8210963: Build failures after "8210829: Modularize allocations in C2"
Reviewed-by: rkennke, thartmann
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/c2/barrierSetC2.hpp"
#include "opto/arraycopynode.hpp"
#include "opto/convertnode.hpp"
#include "opto/graphKit.hpp"
#include "opto/idealKit.hpp"
#include "opto/macro.hpp"
#include "opto/narrowptrnode.hpp"
#include "utilities/macros.hpp"
// By default this is a no-op.
void BarrierSetC2::resolve_address(C2Access& access) const { }
void* C2Access::barrier_set_state() const {
return _kit->barrier_set_state();
}
bool C2Access::needs_cpu_membar() const {
bool mismatched = (_decorators & C2_MISMATCHED) != 0;
bool is_unordered = (_decorators & MO_UNORDERED) != 0;
bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
bool in_heap = (_decorators & IN_HEAP) != 0;
bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
bool is_read = (_decorators & C2_READ_ACCESS) != 0;
bool is_atomic = is_read && is_write;
if (is_atomic) {
// Atomics always need to be wrapped in CPU membars
return true;
}
if (anonymous) {
// We will need memory barriers unless we can determine a unique
// alias category for this reference. (Note: If for some reason
// the barriers get omitted and the unsafe reference begins to "pollute"
// the alias analysis of the rest of the graph, either Compile::can_alias
// or Compile::must_alias will throw a diagnostic assert.)
if (!in_heap || !is_unordered || (mismatched && !_addr.type()->isa_aryptr())) {
return true;
}
}
return false;
}
Node* BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
DecoratorSet decorators = access.decorators();
GraphKit* kit = access.kit();
bool mismatched = (decorators & C2_MISMATCHED) != 0;
bool unaligned = (decorators & C2_UNALIGNED) != 0;
bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
bool in_native = (decorators & IN_NATIVE) != 0;
assert(!in_native, "not supported yet");
if (access.type() == T_DOUBLE) {
Node* new_val = kit->dstore_rounding(val.node());
val.set_node(new_val);
}
MemNode::MemOrd mo = access.mem_node_mo();
Node* store = kit->store_to_memory(kit->control(), access.addr().node(), val.node(), access.type(),
access.addr().type(), mo, requires_atomic_access, unaligned, mismatched);
access.set_raw_access(store);
return store;
}
Node* BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
DecoratorSet decorators = access.decorators();
GraphKit* kit = access.kit();
Node* adr = access.addr().node();
const TypePtr* adr_type = access.addr().type();
bool mismatched = (decorators & C2_MISMATCHED) != 0;
bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
bool unaligned = (decorators & C2_UNALIGNED) != 0;
bool control_dependent = (decorators & C2_CONTROL_DEPENDENT_LOAD) != 0;
bool pinned = (decorators & C2_PINNED_LOAD) != 0;
bool in_native = (decorators & IN_NATIVE) != 0;
MemNode::MemOrd mo = access.mem_node_mo();
LoadNode::ControlDependency dep = pinned ? LoadNode::Pinned : LoadNode::DependsOnlyOnTest;
Node* control = control_dependent ? kit->control() : NULL;
Node* load;
if (in_native) {
load = kit->make_load(control, adr, val_type, access.type(), mo);
} else {
load = kit->make_load(control, adr, val_type, access.type(), adr_type, mo,
dep, requires_atomic_access, unaligned, mismatched);
}
access.set_raw_access(load);
return load;
}
class C2AccessFence: public StackObj {
C2Access& _access;
Node* _leading_membar;
public:
C2AccessFence(C2Access& access) :
_access(access), _leading_membar(NULL) {
GraphKit* kit = access.kit();
DecoratorSet decorators = access.decorators();
bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
bool is_read = (decorators & C2_READ_ACCESS) != 0;
bool is_atomic = is_read && is_write;
bool is_volatile = (decorators & MO_SEQ_CST) != 0;
bool is_release = (decorators & MO_RELEASE) != 0;
if (is_atomic) {
// Memory-model-wise, a LoadStore acts like a little synchronized
// block, so needs barriers on each side. These don't translate
// into actual barriers on most machines, but we still need rest of
// compiler to respect ordering.
if (is_release) {
_leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
} else if (is_volatile) {
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
_leading_membar = kit->insert_mem_bar(Op_MemBarVolatile);
} else {
_leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
}
}
} else if (is_write) {
// If reference is volatile, prevent following memory ops from
// floating down past the volatile write. Also prevents commoning
// another volatile read.
if (is_volatile || is_release) {
_leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
}
} else {
// Memory barrier to prevent normal and 'unsafe' accesses from
// bypassing each other. Happens after null checks, so the
// exception paths do not take memory state from the memory barrier,
// so there's no problems making a strong assert about mixing users
// of safe & unsafe memory.
if (is_volatile && support_IRIW_for_not_multiple_copy_atomic_cpu) {
_leading_membar = kit->insert_mem_bar(Op_MemBarVolatile);
}
}
if (access.needs_cpu_membar()) {
kit->insert_mem_bar(Op_MemBarCPUOrder);
}
if (is_atomic) {
// 4984716: MemBars must be inserted before this
// memory node in order to avoid a false
// dependency which will confuse the scheduler.
access.set_memory();
}
}
~C2AccessFence() {
GraphKit* kit = _access.kit();
DecoratorSet decorators = _access.decorators();
bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
bool is_read = (decorators & C2_READ_ACCESS) != 0;
bool is_atomic = is_read && is_write;
bool is_volatile = (decorators & MO_SEQ_CST) != 0;
bool is_acquire = (decorators & MO_ACQUIRE) != 0;
// If reference is volatile, prevent following volatiles ops from
// floating up before the volatile access.
if (_access.needs_cpu_membar()) {
kit->insert_mem_bar(Op_MemBarCPUOrder);
}
if (is_atomic) {
if (is_acquire || is_volatile) {
Node* n = _access.raw_access();
Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n);
if (_leading_membar != NULL) {
MemBarNode::set_load_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar());
}
}
} else if (is_write) {
// If not multiple copy atomic, we do the MemBarVolatile before the load.
if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
Node* n = _access.raw_access();
Node* mb = kit->insert_mem_bar(Op_MemBarVolatile, n); // Use fat membar
if (_leading_membar != NULL) {
MemBarNode::set_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar());
}
}
} else {
if (is_volatile || is_acquire) {
Node* n = _access.raw_access();
assert(_leading_membar == NULL || support_IRIW_for_not_multiple_copy_atomic_cpu, "no leading membar expected");
Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n);
mb->as_MemBar()->set_trailing_load();
}
}
}
};
Node* BarrierSetC2::store_at(C2Access& access, C2AccessValue& val) const {
C2AccessFence fence(access);
resolve_address(access);
return store_at_resolved(access, val);
}
Node* BarrierSetC2::load_at(C2Access& access, const Type* val_type) const {
C2AccessFence fence(access);
resolve_address(access);
return load_at_resolved(access, val_type);
}
MemNode::MemOrd C2Access::mem_node_mo() const {
bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
bool is_read = (_decorators & C2_READ_ACCESS) != 0;
if ((_decorators & MO_SEQ_CST) != 0) {
if (is_write && is_read) {
// For atomic operations
return MemNode::seqcst;
} else if (is_write) {
return MemNode::release;
} else {
assert(is_read, "what else?");
return MemNode::acquire;
}
} else if ((_decorators & MO_RELEASE) != 0) {
return MemNode::release;
} else if ((_decorators & MO_ACQUIRE) != 0) {
return MemNode::acquire;
} else if (is_write) {
// Volatile fields need releasing stores.
// Non-volatile fields also need releasing stores if they hold an
// object reference, because the object reference might point to
// a freshly created object.
// Conservatively release stores of object references.
return StoreNode::release_if_reference(_type);
} else {
return MemNode::unordered;
}
}
void C2Access::fixup_decorators() {
bool default_mo = (_decorators & MO_DECORATOR_MASK) == 0;
bool is_unordered = (_decorators & MO_UNORDERED) != 0 || default_mo;
bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
bool is_read = (_decorators & C2_READ_ACCESS) != 0;
bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
if (AlwaysAtomicAccesses && is_unordered) {
_decorators &= ~MO_DECORATOR_MASK; // clear the MO bits
_decorators |= MO_RELAXED; // Force the MO_RELAXED decorator with AlwaysAtomicAccess
}
_decorators = AccessInternal::decorator_fixup(_decorators);
if (is_read && !is_write && anonymous) {
// To be valid, unsafe loads may depend on other conditions than
// the one that guards them: pin the Load node
_decorators |= C2_CONTROL_DEPENDENT_LOAD;
_decorators |= C2_PINNED_LOAD;
const TypePtr* adr_type = _addr.type();
Node* adr = _addr.node();
if (!needs_cpu_membar() && adr_type->isa_instptr()) {
assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
intptr_t offset = Type::OffsetBot;
AddPNode::Ideal_base_and_offset(adr, &_kit->gvn(), offset);
if (offset >= 0) {
int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
if (offset < s) {
// Guaranteed to be a valid access, no need to pin it
_decorators ^= C2_CONTROL_DEPENDENT_LOAD;
_decorators ^= C2_PINNED_LOAD;
}
}
}
}
}
//--------------------------- atomic operations---------------------------------
static void pin_atomic_op(C2AtomicAccess& access) {
if (!access.needs_pinning()) {
return;
}
// SCMemProjNodes represent the memory state of a LoadStore. Their
// main role is to prevent LoadStore nodes from being optimized away
// when their results aren't used.
GraphKit* kit = access.kit();
Node* load_store = access.raw_access();
assert(load_store != NULL, "must pin atomic op");
Node* proj = kit->gvn().transform(new SCMemProjNode(load_store));
kit->set_memory(proj, access.alias_idx());
}
void C2AtomicAccess::set_memory() {
Node *mem = _kit->memory(_alias_idx);
_memory = mem;
}
Node* BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicAccess& access, Node* expected_val,
Node* new_val, const Type* value_type) const {
GraphKit* kit = access.kit();
MemNode::MemOrd mo = access.mem_node_mo();
Node* mem = access.memory();
Node* adr = access.addr().node();
const TypePtr* adr_type = access.addr().type();
Node* load_store = NULL;
if (access.is_oop()) {
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
} else
#endif
{
load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
}
} else {
switch (access.type()) {
case T_BYTE: {
load_store = kit->gvn().transform(new CompareAndExchangeBNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
break;
}
case T_SHORT: {
load_store = kit->gvn().transform(new CompareAndExchangeSNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
break;
}
case T_INT: {
load_store = kit->gvn().transform(new CompareAndExchangeINode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
break;
}
case T_LONG: {
load_store = kit->gvn().transform(new CompareAndExchangeLNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
break;
}
default:
ShouldNotReachHere();
}
}
access.set_raw_access(load_store);
pin_atomic_op(access);
#ifdef _LP64
if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
}
#endif
return load_store;
}
Node* BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicAccess& access, Node* expected_val,
Node* new_val, const Type* value_type) const {
GraphKit* kit = access.kit();
DecoratorSet decorators = access.decorators();
MemNode::MemOrd mo = access.mem_node_mo();
Node* mem = access.memory();
bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
Node* load_store = NULL;
Node* adr = access.addr().node();
if (access.is_oop()) {
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
if (is_weak_cas) {
load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
} else {
load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
}
} else
#endif
{
if (is_weak_cas) {
load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
} else {
load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
}
}
} else {
switch(access.type()) {
case T_BYTE: {
if (is_weak_cas) {
load_store = kit->gvn().transform(new WeakCompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo));
} else {
load_store = kit->gvn().transform(new CompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo));
}
break;
}
case T_SHORT: {
if (is_weak_cas) {
load_store = kit->gvn().transform(new WeakCompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo));
} else {
load_store = kit->gvn().transform(new CompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo));
}
break;
}
case T_INT: {
if (is_weak_cas) {
load_store = kit->gvn().transform(new WeakCompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo));
} else {
load_store = kit->gvn().transform(new CompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo));
}
break;
}
case T_LONG: {
if (is_weak_cas) {
load_store = kit->gvn().transform(new WeakCompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo));
} else {
load_store = kit->gvn().transform(new CompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo));
}
break;
}
default:
ShouldNotReachHere();
}
}
access.set_raw_access(load_store);
pin_atomic_op(access);
return load_store;
}
Node* BarrierSetC2::atomic_xchg_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
GraphKit* kit = access.kit();
Node* mem = access.memory();
Node* adr = access.addr().node();
const TypePtr* adr_type = access.addr().type();
Node* load_store = NULL;
if (access.is_oop()) {
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
load_store = kit->gvn().transform(new GetAndSetNNode(kit->control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
} else
#endif
{
load_store = kit->gvn().transform(new GetAndSetPNode(kit->control(), mem, adr, new_val, adr_type, value_type->is_oopptr()));
}
} else {
switch (access.type()) {
case T_BYTE:
load_store = kit->gvn().transform(new GetAndSetBNode(kit->control(), mem, adr, new_val, adr_type));
break;
case T_SHORT:
load_store = kit->gvn().transform(new GetAndSetSNode(kit->control(), mem, adr, new_val, adr_type));
break;
case T_INT:
load_store = kit->gvn().transform(new GetAndSetINode(kit->control(), mem, adr, new_val, adr_type));
break;
case T_LONG:
load_store = kit->gvn().transform(new GetAndSetLNode(kit->control(), mem, adr, new_val, adr_type));
break;
default:
ShouldNotReachHere();
}
}
access.set_raw_access(load_store);
pin_atomic_op(access);
#ifdef _LP64
if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
}
#endif
return load_store;
}
Node* BarrierSetC2::atomic_add_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
Node* load_store = NULL;
GraphKit* kit = access.kit();
Node* adr = access.addr().node();
const TypePtr* adr_type = access.addr().type();
Node* mem = access.memory();
switch(access.type()) {
case T_BYTE:
load_store = kit->gvn().transform(new GetAndAddBNode(kit->control(), mem, adr, new_val, adr_type));
break;
case T_SHORT:
load_store = kit->gvn().transform(new GetAndAddSNode(kit->control(), mem, adr, new_val, adr_type));
break;
case T_INT:
load_store = kit->gvn().transform(new GetAndAddINode(kit->control(), mem, adr, new_val, adr_type));
break;
case T_LONG:
load_store = kit->gvn().transform(new GetAndAddLNode(kit->control(), mem, adr, new_val, adr_type));
break;
default:
ShouldNotReachHere();
}
access.set_raw_access(load_store);
pin_atomic_op(access);
return load_store;
}
Node* BarrierSetC2::atomic_cmpxchg_val_at(C2AtomicAccess& access, Node* expected_val,
Node* new_val, const Type* value_type) const {
C2AccessFence fence(access);
resolve_address(access);
return atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
}
Node* BarrierSetC2::atomic_cmpxchg_bool_at(C2AtomicAccess& access, Node* expected_val,
Node* new_val, const Type* value_type) const {
C2AccessFence fence(access);
resolve_address(access);
return atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
}
Node* BarrierSetC2::atomic_xchg_at(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
C2AccessFence fence(access);
resolve_address(access);
return atomic_xchg_at_resolved(access, new_val, value_type);
}
Node* BarrierSetC2::atomic_add_at(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
C2AccessFence fence(access);
resolve_address(access);
return atomic_add_at_resolved(access, new_val, value_type);
}
void BarrierSetC2::clone(GraphKit* kit, Node* src, Node* dst, Node* size, bool is_array) const {
// Exclude the header but include array length to copy by 8 bytes words.
// Can't use base_offset_in_bytes(bt) since basic type is unknown.
int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
instanceOopDesc::base_offset_in_bytes();
// base_off:
// 8 - 32-bit VM
// 12 - 64-bit VM, compressed klass
// 16 - 64-bit VM, normal klass
if (base_off % BytesPerLong != 0) {
assert(UseCompressedClassPointers, "");
if (is_array) {
// Exclude length to copy by 8 bytes words.
base_off += sizeof(int);
} else {
// Include klass to copy by 8 bytes words.
base_off = instanceOopDesc::klass_offset_in_bytes();
}
assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
}
Node* src_base = kit->basic_plus_adr(src, base_off);
Node* dst_base = kit->basic_plus_adr(dst, base_off);
// Compute the length also, if needed:
Node* countx = size;
countx = kit->gvn().transform(new SubXNode(countx, kit->MakeConX(base_off)));
countx = kit->gvn().transform(new URShiftXNode(countx, kit->intcon(LogBytesPerLong) ));
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
ArrayCopyNode* ac = ArrayCopyNode::make(kit, false, src_base, NULL, dst_base, NULL, countx, false, false);
ac->set_clonebasic();
Node* n = kit->gvn().transform(ac);
if (n == ac) {
kit->set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
} else {
kit->set_all_memory(n);
}
}
Node* BarrierSetC2::obj_allocate(PhaseMacroExpand* macro, Node* ctrl, Node* mem, Node* toobig_false, Node* size_in_bytes,
Node*& i_o, Node*& needgc_ctrl,
Node*& fast_oop_ctrl, Node*& fast_oop_rawmem,
intx prefetch_lines) const {
Node* eden_top_adr;
Node* eden_end_adr;
macro->set_eden_pointers(eden_top_adr, eden_end_adr);
// Load Eden::end. Loop invariant and hoisted.
//
// Note: We set the control input on "eden_end" and "old_eden_top" when using
// a TLAB to work around a bug where these values were being moved across
// a safepoint. These are not oops, so they cannot be include in the oop
// map, but they can be changed by a GC. The proper way to fix this would
// be to set the raw memory state when generating a SafepointNode. However
// this will require extensive changes to the loop optimization in order to
// prevent a degradation of the optimization.
// See comment in memnode.hpp, around line 227 in class LoadPNode.
Node *eden_end = macro->make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
// We need a Region for the loop-back contended case.
enum { fall_in_path = 1, contended_loopback_path = 2 };
Node *contended_region;
Node *contended_phi_rawmem;
if (UseTLAB) {
contended_region = toobig_false;
contended_phi_rawmem = mem;
} else {
contended_region = new RegionNode(3);
contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
// Now handle the passing-too-big test. We fall into the contended
// loop-back merge point.
contended_region ->init_req(fall_in_path, toobig_false);
contended_phi_rawmem->init_req(fall_in_path, mem);
macro->transform_later(contended_region);
macro->transform_later(contended_phi_rawmem);
}
// Load(-locked) the heap top.
// See note above concerning the control input when using a TLAB
Node *old_eden_top = UseTLAB
? new LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
: new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
macro->transform_later(old_eden_top);
// Add to heap top to get a new heap top
Node *new_eden_top = new AddPNode(macro->top(), old_eden_top, size_in_bytes);
macro->transform_later(new_eden_top);
// Check for needing a GC; compare against heap end
Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
macro->transform_later(needgc_cmp);
Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
macro->transform_later(needgc_bol);
IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
macro->transform_later(needgc_iff);
// Plug the failing-heap-space-need-gc test into the slow-path region
Node *needgc_true = new IfTrueNode(needgc_iff);
macro->transform_later(needgc_true);
needgc_ctrl = needgc_true;
// No need for a GC. Setup for the Store-Conditional
Node *needgc_false = new IfFalseNode(needgc_iff);
macro->transform_later(needgc_false);
i_o = macro->prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
old_eden_top, new_eden_top, prefetch_lines);
Node* fast_oop = old_eden_top;
// Store (-conditional) the modified eden top back down.
// StorePConditional produces flags for a test PLUS a modified raw
// memory state.
if (UseTLAB) {
Node* store_eden_top =
new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
macro->transform_later(store_eden_top);
fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
fast_oop_rawmem = store_eden_top;
} else {
Node* store_eden_top =
new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
new_eden_top, fast_oop/*old_eden_top*/);
macro->transform_later(store_eden_top);
Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
macro->transform_later(contention_check);
store_eden_top = new SCMemProjNode(store_eden_top);
macro->transform_later(store_eden_top);
// If not using TLABs, check to see if there was contention.
IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
macro->transform_later(contention_iff);
Node *contention_true = new IfTrueNode(contention_iff);
macro->transform_later(contention_true);
// If contention, loopback and try again.
contended_region->init_req(contended_loopback_path, contention_true);
contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
// Fast-path succeeded with no contention!
Node *contention_false = new IfFalseNode(contention_iff);
macro->transform_later(contention_false);
fast_oop_ctrl = contention_false;
// Bump total allocated bytes for this thread
Node* thread = new ThreadLocalNode();
macro->transform_later(thread);
Node* alloc_bytes_adr = macro->basic_plus_adr(macro->top()/*not oop*/, thread,
in_bytes(JavaThread::allocated_bytes_offset()));
Node* alloc_bytes = macro->make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
0, TypeLong::LONG, T_LONG);
#ifdef _LP64
Node* alloc_size = size_in_bytes;
#else
Node* alloc_size = new ConvI2LNode(size_in_bytes);
macro->transform_later(alloc_size);
#endif
Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
macro->transform_later(new_alloc_bytes);
fast_oop_rawmem = macro->make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
0, new_alloc_bytes, T_LONG);
}
return fast_oop;
}