->number_of_arguments() == 5, "wrong type");
// Make all state_for calls early since they can emit code.
CodeEmitInfo* info = state_for(x, x->state());
LIRItem src (x->argument_at(0), this);
LIRItem src_pos (x->argument_at(1), this);
LIRItem dst (x->argument_at(2), this);
LIRItem dst_pos (x->argument_at(3), this);
LIRItem length (x->argument_at(4), this);
// Load all values in callee_save_registers (C calling convention),
// as this makes the parameter passing to the fast case simpler.
src.load_item_force (FrameMap::R14_oop_opr);
src_pos.load_item_force (FrameMap::R15_opr);
dst.load_item_force (FrameMap::R17_oop_opr);
dst_pos.load_item_force (FrameMap::R18_opr);
length.load_item_force (FrameMap::R19_opr);
LIR_Opr tmp = FrameMap::R20_opr;
int flags;
ciArrayKlass* expected_type;
arraycopy_helper(x, &flags, &expected_type);
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
length.result(), tmp,
expected_type, flags, info);
set_no_result(x);
}
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
// _i2b, _i2c, _i2s
void LIRGenerator::do_Convert(Convert* x) {
if (!VM_Version::has_mtfprd()) {
switch (x->op()) {
// int -> float: force spill
case Bytecodes::_l2f: {
if (!VM_Version::has_fcfids()) { // fcfids is >= Power7 only
// fcfid+frsp needs fixup code to avoid rounding incompatibility.
address entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
set_result(x, result);
return;
} // else fallthru
}
case Bytecodes::_l2d: {
LIRItem value(x->value(), this);
LIR_Opr reg = rlock_result(x);
value.load_item();
LIR_Opr tmp = force_to_spill(value.result(), T_DOUBLE);
__ convert(x->op(), tmp, reg);
return;
}
case Bytecodes::_i2f:
case Bytecodes::_i2d: {
LIRItem value(x->value(), this);
LIR_Opr reg = rlock_result(x);
value.load_item();
// Convert i2l first.
LIR_Opr tmp1 = new_register(T_LONG);
__ convert(Bytecodes::_i2l, value.result(), tmp1);
LIR_Opr tmp2 = force_to_spill(tmp1, T_DOUBLE);
__ convert(x->op(), tmp2, reg);
return;
}
// float -> int: result will be stored
case Bytecodes::_f2l:
case Bytecodes::_d2l: {
LIRItem value(x->value(), this);
LIR_Opr reg = rlock_result(x);
value.set_destroys_register(); // USE_KILL
value.load_item();
set_vreg_flag(reg, must_start_in_memory);
__ convert(x->op(), value.result(), reg);
return;
}
case Bytecodes::_f2i:
case Bytecodes::_d2i: {
LIRItem value(x->value(), this);
LIR_Opr reg = rlock_result(x);
value.set_destroys_register(); // USE_KILL
value.load_item();
// Convert l2i afterwards.
LIR_Opr tmp1 = new_register(T_LONG);
set_vreg_flag(tmp1, must_start_in_memory);
__ convert(x->op(), value.result(), tmp1);
__ convert(Bytecodes::_l2i, tmp1, reg);
return;
}
// Within same category: just register conversions.
case Bytecodes::_i2b:
case Bytecodes::_i2c:
case Bytecodes::_i2s:
case Bytecodes::_i2l:
case Bytecodes::_l2i:
case Bytecodes::_f2d:
case Bytecodes::_d2f:
break;
default: ShouldNotReachHere();
}
}
// Register conversion.
LIRItem value(x->value(), this);
LIR_Opr reg = rlock_result(x);
value.load_item();
switch (x->op()) {
case Bytecodes::_f2l:
case Bytecodes::_d2l:
case Bytecodes::_f2i:
case Bytecodes::_d2i: value.set_destroys_register(); break; // USE_KILL
default: break;
}
__ convert(x->op(), value.result(), reg);
}
void LIRGenerator::do_NewInstance(NewInstance* x) {
// This instruction can be deoptimized in the slow path.
const LIR_Opr reg = result_register_for(x->type());
#ifndef PRODUCT
if (PrintNotLoaded && !x->klass()->is_loaded()) {
tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci());
}
#endif
CodeEmitInfo* info = state_for(x, x->state());
LIR_Opr klass_reg = FrameMap::R4_metadata_opr; // Used by slow path (NewInstanceStub).
LIR_Opr tmp1 = FrameMap::R5_oop_opr;
LIR_Opr tmp2 = FrameMap::R6_oop_opr;
LIR_Opr tmp3 = FrameMap::R7_oop_opr;
LIR_Opr tmp4 = FrameMap::R8_oop_opr;
new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
// Must prevent reordering of stores for object initialization
// with stores that publish the new object.
__ membar_storestore();
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
// Evaluate state_for early since it may emit code.
CodeEmitInfo* info = state_for(x, x->state());
LIRItem length(x->length(), this);
length.load_item();
LIR_Opr reg = result_register_for(x->type());
LIR_Opr klass_reg = FrameMap::R4_metadata_opr; // Used by slow path (NewTypeArrayStub).
// We use R5 in order to get a temp effect. This reg is used in slow path (NewTypeArrayStub).
LIR_Opr tmp1 = FrameMap::R5_oop_opr;
LIR_Opr tmp2 = FrameMap::R6_oop_opr;
LIR_Opr tmp3 = FrameMap::R7_oop_opr;
LIR_Opr tmp4 = FrameMap::R8_oop_opr;
LIR_Opr len = length.result();
BasicType elem_type = x->elt_type();
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
// Must prevent reordering of stores for object initialization
// with stores that publish the new object.
__ membar_storestore();
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
// Evaluate state_for early since it may emit code.
CodeEmitInfo* info = state_for(x, x->state());
// In case of patching (i.e., object class is not yet loaded),
// we need to reexecute the instruction and therefore provide
// the state before the parameters have been consumed.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
}
LIRItem length(x->length(), this);
length.load_item();
const LIR_Opr reg = result_register_for(x->type());
LIR_Opr klass_reg = FrameMap::R4_metadata_opr; // Used by slow path (NewObjectArrayStub).
// We use R5 in order to get a temp effect. This reg is used in slow path (NewObjectArrayStub).
LIR_Opr tmp1 = FrameMap::R5_oop_opr;
LIR_Opr tmp2 = FrameMap::R6_oop_opr;
LIR_Opr tmp3 = FrameMap::R7_oop_opr;
LIR_Opr tmp4 = FrameMap::R8_oop_opr;
LIR_Opr len = length.result();
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
ciMetadata* obj = ciObjArrayKlass::make(x->klass());
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
}
klass2reg_with_patching(klass_reg, obj, patching_info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
// Must prevent reordering of stores for object initialization
// with stores that publish the new object.
__ membar_storestore();
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
Values* dims = x->dims();
int i = dims->length();
LIRItemList* items = new LIRItemList(i, i, NULL);
while (i-- > 0) {
LIRItem* size = new LIRItem(dims->at(i), this);
items->at_put(i, size);
}
// Evaluate state_for early since it may emit code.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
// clone all handlers (NOTE: Usually this is handled transparently
// by the CodeEmitInfo cloning logic in CodeStub constructors but
// is done explicitly here because a stub isn't being used).
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
}
CodeEmitInfo* info = state_for(x, x->state());
i = dims->length();
while (i-- > 0) {
LIRItem* size = items->at(i);
size->load_nonconstant();
// FrameMap::_reserved_argument_area_size includes the dimensions
// varargs, because it's initialized to hir()->max_stack() when the
// FrameMap is created.
store_stack_parameter(size->result(), in_ByteSize(i*sizeof(jint) + FrameMap::first_available_sp_in_frame));
}
const LIR_Opr klass_reg = FrameMap::R4_metadata_opr; // Used by slow path.
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
LIR_Opr rank = FrameMap::R5_opr; // Used by slow path.
__ move(LIR_OprFact::intConst(x->rank()), rank);
LIR_Opr varargs = FrameMap::as_pointer_opr(R6); // Used by slow path.
__ leal(LIR_OprFact::address(new LIR_Address(FrameMap::SP_opr, FrameMap::first_available_sp_in_frame, T_INT)),
varargs);
// Note: This instruction can be deoptimized in the slow path.
LIR_OprList* args = new LIR_OprList(3);
args->append(klass_reg);
args->append(rank);
args->append(varargs);
const LIR_Opr reg = result_register_for(x->type());
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
LIR_OprFact::illegalOpr,
reg, args, info);
// Must prevent reordering of stores for object initialization
// with stores that publish the new object.
__ membar_storestore();
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
// nothing to do for now
}
void LIRGenerator::do_CheckCast(CheckCast* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
// Must do this before locking the destination register as
// an oop register, and before the obj is loaded (so x->obj()->item()
// is valid for creating a debug info location).
patching_info = state_for(x, x->state_before());
}
obj.load_item();
LIR_Opr out_reg = rlock_result(x);
CodeStub* stub;
CodeEmitInfo* info_for_exception =
(x->needs_exception_state() ? state_for(x) :
state_for(x, x->state_before(), true /*ignore_xhandler*/));
if (x->is_incompatible_class_change_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id,
LIR_OprFact::illegalOpr, info_for_exception);
} else if (x->is_invokespecial_receiver_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new DeoptimizeStub(info_for_exception,
Deoptimization::Reason_class_check,
Deoptimization::Action_none);
} else {
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
}
// Following registers are used by slow_subtype_check:
LIR_Opr tmp1 = FrameMap::R4_oop_opr; // super_klass
LIR_Opr tmp2 = FrameMap::R5_oop_opr; // sub_klass
LIR_Opr tmp3 = FrameMap::R6_oop_opr; // temp
__ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
x->direct_compare(), info_for_exception, patching_info, stub,
x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
}
// Ensure the result register is not the input register because the
// result is initialized before the patching safepoint.
obj.load_item();
LIR_Opr out_reg = rlock_result(x);
// Following registers are used by slow_subtype_check:
LIR_Opr tmp1 = FrameMap::R4_oop_opr; // super_klass
LIR_Opr tmp2 = FrameMap::R5_oop_opr; // sub_klass
LIR_Opr tmp3 = FrameMap::R6_oop_opr; // temp
__ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
x->direct_compare(), patching_info,
x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_If(If* x) {
assert(x->number_of_sux() == 2, "inconsistency");
ValueTag tag = x->x()->type()->tag();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
If::Condition cond = x->cond();
LIR_Opr left = LIR_OprFact::illegalOpr;
LIR_Opr right = LIR_OprFact::illegalOpr;
xin->load_item();
left = xin->result();
if (yin->result()->is_constant() && yin->result()->type() == T_INT &&
Assembler::is_simm16(yin->result()->as_constant_ptr()->as_jint())) {
// Inline int constants which are small enough to be immediate operands.
right = LIR_OprFact::value_type(yin->value()->type());
} else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
(cond == If::eql || cond == If::neq)) {
// Inline long zero.
right = LIR_OprFact::value_type(yin->value()->type());
} else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
right = LIR_OprFact::value_type(yin->value()->type());
} else {
yin->load_item();
right = yin->result();
}
set_no_result(x);
// Add safepoint before generating condition code so it can be recomputed.
if (x->is_safepoint()) {
// Increment backedge counter if needed.
increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
}
__ cmp(lir_cond(cond), left, right);
// Generate branch profiling. Profiling code doesn't kill flags.
profile_branch(x, cond);
move_to_phi(x->state());
if (x->x()->type()->is_float_kind()) {
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
} else {
__ branch(lir_cond(cond), right->type(), x->tsux());
}
assert(x->default_sux() == x->fsux(), "wrong destination above");
__ jump(x->default_sux());
}
LIR_Opr LIRGenerator::getThreadPointer() {
return FrameMap::as_pointer_opr(R16_thread);
}
void LIRGenerator::trace_block_entry(BlockBegin* block) {
LIR_Opr arg1 = FrameMap::R3_opr; // ARG1
__ move(LIR_OprFact::intConst(block->block_id()), arg1);
LIR_OprList* args = new LIR_OprList(1);
args->append(arg1);
address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
__ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
}
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
CodeEmitInfo* info) {
#ifdef _LP64
__ store(value, address, info);
#else
Unimplemented();
// __ volatile_store_mem_reg(value, address, info);
#endif
}
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
CodeEmitInfo* info) {
#ifdef _LP64
__ load(address, result, info);
#else
Unimplemented();
// __ volatile_load_mem_reg(address, result, info);
#endif
}
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
assert(UseCRC32Intrinsics, "or should not be here");
LIR_Opr result = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_updateCRC32: {
LIRItem crc(x->argument_at(0), this);
LIRItem val(x->argument_at(1), this);
// Registers destroyed by update_crc32.
crc.set_destroys_register();
val.set_destroys_register();
crc.load_item();
val.load_item();
__ update_crc32(crc.result(), val.result(), result);
break;
}
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32: {
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
LIRItem crc(x->argument_at(0), this);
LIRItem buf(x->argument_at(1), this);
LIRItem off(x->argument_at(2), this);
LIRItem len(x->argument_at(3), this);
buf.load_item();
off.load_nonconstant();
LIR_Opr index = off.result();
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
if (off.result()->is_constant()) {
index = LIR_OprFact::illegalOpr;
offset += off.result()->as_jint();
}
LIR_Opr base_op = buf.result();
LIR_Address* a = NULL;
if (index->is_valid()) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index, tmp);
index = tmp;
__ add(index, LIR_OprFact::intptrConst(offset), index);
a = new LIR_Address(base_op, index, T_BYTE);
} else {
a = new LIR_Address(base_op, offset, T_BYTE);
}
BasicTypeList signature(3);
signature.append(T_INT);
signature.append(T_ADDRESS);
signature.append(T_INT);
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
const LIR_Opr result_reg = result_register_for(x->type());
LIR_Opr arg1 = cc->at(0),
arg2 = cc->at(1),
arg3 = cc->at(2);
crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32 stub doesn't care about high bits.
__ leal(LIR_OprFact::address(a), arg2);
len.load_item_force(arg3); // We skip int->long conversion here, , because CRC32 stub expects int.
__ call_runtime_leaf(StubRoutines::updateBytesCRC32(), LIR_OprFact::illegalOpr, result_reg, cc->args());
__ move(result_reg, result);
break;
}
default: {
ShouldNotReachHere();
}
}
}
void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
assert(UseCRC32CIntrinsics, "or should not be here");
LIR_Opr result = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_updateBytesCRC32C:
case vmIntrinsics::_updateDirectByteBufferCRC32C: {
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
LIRItem crc(x->argument_at(0), this);
LIRItem buf(x->argument_at(1), this);
LIRItem off(x->argument_at(2), this);
LIRItem end(x->argument_at(3), this);
buf.load_item();
off.load_nonconstant();
end.load_nonconstant();
// len = end - off
LIR_Opr len = end.result();
LIR_Opr tmpA = new_register(T_INT);
LIR_Opr tmpB = new_register(T_INT);
__ move(end.result(), tmpA);
__ move(off.result(), tmpB);
__ sub(tmpA, tmpB, tmpA);
len = tmpA;
LIR_Opr index = off.result();
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
if (off.result()->is_constant()) {
index = LIR_OprFact::illegalOpr;
offset += off.result()->as_jint();
}
LIR_Opr base_op = buf.result();
LIR_Address* a = NULL;
if (index->is_valid()) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index, tmp);
index = tmp;
__ add(index, LIR_OprFact::intptrConst(offset), index);
a = new LIR_Address(base_op, index, T_BYTE);
} else {
a = new LIR_Address(base_op, offset, T_BYTE);
}
BasicTypeList signature(3);
signature.append(T_INT);
signature.append(T_ADDRESS);
signature.append(T_INT);
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
const LIR_Opr result_reg = result_register_for(x->type());
LIR_Opr arg1 = cc->at(0),
arg2 = cc->at(1),
arg3 = cc->at(2);
crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32C stub doesn't care about high bits.
__ leal(LIR_OprFact::address(a), arg2);
__ move(len, cc->at(2)); // We skip int->long conversion here, because CRC32C stub expects int.
__ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), LIR_OprFact::illegalOpr, result_reg, cc->args());
__ move(result_reg, result);
break;
}
default: {
ShouldNotReachHere();
}
}
}
void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
assert(x->number_of_arguments() == 3, "wrong type");
assert(UseFMA, "Needs FMA instructions support.");
LIRItem value(x->argument_at(0), this);
LIRItem value1(x->argument_at(1), this);
LIRItem value2(x->argument_at(2), this);
value.load_item();
value1.load_item();
value2.load_item();
LIR_Opr calc_input = value.result();
LIR_Opr calc_input1 = value1.result();
LIR_Opr calc_input2 = value2.result();
LIR_Opr calc_result = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
default: ShouldNotReachHere();
}
}
void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
fatal("vectorizedMismatch intrinsic is not implemented on this platform");
}