6348631: remove the use of the HPI library from Hotspot
Summary: move functions from hpi library to hotspot, communicate with licensees and open source community, check jdk for dependency, file CCC request
Reviewed-by: coleenp, acorn, dsamersoff
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// ADLPARSE.CPP - Architecture Description Language Parser
// Authors: Chris Vick and Mike Paleczny
#include "adlc.hpp"
//----------------------------ADLParser----------------------------------------
// Create a new ADL parser
ADLParser::ADLParser(FileBuff& buffer, ArchDesc& archDesc)
: _buf(buffer), _AD(archDesc),
_globalNames(archDesc.globalNames()) {
_AD._syntax_errs = _AD._semantic_errs = 0; // No errors so far this file
_AD._warnings = 0; // No warnings either
_curline = _ptr = NULL; // No pointers into buffer yet
_preproc_depth = 0;
_preproc_not_taken = 0;
// Delimit command-line definitions from in-file definitions:
_AD._preproc_list.add_signal();
}
//------------------------------~ADLParser-------------------------------------
// Delete an ADL parser.
ADLParser::~ADLParser() {
if (!_AD._quiet_mode)
fprintf(stderr,"---------------------------- Errors and Warnings ----------------------------\n");
#ifndef ASSERT
fprintf(stderr, "**************************************************************\n");
fprintf(stderr, "***** WARNING: ASSERT is undefined, assertions disabled. *****\n");
fprintf(stderr, "**************************************************************\n");
#endif
if( _AD._syntax_errs + _AD._semantic_errs + _AD._warnings == 0 ) {
if (!_AD._quiet_mode)
fprintf(stderr,"No errors or warnings to report from phase-1 parse.\n" );
}
else {
if( _AD._syntax_errs ) { // Any syntax errors?
fprintf(stderr,"%s: Found %d syntax error", _buf._fp->_name, _AD._syntax_errs);
if( _AD._syntax_errs > 1 ) fprintf(stderr,"s.\n\n");
else fprintf(stderr,".\n\n");
}
if( _AD._semantic_errs ) { // Any semantic errors?
fprintf(stderr,"%s: Found %d semantic error", _buf._fp->_name, _AD._semantic_errs);
if( _AD._semantic_errs > 1 ) fprintf(stderr,"s.\n\n");
else fprintf(stderr,".\n\n");
}
if( _AD._warnings ) { // Any warnings?
fprintf(stderr,"%s: Found %d warning", _buf._fp->_name, _AD._warnings);
if( _AD._warnings > 1 ) fprintf(stderr,"s.\n\n");
else fprintf(stderr,".\n\n");
}
}
if (!_AD._quiet_mode)
fprintf(stderr,"-----------------------------------------------------------------------------\n");
_AD._TotalLines += linenum()-1; // -1 for overshoot in "nextline" routine
// Write out information we have stored
// // UNIXism == fsync(stderr);
}
//------------------------------parse------------------------------------------
// Each top-level keyword should appear as the first non-whitespace on a line.
//
void ADLParser::parse() {
char *ident;
// Iterate over the lines in the file buffer parsing Level 1 objects
for( next_line(); _curline != NULL; next_line()) {
_ptr = _curline; // Reset ptr to start of new line
skipws(); // Skip any leading whitespace
ident = get_ident(); // Get first token
if (ident == NULL) { // Empty line
continue; // Get the next line
}
if (!strcmp(ident, "instruct")) instr_parse();
else if (!strcmp(ident, "operand")) oper_parse();
else if (!strcmp(ident, "opclass")) opclass_parse();
else if (!strcmp(ident, "ins_attrib")) ins_attr_parse();
else if (!strcmp(ident, "op_attrib")) op_attr_parse();
else if (!strcmp(ident, "source")) source_parse();
else if (!strcmp(ident, "source_hpp")) source_hpp_parse();
else if (!strcmp(ident, "register")) reg_parse();
else if (!strcmp(ident, "frame")) frame_parse();
else if (!strcmp(ident, "encode")) encode_parse();
else if (!strcmp(ident, "pipeline")) pipe_parse();
else if (!strcmp(ident, "definitions")) definitions_parse();
else if (!strcmp(ident, "peephole")) peep_parse();
else if (!strcmp(ident, "#line")) preproc_line();
else if (!strcmp(ident, "#define")) preproc_define();
else if (!strcmp(ident, "#undef")) preproc_undef();
else {
parse_err(SYNERR, "expected one of - instruct, operand, ins_attrib, op_attrib, source, register, pipeline, encode\n Found %s",ident);
}
}
// Done with parsing, check consistency.
if (_preproc_depth != 0) {
parse_err(SYNERR, "End of file inside #ifdef");
}
// AttributeForms ins_cost and op_cost must be defined for default behaviour
if (_globalNames[AttributeForm::_ins_cost] == NULL) {
parse_err(SEMERR, "Did not declare 'ins_cost' attribute");
}
if (_globalNames[AttributeForm::_ins_pc_relative] == NULL) {
parse_err(SEMERR, "Did not declare 'ins_pc_relative' attribute");
}
if (_globalNames[AttributeForm::_op_cost] == NULL) {
parse_err(SEMERR, "Did not declare 'op_cost' attribute");
}
}
// ******************** Private Level 1 Parse Functions ********************
//------------------------------instr_parse------------------------------------
// Parse the contents of an instruction definition, build the InstructForm to
// represent that instruction, and add it to the InstructForm list.
void ADLParser::instr_parse(void) {
char *ident;
InstructForm *instr;
MatchRule *rule;
int match_rules_cnt = 0;
// First get the name of the instruction
if( (ident = get_unique_ident(_globalNames,"instruction")) == NULL )
return;
instr = new InstructForm(ident); // Create new instruction form
instr->_linenum = linenum();
_globalNames.Insert(ident, instr); // Add name to the name table
// Debugging Stuff
if (_AD._adl_debug > 1)
fprintf(stderr,"Parsing Instruction Form %s\n", ident);
// Then get the operands
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' in instruct definition\n");
}
// Parse the operand list
else get_oplist(instr->_parameters, instr->_localNames);
skipws(); // Skip leading whitespace
// Check for block delimiter
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "missing '%{' in instruction definition\n");
return;
}
next_char(); // Maintain the invariant
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
continue;
}
if (!strcmp(ident, "predicate")) instr->_predicate = pred_parse();
else if (!strcmp(ident, "match")) {
// Allow one instruction have several match rules.
rule = instr->_matrule;
if (rule == NULL) {
// This is first match rule encountered
rule = match_parse(instr->_localNames);
if (rule) {
instr->_matrule = rule;
// Special case the treatment of Control instructions.
if( instr->is_ideal_control() ) {
// Control instructions return a special result, 'Universe'
rule->_result = "Universe";
}
// Check for commutative operations with tree operands.
matchrule_clone_and_swap(rule, instr->_ident, match_rules_cnt);
}
} else {
// Find the end of the match rule list
while (rule->_next != NULL)
rule = rule->_next;
// Add the new match rule to the list
rule->_next = match_parse(instr->_localNames);
if (rule->_next) {
rule = rule->_next;
if( instr->is_ideal_control() ) {
parse_err(SYNERR, "unique match rule expected for %s\n", rule->_name);
return;
}
assert(match_rules_cnt < 100," too many match rule clones");
char* buf = (char*) malloc(strlen(instr->_ident) + 4);
sprintf(buf, "%s_%d", instr->_ident, match_rules_cnt++);
rule->_result = buf;
// Check for commutative operations with tree operands.
matchrule_clone_and_swap(rule, instr->_ident, match_rules_cnt);
}
}
}
else if (!strcmp(ident, "encode")) {
parse_err(SYNERR, "Instructions specify ins_encode, not encode\n");
}
else if (!strcmp(ident, "ins_encode"))
instr->_insencode = ins_encode_parse(*instr);
else if (!strcmp(ident, "opcode")) instr->_opcode = opcode_parse(instr);
else if (!strcmp(ident, "size")) instr->_size = size_parse(instr);
else if (!strcmp(ident, "effect")) effect_parse(instr);
else if (!strcmp(ident, "expand")) instr->_exprule = expand_parse(instr);
else if (!strcmp(ident, "rewrite")) instr->_rewrule = rewrite_parse();
else if (!strcmp(ident, "constraint")) {
parse_err(SYNERR, "Instructions do not specify a constraint\n");
}
else if (!strcmp(ident, "construct")) {
parse_err(SYNERR, "Instructions do not specify a construct\n");
}
else if (!strcmp(ident, "format")) instr->_format = format_parse();
else if (!strcmp(ident, "interface")) {
parse_err(SYNERR, "Instructions do not specify an interface\n");
}
else if (!strcmp(ident, "ins_pipe")) ins_pipe_parse(*instr);
else { // Done with staticly defined parts of instruction definition
// Check identifier to see if it is the name of an attribute
const Form *form = _globalNames[ident];
AttributeForm *attr = form ? form->is_attribute() : NULL;
if( attr && (attr->_atype == INS_ATTR) ) {
// Insert the new attribute into the linked list.
Attribute *temp = attr_parse(ident);
temp->_next = instr->_attribs;
instr->_attribs = temp;
} else {
parse_err(SYNERR, "expected one of:\n predicate, match, encode, or the name of an instruction attribute at %s\n", ident);
}
}
skipws();
} while(_curchar != '%');
next_char();
if (_curchar != '}') {
parse_err(SYNERR, "missing '%}' in instruction definition\n");
return;
}
// Check for "Set" form of chain rule
adjust_set_rule(instr);
if (_AD._pipeline ) {
if( instr->expands() ) {
if( instr->_ins_pipe )
parse_err(WARN, "ins_pipe and expand rule both specified for instruction \"%s\"; ins_pipe will be unused\n", instr->_ident);
} else {
if( !instr->_ins_pipe )
parse_err(WARN, "No ins_pipe specified for instruction \"%s\"\n", instr->_ident);
}
}
// Add instruction to tail of instruction list
_AD.addForm(instr);
// Create instruction form for each additional match rule
rule = instr->_matrule;
if (rule != NULL) {
rule = rule->_next;
while (rule != NULL) {
ident = (char*)rule->_result;
InstructForm *clone = new InstructForm(ident, instr, rule); // Create new instruction form
_globalNames.Insert(ident, clone); // Add name to the name table
// Debugging Stuff
if (_AD._adl_debug > 1)
fprintf(stderr,"Parsing Instruction Form %s\n", ident);
// Check for "Set" form of chain rule
adjust_set_rule(clone);
// Add instruction to tail of instruction list
_AD.addForm(clone);
rule = rule->_next;
clone->_matrule->_next = NULL; // One match rule per clone
}
}
}
//------------------------------matchrule_clone_and_swap-----------------------
// Check for commutative operations with subtree operands,
// create clones and swap operands.
void ADLParser::matchrule_clone_and_swap(MatchRule* rule, const char* instr_ident, int& match_rules_cnt) {
// Check for commutative operations with tree operands.
int count = 0;
rule->count_commutative_op(count);
if (count > 0) {
// Clone match rule and swap commutative operation's operands.
rule->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
}
}
//------------------------------adjust_set_rule--------------------------------
// Check for "Set" form of chain rule
void ADLParser::adjust_set_rule(InstructForm *instr) {
if (instr->_matrule == NULL || instr->_matrule->_rChild == NULL) return;
const char *rch = instr->_matrule->_rChild->_opType;
const Form *frm = _globalNames[rch];
if( (! strcmp(instr->_matrule->_opType,"Set")) &&
frm && frm->is_operand() && (! frm->ideal_only()) ) {
// Previous implementation, which missed leaP*, but worked for loadCon*
unsigned position = 0;
const char *result = NULL;
const char *name = NULL;
const char *optype = NULL;
MatchNode *right = instr->_matrule->_rChild;
if (right->base_operand(position, _globalNames, result, name, optype)) {
position = 1;
const char *result2 = NULL;
const char *name2 = NULL;
const char *optype2 = NULL;
// Can not have additional base operands in right side of match!
if ( ! right->base_operand( position, _globalNames, result2, name2, optype2) ) {
assert( instr->_predicate == NULL, "ADLC does not support instruction chain rules with predicates");
// Chain from input _ideal_operand_type_,
// Needed for shared roots of match-trees
ChainList *lst = (ChainList *)_AD._chainRules[optype];
if (lst == NULL) {
lst = new ChainList();
_AD._chainRules.Insert(optype, lst);
}
if (!lst->search(instr->_matrule->_lChild->_opType)) {
const char *cost = instr->cost();
if (cost == NULL) {
cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef;
}
// The ADLC does not support chaining from the ideal operand type
// of a predicated user-defined operand
if( frm->is_operand() == NULL || frm->is_operand()->_predicate == NULL ) {
lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident);
}
}
// Chain from input _user_defined_operand_type_,
lst = (ChainList *)_AD._chainRules[result];
if (lst == NULL) {
lst = new ChainList();
_AD._chainRules.Insert(result, lst);
}
if (!lst->search(instr->_matrule->_lChild->_opType)) {
const char *cost = instr->cost();
if (cost == NULL) {
cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef;
}
// It is safe to chain from the top-level user-defined operand even
// if it has a predicate, since the predicate is checked before
// the user-defined type is available.
lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident);
}
} else {
// May have instruction chain rule if root of right-tree is an ideal
OperandForm *rightOp = _globalNames[right->_opType]->is_operand();
if( rightOp ) {
const Form *rightRoot = _globalNames[rightOp->_matrule->_opType];
if( rightRoot && rightRoot->ideal_only() ) {
const char *chain_op = NULL;
if( rightRoot->is_instruction() )
chain_op = rightOp->_ident;
if( chain_op ) {
// Look-up the operation in chain rule table
ChainList *lst = (ChainList *)_AD._chainRules[chain_op];
if (lst == NULL) {
lst = new ChainList();
_AD._chainRules.Insert(chain_op, lst);
}
// if (!lst->search(instr->_matrule->_lChild->_opType)) {
const char *cost = instr->cost();
if (cost == NULL) {
cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef;
}
// This chains from a top-level operand whose predicate, if any,
// has been checked.
lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident);
// }
}
}
}
} // end chain rule from right-tree's ideal root
}
}
}
//------------------------------oper_parse-------------------------------------
void ADLParser::oper_parse(void) {
char *ident;
OperandForm *oper;
AttributeForm *attr;
MatchRule *rule;
// First get the name of the operand
skipws();
if( (ident = get_unique_ident(_globalNames,"operand")) == NULL )
return;
oper = new OperandForm(ident); // Create new operand form
oper->_linenum = linenum();
_globalNames.Insert(ident, oper); // Add name to the name table
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Operand Form %s\n", ident);
// Get the component operands
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' in operand definition\n");
return;
}
else get_oplist(oper->_parameters, oper->_localNames); // Parse the component operand list
skipws();
// Check for block delimiter
if ((_curchar != '%') || (*(_ptr+1) != '{')) { // If not open block
parse_err(SYNERR, "missing '%c{' in operand definition\n","%");
return;
}
next_char(); next_char(); // Skip over "%{" symbol
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
continue;
}
if (!strcmp(ident, "predicate")) oper->_predicate = pred_parse();
else if (!strcmp(ident, "match")) {
// Find the end of the match rule list
rule = oper->_matrule;
if (rule) {
while (rule->_next) rule = rule->_next;
// Add the new match rule to the list
rule->_next = match_parse(oper->_localNames);
if (rule->_next) {
rule->_next->_result = oper->_ident;
}
}
else {
// This is first match rule encountered
oper->_matrule = match_parse(oper->_localNames);
if (oper->_matrule) {
oper->_matrule->_result = oper->_ident;
}
}
}
else if (!strcmp(ident, "encode")) oper->_interface = interface_parse();
else if (!strcmp(ident, "ins_encode")) {
parse_err(SYNERR, "Operands specify 'encode', not 'ins_encode'\n");
}
else if (!strcmp(ident, "opcode")) {
parse_err(SYNERR, "Operands do not specify an opcode\n");
}
else if (!strcmp(ident, "effect")) {
parse_err(SYNERR, "Operands do not specify an effect\n");
}
else if (!strcmp(ident, "expand")) {
parse_err(SYNERR, "Operands do not specify an expand\n");
}
else if (!strcmp(ident, "rewrite")) {
parse_err(SYNERR, "Operands do not specify a rewrite\n");
}
else if (!strcmp(ident, "constraint"))oper->_constraint= constraint_parse();
else if (!strcmp(ident, "construct")) oper->_construct = construct_parse();
else if (!strcmp(ident, "format")) oper->_format = format_parse();
else if (!strcmp(ident, "interface")) oper->_interface = interface_parse();
// Check identifier to see if it is the name of an attribute
else if (((attr = _globalNames[ident]->is_attribute()) != NULL) &&
(attr->_atype == OP_ATTR)) oper->_attribs = attr_parse(ident);
else {
parse_err(SYNERR, "expected one of - constraint, predicate, match, encode, format, construct, or the name of a defined operand attribute at %s\n", ident);
}
skipws();
} while(_curchar != '%');
next_char();
if (_curchar != '}') {
parse_err(SYNERR, "missing '%}' in operand definition\n");
return;
}
// Add operand to tail of operand list
_AD.addForm(oper);
}
//------------------------------opclass_parse----------------------------------
// Operand Classes are a block with a comma delimited list of operand names
void ADLParser::opclass_parse(void) {
char *ident;
OpClassForm *opc;
OperandForm *opForm;
// First get the name of the operand class
skipws();
if( (ident = get_unique_ident(_globalNames,"opclass")) == NULL )
return;
opc = new OpClassForm(ident); // Create new operand class form
_globalNames.Insert(ident, opc); // Add name to the name table
// Debugging Stuff
if (_AD._adl_debug > 1)
fprintf(stderr,"Parsing Operand Class Form %s\n", ident);
// Get the list of operands
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' in operand definition\n");
return;
}
do {
next_char(); // Skip past open paren or comma
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
continue;
}
// Check identifier to see if it is the name of an operand
const Form *form = _globalNames[ident];
opForm = form ? form->is_operand() : NULL;
if ( opForm ) {
opc->_oplst.addName(ident); // Add operand to opclass list
opForm->_classes.addName(opc->_ident);// Add opclass to operand list
}
else {
parse_err(SYNERR, "expected name of a defined operand at %s\n", ident);
}
skipws(); // skip trailing whitespace
} while (_curchar == ','); // Check for the comma
// Check for closing ')'
if (_curchar != ')') {
parse_err(SYNERR, "missing ')' or ',' in opclass definition\n");
return;
}
next_char(); // Consume the ')'
skipws();
// Check for closing ';'
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in opclass definition\n");
return;
}
next_char(); // Consume the ';'
// Add operand to tail of operand list
_AD.addForm(opc);
}
//------------------------------ins_attr_parse---------------------------------
void ADLParser::ins_attr_parse(void) {
char *ident;
char *aexpr;
AttributeForm *attrib;
// get name for the instruction attribute
skipws(); // Skip leading whitespace
if( (ident = get_unique_ident(_globalNames,"inst_attrib")) == NULL )
return;
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Ins_Attribute Form %s\n", ident);
// Get default value of the instruction attribute
skipws(); // Skip whitespace
if ((aexpr = get_paren_expr("attribute default expression string")) == NULL) {
parse_err(SYNERR, "missing '(' in ins_attrib definition\n");
return;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Attribute Expression: %s\n", aexpr);
// Check for terminator
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in ins_attrib definition\n");
return;
}
next_char(); // Advance past the ';'
// Construct the attribute, record global name, and store in ArchDesc
attrib = new AttributeForm(ident, INS_ATTR, aexpr);
_globalNames.Insert(ident, attrib); // Add name to the name table
_AD.addForm(attrib);
}
//------------------------------op_attr_parse----------------------------------
void ADLParser::op_attr_parse(void) {
char *ident;
char *aexpr;
AttributeForm *attrib;
// get name for the operand attribute
skipws(); // Skip leading whitespace
if( (ident = get_unique_ident(_globalNames,"op_attrib")) == NULL )
return;
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Op_Attribute Form %s\n", ident);
// Get default value of the instruction attribute
skipws(); // Skip whitespace
if ((aexpr = get_paren_expr("attribute default expression string")) == NULL) {
parse_err(SYNERR, "missing '(' in op_attrib definition\n");
return;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Attribute Expression: %s\n", aexpr);
// Check for terminator
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in op_attrib definition\n");
return;
}
next_char(); // Advance past the ';'
// Construct the attribute, record global name, and store in ArchDesc
attrib = new AttributeForm(ident, OP_ATTR, aexpr);
_globalNames.Insert(ident, attrib);
_AD.addForm(attrib);
}
//------------------------------definitions_parse-----------------------------------
void ADLParser::definitions_parse(void) {
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
// Process each definition until finding closing string "%}"
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside definitions block.\n");
return;
}
if (strcmp(token,"int_def")==0) { int_def_parse(); }
// if (strcmp(token,"str_def")==0) { str_def_parse(); }
skipws();
}
}
else {
parse_err(SYNERR, "Missing %%{ ... %%} block after definitions keyword.\n");
return;
}
}
//------------------------------int_def_parse----------------------------------
// Parse Example:
// int_def MEMORY_REF_COST ( 200, DEFAULT_COST * 2);
// <keyword> <name> ( <int_value>, <description> );
//
void ADLParser::int_def_parse(void) {
char *name = NULL; // Name of definition
char *value = NULL; // its value,
int int_value = -1; // positive values only
char *description = NULL; // textual description
// Get definition name
skipws(); // Skip whitespace
name = get_ident();
if (name == NULL) {
parse_err(SYNERR, "missing definition name after int_def\n");
return;
}
// Check for value of int_def dname( integer_value [, string_expression ] )
skipws();
if (_curchar == '(') {
// Parse the integer value.
next_char();
value = get_ident();
if (value == NULL) {
parse_err(SYNERR, "missing value in int_def\n");
return;
}
if( !is_int_token(value, int_value) ) {
parse_err(SYNERR, "value in int_def is not recognized as integer\n");
return;
}
skipws();
// Check for description
if (_curchar == ',') {
next_char(); // skip ','
description = get_expr("int_def description", ")");
if (description == NULL) {
parse_err(SYNERR, "invalid or missing description in int_def\n");
return;
}
trim(description);
}
if (_curchar != ')') {
parse_err(SYNERR, "missing ')' in register definition statement\n");
return;
}
next_char();
}
// Check for closing ';'
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' after int_def\n");
return;
}
next_char(); // move past ';'
// Debug Stuff
if (_AD._adl_debug > 1) {
fprintf(stderr,"int_def: %s ( %s, %s )\n", name,
(value), (description ? description : ""));
}
// Record new definition.
Expr *expr = new Expr(name, description, int_value, int_value);
const Expr *old_expr = _AD.globalDefs().define(name, expr);
if (old_expr != NULL) {
parse_err(SYNERR, "Duplicate definition\n");
return;
}
return;
}
//------------------------------source_parse-----------------------------------
void ADLParser::source_parse(void) {
SourceForm *source; // Encode class for instruction/operand
char *rule = NULL; // String representation of encode rule
skipws(); // Skip leading whitespace
if ( (rule = find_cpp_block("source block")) == NULL ) {
parse_err(SYNERR, "incorrect or missing block for 'source'.\n");
return;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Source Form: %s\n", rule);
source = new SourceForm(rule); // Build new Source object
_AD.addForm(source);
// skipws();
}
//------------------------------source_hpp_parse-------------------------------
// Parse a source_hpp %{ ... %} block.
// The code gets stuck into the ad_<arch>.hpp file.
// If the source_hpp block appears before the register block in the AD
// file, it goes up at the very top of the ad_<arch>.hpp file, so that
// it can be used by register encodings, etc. Otherwise, it goes towards
// the bottom, where it's useful as a global definition to *.cpp files.
void ADLParser::source_hpp_parse(void) {
char *rule = NULL; // String representation of encode rule
skipws(); // Skip leading whitespace
if ( (rule = find_cpp_block("source_hpp block")) == NULL ) {
parse_err(SYNERR, "incorrect or missing block for 'source_hpp'.\n");
return;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Header Form: %s\n", rule);
if (_AD.get_registers() == NULL) {
// Very early in the file, before reg_defs, we collect pre-headers.
PreHeaderForm* pre_header = new PreHeaderForm(rule);
_AD.addForm(pre_header);
} else {
// Normally, we collect header info, placed at the bottom of the hpp file.
HeaderForm* header = new HeaderForm(rule);
_AD.addForm(header);
}
}
//------------------------------reg_parse--------------------------------------
void ADLParser::reg_parse(void) {
// Create the RegisterForm for the architecture description.
RegisterForm *regBlock = new RegisterForm(); // Build new Source object
regBlock->_linenum = linenum();
_AD.addForm(regBlock);
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside register block.\n");
return;
}
if (strcmp(token,"reg_def")==0) { reg_def_parse(); }
else if (strcmp(token,"reg_class")==0) { reg_class_parse(); }
else if (strcmp(token,"alloc_class")==0) { alloc_class_parse(); }
else if (strcmp(token,"#define")==0) { preproc_define(); }
else { parse_err(SYNERR, "bad token %s inside register block.\n", token); break; }
skipws();
}
}
else {
parse_err(SYNERR, "Missing %c{ ... %c} block after register keyword.\n",'%','%');
return;
}
// Add reg_class spill_regs
regBlock->addSpillRegClass();
}
//------------------------------encode_parse-----------------------------------
void ADLParser::encode_parse(void) {
EncodeForm *encBlock; // Information about instruction/operand encoding
char *desc = NULL; // String representation of encode rule
_AD.getForm(&encBlock);
if ( encBlock == NULL) {
// Create the EncodeForm for the architecture description.
encBlock = new EncodeForm(); // Build new Source object
_AD.addForm(encBlock);
}
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside encoding block.\n");
return;
}
if (strcmp(token,"enc_class")==0) { enc_class_parse(); }
skipws();
}
}
else {
parse_err(SYNERR, "Missing %c{ ... %c} block after encode keyword.\n",'%','%');
return;
}
}
//------------------------------enc_class_parse--------------------------------
void ADLParser::enc_class_parse(void) {
char *ec_name; // Name of encoding class being defined
// Get encoding class name
skipws(); // Skip whitespace
ec_name = get_ident();
if (ec_name == NULL) {
parse_err(SYNERR, "missing encoding class name after encode.\n");
return;
}
EncClass *encoding = _AD._encode->add_EncClass(ec_name);
encoding->_linenum = linenum();
skipws(); // Skip leading whitespace
// Check for optional parameter list
if (_curchar == '(') {
do {
char *pType = NULL; // parameter type
char *pName = NULL; // parameter name
next_char(); // skip open paren & comma characters
skipws();
if (_curchar == ')') break;
// Get parameter type
pType = get_ident();
if (pType == NULL) {
parse_err(SYNERR, "parameter type expected at %c\n", _curchar);
return;
}
skipws();
// Get parameter name
pName = get_ident();
if (pName == NULL) {
parse_err(SYNERR, "parameter name expected at %c\n", _curchar);
return;
}
// Record parameter type and name
encoding->add_parameter( pType, pName );
skipws();
} while(_curchar == ',');
if (_curchar != ')') parse_err(SYNERR, "missing ')'\n");
else {
next_char(); // Skip ')'
}
} // Done with parameter list
skipws();
// Check for block starting delimiters
if ((_curchar != '%') || (*(_ptr+1) != '{')) { // If not open block
parse_err(SYNERR, "missing '%c{' in enc_class definition\n", '%');
return;
}
next_char(); // Skip '%'
next_char(); // Skip '{'
enc_class_parse_block(encoding, ec_name);
}
void ADLParser::enc_class_parse_block(EncClass* encoding, char* ec_name) {
skipws_no_preproc(); // Skip leading whitespace
// Prepend location descriptor, for debugging; cf. ADLParser::find_cpp_block
if (_AD._adlocation_debug) {
encoding->add_code(get_line_string());
}
// Collect the parts of the encode description
// (1) strings that are passed through to output
// (2) replacement/substitution variable, preceeded by a '$'
while ( (_curchar != '%') && (*(_ptr+1) != '}') ) {
// (1)
// Check if there is a string to pass through to output
char *start = _ptr; // Record start of the next string
while ((_curchar != '$') && ((_curchar != '%') || (*(_ptr+1) != '}')) ) {
// If at the start of a comment, skip past it
if( (_curchar == '/') && ((*(_ptr+1) == '/') || (*(_ptr+1) == '*')) ) {
skipws_no_preproc();
} else {
// ELSE advance to the next character, or start of the next line
next_char_or_line();
}
}
// If a string was found, terminate it and record in EncClass
if ( start != _ptr ) {
*_ptr = '\0'; // Terminate the string
encoding->add_code(start);
}
// (2)
// If we are at a replacement variable,
// copy it and record in EncClass
if ( _curchar == '$' ) {
// Found replacement Variable
char *rep_var = get_rep_var_ident_dup();
// Add flag to _strings list indicating we should check _rep_vars
encoding->add_rep_var(rep_var);
}
} // end while part of format description
next_char(); // Skip '%'
next_char(); // Skip '}'
skipws();
if (_AD._adlocation_debug) {
encoding->add_code(end_line_marker());
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"EncodingClass Form: %s\n", ec_name);
}
//------------------------------frame_parse-----------------------------------
void ADLParser::frame_parse(void) {
FrameForm *frame; // Information about stack-frame layout
char *desc = NULL; // String representation of frame
skipws(); // Skip leading whitespace
frame = new FrameForm(); // Build new Frame object
// Check for open block sequence
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside frame block.\n");
return;
}
if (strcmp(token,"stack_direction")==0) {
stack_dir_parse(frame);
}
if (strcmp(token,"sync_stack_slots")==0) {
sync_stack_slots_parse(frame);
}
if (strcmp(token,"frame_pointer")==0) {
frame_pointer_parse(frame, false);
}
if (strcmp(token,"interpreter_frame_pointer")==0) {
interpreter_frame_pointer_parse(frame, false);
// Add reg_class interpreter_frame_pointer_reg
if( _AD._register != NULL ) {
RegClass *reg_class = _AD._register->addRegClass("interpreter_frame_pointer_reg");
char *interpreter_frame_pointer_reg = frame->_interpreter_frame_pointer_reg;
if( interpreter_frame_pointer_reg != NULL ) {
RegDef *regDef = _AD._register->getRegDef(interpreter_frame_pointer_reg);
reg_class->addReg(regDef); // add regDef to regClass
}
}
}
if (strcmp(token,"inline_cache_reg")==0) {
inline_cache_parse(frame, false);
// Add reg_class inline_cache_reg
if( _AD._register != NULL ) {
RegClass *reg_class = _AD._register->addRegClass("inline_cache_reg");
char *inline_cache_reg = frame->_inline_cache_reg;
if( inline_cache_reg != NULL ) {
RegDef *regDef = _AD._register->getRegDef(inline_cache_reg);
reg_class->addReg(regDef); // add regDef to regClass
}
}
}
if (strcmp(token,"compiler_method_oop_reg")==0) {
parse_err(WARN, "Using obsolete Token, compiler_method_oop_reg");
skipws();
}
if (strcmp(token,"interpreter_method_oop_reg")==0) {
interpreter_method_oop_parse(frame, false);
// Add reg_class interpreter_method_oop_reg
if( _AD._register != NULL ) {
RegClass *reg_class = _AD._register->addRegClass("interpreter_method_oop_reg");
char *method_oop_reg = frame->_interpreter_method_oop_reg;
if( method_oop_reg != NULL ) {
RegDef *regDef = _AD._register->getRegDef(method_oop_reg);
reg_class->addReg(regDef); // add regDef to regClass
}
}
}
if (strcmp(token,"cisc_spilling_operand_name")==0) {
cisc_spilling_operand_name_parse(frame, false);
}
if (strcmp(token,"stack_alignment")==0) {
stack_alignment_parse(frame);
}
if (strcmp(token,"return_addr")==0) {
return_addr_parse(frame, false);
}
if (strcmp(token,"in_preserve_stack_slots")==0) {
preserve_stack_parse(frame);
}
if (strcmp(token,"out_preserve_stack_slots")==0) {
parse_err(WARN, "Using obsolete token, out_preserve_stack_slots");
skipws();
}
if (strcmp(token,"varargs_C_out_slots_killed")==0) {
frame->_varargs_C_out_slots_killed = parse_one_arg("varargs C out slots killed");
}
if (strcmp(token,"calling_convention")==0) {
frame->_calling_convention = calling_convention_parse();
}
if (strcmp(token,"return_value")==0) {
frame->_return_value = return_value_parse();
}
if (strcmp(token,"c_frame_pointer")==0) {
frame_pointer_parse(frame, true);
}
if (strcmp(token,"c_return_addr")==0) {
return_addr_parse(frame, true);
}
if (strcmp(token,"c_calling_convention")==0) {
frame->_c_calling_convention = calling_convention_parse();
}
if (strcmp(token,"c_return_value")==0) {
frame->_c_return_value = return_value_parse();
}
skipws();
}
}
else {
parse_err(SYNERR, "Missing %c{ ... %c} block after encode keyword.\n",'%','%');
return;
}
// All Java versions are required, native versions are optional
if(frame->_frame_pointer == NULL) {
parse_err(SYNERR, "missing frame pointer definition in frame section.\n");
return;
}
// !!!!! !!!!!
// if(frame->_interpreter_frame_ptr_reg == NULL) {
// parse_err(SYNERR, "missing interpreter frame pointer definition in frame section.\n");
// return;
// }
if(frame->_alignment == NULL) {
parse_err(SYNERR, "missing alignment definition in frame section.\n");
return;
}
if(frame->_return_addr == NULL) {
parse_err(SYNERR, "missing return address location in frame section.\n");
return;
}
if(frame->_in_preserve_slots == NULL) {
parse_err(SYNERR, "missing stack slot preservation definition in frame section.\n");
return;
}
if(frame->_varargs_C_out_slots_killed == NULL) {
parse_err(SYNERR, "missing varargs C out slots killed definition in frame section.\n");
return;
}
if(frame->_calling_convention == NULL) {
parse_err(SYNERR, "missing calling convention definition in frame section.\n");
return;
}
if(frame->_return_value == NULL) {
parse_err(SYNERR, "missing return value definition in frame section.\n");
return;
}
// Fill natives in identically with the Java versions if not present.
if(frame->_c_frame_pointer == NULL) {
frame->_c_frame_pointer = frame->_frame_pointer;
}
if(frame->_c_return_addr == NULL) {
frame->_c_return_addr = frame->_return_addr;
frame->_c_return_addr_loc = frame->_return_addr_loc;
}
if(frame->_c_calling_convention == NULL) {
frame->_c_calling_convention = frame->_calling_convention;
}
if(frame->_c_return_value == NULL) {
frame->_c_return_value = frame->_return_value;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Frame Form: %s\n", desc);
// Create the EncodeForm for the architecture description.
_AD.addForm(frame);
// skipws();
}
//------------------------------stack_dir_parse--------------------------------
void ADLParser::stack_dir_parse(FrameForm *frame) {
char *direction = parse_one_arg("stack direction entry");
if (strcmp(direction, "TOWARDS_LOW") == 0) {
frame->_direction = false;
}
else if (strcmp(direction, "TOWARDS_HIGH") == 0) {
frame->_direction = true;
}
else {
parse_err(SYNERR, "invalid value inside stack direction entry.\n");
return;
}
}
//------------------------------sync_stack_slots_parse-------------------------
void ADLParser::sync_stack_slots_parse(FrameForm *frame) {
// Assign value into frame form
frame->_sync_stack_slots = parse_one_arg("sync stack slots entry");
}
//------------------------------frame_pointer_parse----------------------------
void ADLParser::frame_pointer_parse(FrameForm *frame, bool native) {
char *frame_pointer = parse_one_arg("frame pointer entry");
// Assign value into frame form
if (native) { frame->_c_frame_pointer = frame_pointer; }
else { frame->_frame_pointer = frame_pointer; }
}
//------------------------------interpreter_frame_pointer_parse----------------------------
void ADLParser::interpreter_frame_pointer_parse(FrameForm *frame, bool native) {
frame->_interpreter_frame_pointer_reg = parse_one_arg("interpreter frame pointer entry");
}
//------------------------------inline_cache_parse-----------------------------
void ADLParser::inline_cache_parse(FrameForm *frame, bool native) {
frame->_inline_cache_reg = parse_one_arg("inline cache reg entry");
}
//------------------------------interpreter_method_oop_parse------------------
void ADLParser::interpreter_method_oop_parse(FrameForm *frame, bool native) {
frame->_interpreter_method_oop_reg = parse_one_arg("method oop reg entry");
}
//------------------------------cisc_spilling_operand_parse---------------------
void ADLParser::cisc_spilling_operand_name_parse(FrameForm *frame, bool native) {
frame->_cisc_spilling_operand_name = parse_one_arg("cisc spilling operand name");
}
//------------------------------stack_alignment_parse--------------------------
void ADLParser::stack_alignment_parse(FrameForm *frame) {
char *alignment = parse_one_arg("stack alignment entry");
// Assign value into frame
frame->_alignment = alignment;
}
//------------------------------parse_one_arg-------------------------------
char *ADLParser::parse_one_arg(const char *description) {
char *token = NULL;
if(_curchar == '(') {
next_char();
skipws();
token = get_expr(description, ")");
if (token == NULL) {
parse_err(SYNERR, "missing value inside %s.\n", description);
return NULL;
}
next_char(); // skip the close paren
if(_curchar != ';') { // check for semi-colon
parse_err(SYNERR, "missing %c in.\n", ';', description);
return NULL;
}
next_char(); // skip the semi-colon
}
else {
parse_err(SYNERR, "Missing %c in.\n", '(', description);
return NULL;
}
trim(token);
return token;
}
//------------------------------return_addr_parse------------------------------
void ADLParser::return_addr_parse(FrameForm *frame, bool native) {
bool in_register = true;
if(_curchar == '(') {
next_char();
skipws();
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing value inside return address entry.\n");
return;
}
// check for valid values for stack/register
if (strcmp(token, "REG") == 0) {
in_register = true;
}
else if (strcmp(token, "STACK") == 0) {
in_register = false;
}
else {
parse_err(SYNERR, "invalid value inside return_address entry.\n");
return;
}
if (native) { frame->_c_return_addr_loc = in_register; }
else { frame->_return_addr_loc = in_register; }
// Parse expression that specifies register or stack position
skipws();
char *token2 = get_expr("return address entry", ")");
if (token2 == NULL) {
parse_err(SYNERR, "missing value inside return address entry.\n");
return;
}
next_char(); // skip the close paren
if (native) { frame->_c_return_addr = token2; }
else { frame->_return_addr = token2; }
if(_curchar != ';') { // check for semi-colon
parse_err(SYNERR, "missing %c in return address entry.\n", ';');
return;
}
next_char(); // skip the semi-colon
}
else {
parse_err(SYNERR, "Missing %c in return_address entry.\n", '(');
}
}
//------------------------------preserve_stack_parse---------------------------
void ADLParser::preserve_stack_parse(FrameForm *frame) {
if(_curchar == '(') {
char *token = get_paren_expr("preserve_stack_slots");
frame->_in_preserve_slots = token;
if(_curchar != ';') { // check for semi-colon
parse_err(SYNERR, "missing %c in preserve stack slot entry.\n", ';');
return;
}
next_char(); // skip the semi-colon
}
else {
parse_err(SYNERR, "Missing %c in preserve stack slot entry.\n", '(');
}
}
//------------------------------calling_convention_parse-----------------------
char *ADLParser::calling_convention_parse() {
char *desc = NULL; // String representation of calling_convention
skipws(); // Skip leading whitespace
if ( (desc = find_cpp_block("calling convention block")) == NULL ) {
parse_err(SYNERR, "incorrect or missing block for 'calling_convention'.\n");
}
return desc;
}
//------------------------------return_value_parse-----------------------------
char *ADLParser::return_value_parse() {
char *desc = NULL; // String representation of calling_convention
skipws(); // Skip leading whitespace
if ( (desc = find_cpp_block("return value block")) == NULL ) {
parse_err(SYNERR, "incorrect or missing block for 'return_value'.\n");
}
return desc;
}
//------------------------------ins_pipe_parse---------------------------------
void ADLParser::ins_pipe_parse(InstructForm &instr) {
char * ident;
skipws();
if ( _curchar != '(' ) { // Check for delimiter
parse_err(SYNERR, "missing \"(\" in ins_pipe definition\n");
return;
}
next_char();
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
return;
}
skipws();
if ( _curchar != ')' ) { // Check for delimiter
parse_err(SYNERR, "missing \")\" in ins_pipe definition\n");
return;
}
next_char(); // skip the close paren
if(_curchar != ';') { // check for semi-colon
parse_err(SYNERR, "missing %c in return value entry.\n", ';');
return;
}
next_char(); // skip the semi-colon
// Check ident for validity
if (_AD._pipeline && !_AD._pipeline->_classlist.search(ident)) {
parse_err(SYNERR, "\"%s\" is not a valid pipeline class\n", ident);
return;
}
// Add this instruction to the list in the pipeline class
_AD._pipeline->_classdict[ident]->is_pipeclass()->_instructs.addName(instr._ident);
// Set the name of the pipeline class in the instruction
instr._ins_pipe = ident;
return;
}
//------------------------------pipe_parse-------------------------------------
void ADLParser::pipe_parse(void) {
PipelineForm *pipeline; // Encode class for instruction/operand
char * ident;
pipeline = new PipelineForm(); // Build new Source object
_AD.addForm(pipeline);
skipws(); // Skip leading whitespace
// Check for block delimiter
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "missing '%{' in pipeline definition\n");
return;
}
next_char(); // Maintain the invariant
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
continue;
}
if (!strcmp(ident, "resources" )) resource_parse(*pipeline);
else if (!strcmp(ident, "pipe_desc" )) pipe_desc_parse(*pipeline);
else if (!strcmp(ident, "pipe_class")) pipe_class_parse(*pipeline);
else if (!strcmp(ident, "define")) {
skipws();
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "expected '%{'\n");
return;
}
next_char(); skipws();
char *node_class = get_ident();
if (node_class == NULL) {
parse_err(SYNERR, "expected identifier, found \"%c\"\n", _curchar);
return;
}
skipws();
if (_curchar != ',' && _curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
char *pipe_class = get_ident();
if (pipe_class == NULL) {
parse_err(SYNERR, "expected identifier, found \"%c\"\n", _curchar);
return;
}
if (_curchar != ';' ) {
parse_err(SYNERR, "expected `;`, found '%c'\n", _curchar);
break;
}
next_char(); // Skip over semi-colon
skipws();
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '}')) ) {
parse_err(SYNERR, "expected '%%}', found \"%c\"\n", _curchar);
}
next_char();
// Check ident for validity
if (_AD._pipeline && !_AD._pipeline->_classlist.search(pipe_class)) {
parse_err(SYNERR, "\"%s\" is not a valid pipeline class\n", pipe_class);
return;
}
// Add this machine node to the list in the pipeline class
_AD._pipeline->_classdict[pipe_class]->is_pipeclass()->_instructs.addName(node_class);
MachNodeForm *machnode = new MachNodeForm(node_class); // Create new machnode form
machnode->_machnode_pipe = pipe_class;
_AD.addForm(machnode);
}
else if (!strcmp(ident, "attributes")) {
bool vsi_seen = false, bhds_seen = false;
skipws();
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "expected '%{'\n");
return;
}
next_char(); skipws();
while (_curchar != '%') {
ident = get_ident();
if (ident == NULL)
break;
if (!strcmp(ident, "variable_size_instructions")) {
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
pipeline->_variableSizeInstrs = true;
vsi_seen = true;
continue;
}
if (!strcmp(ident, "fixed_size_instructions")) {
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
pipeline->_variableSizeInstrs = false;
vsi_seen = true;
continue;
}
if (!strcmp(ident, "branch_has_delay_slot")) {
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
pipeline->_branchHasDelaySlot = true;
bhds_seen = true;
continue;
}
if (!strcmp(ident, "max_instructions_per_bundle")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`\n");
break;
}
next_char(); skipws();
pipeline->_maxInstrsPerBundle = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "max_bundles_per_cycle")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`\n");
break;
}
next_char(); skipws();
pipeline->_maxBundlesPerCycle = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "instruction_unit_size")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
pipeline->_instrUnitSize = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "bundle_unit_size")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
pipeline->_bundleUnitSize = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "instruction_fetch_unit_size")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
pipeline->_instrFetchUnitSize = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "instruction_fetch_units")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
pipeline->_instrFetchUnits = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "nops")) {
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "expected `(`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
while (_curchar != ')') {
ident = get_ident();
if (ident == NULL) {
parse_err(SYNERR, "expected identifier for nop instruction, found '%c'\n", _curchar);
break;
}
pipeline->_noplist.addName(ident);
pipeline->_nopcnt++;
skipws();
if (_curchar == ',') {
next_char(); skipws();
}
}
next_char(); skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
parse_err(SYNERR, "unknown specifier \"%s\"\n", ident);
}
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '}')) ) {
parse_err(SYNERR, "expected '%}', found \"%c\"\n", _curchar);
}
next_char(); skipws();
if (pipeline->_maxInstrsPerBundle == 0)
parse_err(SYNERR, "\"max_instructions_per_bundle\" unspecified\n");
if (pipeline->_instrUnitSize == 0 && pipeline->_bundleUnitSize == 0)
parse_err(SYNERR, "\"instruction_unit_size\" and \"bundle_unit_size\" unspecified\n");
if (pipeline->_instrFetchUnitSize == 0)
parse_err(SYNERR, "\"instruction_fetch_unit_size\" unspecified\n");
if (pipeline->_instrFetchUnits == 0)
parse_err(SYNERR, "\"instruction_fetch_units\" unspecified\n");
if (!vsi_seen)
parse_err(SYNERR, "\"variable_size_instruction\" or \"fixed_size_instruction\" unspecified\n");
}
else { // Done with staticly defined parts of instruction definition
parse_err(SYNERR, "expected one of \"resources\", \"pipe_desc\", \"pipe_class\", found \"%s\"\n", ident);
return;
}
skipws();
if (_curchar == ';')
skipws();
} while(_curchar != '%');
next_char();
if (_curchar != '}') {
parse_err(SYNERR, "missing \"%}\" in pipeline definition\n");
return;
}
next_char();
}
//------------------------------resource_parse----------------------------
void ADLParser::resource_parse(PipelineForm &pipeline) {
ResourceForm *resource;
char * ident;
char * expr;
unsigned mask;
pipeline._rescount = 0;
skipws(); // Skip leading whitespace
if (_curchar != '(') {
parse_err(SYNERR, "missing \"(\" in resource definition\n");
return;
}
do {
next_char(); // Skip "(" or ","
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
skipws();
if (_curchar != '=') {
mask = (1 << pipeline._rescount++);
}
else {
next_char(); skipws();
expr = get_ident(); // Grab next identifier
if (expr == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
resource = (ResourceForm *) pipeline._resdict[expr];
if (resource == NULL) {
parse_err(SYNERR, "resource \"%s\" is not defined\n", expr);
return;
}
mask = resource->mask();
skipws();
while (_curchar == '|') {
next_char(); skipws();
expr = get_ident(); // Grab next identifier
if (expr == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
resource = (ResourceForm *) pipeline._resdict[expr]; // Look up the value
if (resource == NULL) {
parse_err(SYNERR, "resource \"%s\" is not defined\n", expr);
return;
}
mask |= resource->mask();
skipws();
}
}
resource = new ResourceForm(mask);
pipeline._resdict.Insert(ident, resource);
pipeline._reslist.addName(ident);
} while (_curchar == ',');
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
return;
}
next_char(); // Skip ")"
if (_curchar == ';')
next_char(); // Skip ";"
}
//------------------------------resource_parse----------------------------
void ADLParser::pipe_desc_parse(PipelineForm &pipeline) {
char * ident;
skipws(); // Skip leading whitespace
if (_curchar != '(') {
parse_err(SYNERR, "missing \"(\" in pipe_desc definition\n");
return;
}
do {
next_char(); // Skip "(" or ","
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
// Add the name to the list
pipeline._stages.addName(ident);
pipeline._stagecnt++;
skipws();
} while (_curchar == ',');
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
return;
}
next_char(); // Skip ")"
if (_curchar == ';')
next_char(); // Skip ";"
}
//------------------------------pipe_class_parse--------------------------
void ADLParser::pipe_class_parse(PipelineForm &pipeline) {
PipeClassForm *pipe_class;
char * ident;
char * stage;
char * read_or_write;
int is_write;
int is_read;
OperandForm *oper;
skipws(); // Skip leading whitespace
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
// Create a record for the pipe_class
pipe_class = new PipeClassForm(ident, ++pipeline._classcnt);
pipeline._classdict.Insert(ident, pipe_class);
pipeline._classlist.addName(ident);
// Then get the operands
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing \"(\" in pipe_class definition\n");
}
// Parse the operand list
else get_oplist(pipe_class->_parameters, pipe_class->_localNames);
skipws(); // Skip leading whitespace
// Check for block delimiter
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "missing \"%{\" in pipe_class definition\n");
return;
}
next_char();
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
continue;
}
skipws();
if (!strcmp(ident, "fixed_latency")) {
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing \"(\" in latency definition\n");
return;
}
next_char(); skipws();
if( !isdigit(_curchar) ) {
parse_err(SYNERR, "number expected for \"%c\" in latency definition\n", _curchar);
return;
}
int fixed_latency = get_int();
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "missing \")\" in latency definition\n");
return;
}
next_char(); skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setFixedLatency(fixed_latency);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "zero_instructions") ||
!strcmp(ident, "no_instructions")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setInstructionCount(0);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "one_instruction_with_delay_slot") ||
!strcmp(ident, "single_instruction_with_delay_slot")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setInstructionCount(1);
pipe_class->setBranchDelay(true);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "one_instruction") ||
!strcmp(ident, "single_instruction")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setInstructionCount(1);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "instructions_in_first_bundle") ||
!strcmp(ident, "instruction_count")) {
skipws();
int number_of_instructions = 1;
if (_curchar != '(') {
parse_err(SYNERR, "\"(\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
number_of_instructions = get_int();
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setInstructionCount(number_of_instructions);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "multiple_bundles")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" after multiple bundles\n");
return;
}
pipe_class->setMultipleBundles(true);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "has_delay_slot")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" after \"has_delay_slot\"\n");
return;
}
pipe_class->setBranchDelay(true);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "force_serialization")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" after \"force_serialization\"\n");
return;
}
pipe_class->setForceSerialization(true);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "may_have_no_code")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" after \"may_have_no_code\"\n");
return;
}
pipe_class->setMayHaveNoCode(true);
next_char(); skipws();
continue;
}
const Form *parm = pipe_class->_localNames[ident];
if (parm != NULL) {
oper = parm->is_operand();
if (oper == NULL && !parm->is_opclass()) {
parse_err(SYNERR, "operand name expected at %s\n", ident);
continue;
}
if (_curchar != ':') {
parse_err(SYNERR, "\":\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
stage = get_ident();
if (stage == NULL) {
parse_err(SYNERR, "pipeline stage identifier expected at \"%c\"\n", _curchar);
continue;
}
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "\"(\" expected at \"%c\"\n", _curchar);
continue;
}
next_char();
read_or_write = get_ident();
if (read_or_write == NULL) {
parse_err(SYNERR, "\"read\" or \"write\" expected at \"%c\"\n", _curchar);
continue;
}
is_read = strcmp(read_or_write, "read") == 0;
is_write = strcmp(read_or_write, "write") == 0;
if (!is_read && !is_write) {
parse_err(SYNERR, "\"read\" or \"write\" expected at \"%c\"\n", _curchar);
continue;
}
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
int more_instrs = 0;
if (_curchar == '+') {
next_char(); skipws();
if (_curchar < '0' || _curchar > '9') {
parse_err(SYNERR, "<number> expected at \"%c\"\n", _curchar);
continue;
}
while (_curchar >= '0' && _curchar <= '9') {
more_instrs *= 10;
more_instrs += _curchar - '0';
next_char();
}
skipws();
}
PipeClassOperandForm *pipe_operand = new PipeClassOperandForm(stage, is_write, more_instrs);
pipe_class->_localUsage.Insert(ident, pipe_operand);
if (_curchar == '%')
continue;
if (_curchar != ';') {
parse_err(SYNERR, "\";\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
continue;
}
// Scan for Resource Specifier
const Form *res = pipeline._resdict[ident];
if (res != NULL) {
int cyclecnt = 1;
if (_curchar != ':') {
parse_err(SYNERR, "\":\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
stage = get_ident();
if (stage == NULL) {
parse_err(SYNERR, "pipeline stage identifier expected at \"%c\"\n", _curchar);
continue;
}
skipws();
if (_curchar == '(') {
next_char();
cyclecnt = get_int();
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
}
PipeClassResourceForm *resource = new PipeClassResourceForm(ident, stage, cyclecnt);
int stagenum = pipeline._stages.index(stage);
if (pipeline._maxcycleused < (stagenum+cyclecnt))
pipeline._maxcycleused = (stagenum+cyclecnt);
pipe_class->_resUsage.addForm(resource);
if (_curchar == '%')
continue;
if (_curchar != ';') {
parse_err(SYNERR, "\";\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
continue;
}
parse_err(SYNERR, "resource expected at \"%s\"\n", ident);
return;
} while(_curchar != '%');
next_char();
if (_curchar != '}') {
parse_err(SYNERR, "missing \"%}\" in pipe_class definition\n");
return;
}
next_char();
}
//------------------------------peep_parse-------------------------------------
void ADLParser::peep_parse(void) {
Peephole *peep; // Pointer to current peephole rule form
char *desc = NULL; // String representation of rule
skipws(); // Skip leading whitespace
peep = new Peephole(); // Build new Peephole object
// Check for open block sequence
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside peephole rule.\n");
return;
}
// check for legal subsections of peephole rule
if (strcmp(token,"peepmatch")==0) {
peep_match_parse(*peep); }
else if (strcmp(token,"peepconstraint")==0) {
peep_constraint_parse(*peep); }
else if (strcmp(token,"peepreplace")==0) {
peep_replace_parse(*peep); }
else {
parse_err(SYNERR, "expected peepmatch, peepconstraint, or peepreplace for identifier %s.\n", token);
}
skipws();
}
}
else {
parse_err(SYNERR, "Missing %%{ ... %%} block after peephole keyword.\n");
return;
}
next_char(); // Skip past '%'
next_char(); // Skip past '}'
}
// ******************** Private Level 2 Parse Functions ********************
//------------------------------constraint_parse------------------------------
Constraint *ADLParser::constraint_parse(void) {
char *func;
char *arg;
// Check for constraint expression
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing constraint expression, (...)\n");
return NULL;
}
next_char(); // Skip past '('
// Get constraint function
skipws();
func = get_ident();
if (func == NULL) {
parse_err(SYNERR, "missing function in constraint expression.\n");
return NULL;
}
if (strcmp(func,"ALLOC_IN_RC")==0
|| strcmp(func,"IS_R_CLASS")==0) {
// Check for '(' before argument
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' for constraint function's argument.\n");
return NULL;
}
next_char();
// Get it's argument
skipws();
arg = get_ident();
if (arg == NULL) {
parse_err(SYNERR, "missing argument for constraint function %s\n",func);
return NULL;
}
// Check for ')' after argument
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "missing ')' after constraint function argument %s\n",arg);
return NULL;
}
next_char();
} else {
parse_err(SYNERR, "Invalid constraint function %s\n",func);
return NULL;
}
// Check for closing paren and ';'
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "Missing ')' for constraint function %s\n",func);
return NULL;
}
next_char();
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "Missing ';' after constraint.\n");
return NULL;
}
next_char();
// Create new "Constraint"
Constraint *constraint = new Constraint(func,arg);
return constraint;
}
//------------------------------constr_parse-----------------------------------
ConstructRule *ADLParser::construct_parse(void) {
return NULL;
}
//------------------------------reg_def_parse----------------------------------
void ADLParser::reg_def_parse(void) {
char *rname; // Name of register being defined
// Get register name
skipws(); // Skip whitespace
rname = get_ident();
if (rname == NULL) {
parse_err(SYNERR, "missing register name after reg_def\n");
return;
}
// Check for definition of register calling convention (save on call, ...),
// register save type, and register encoding value.
skipws();
char *callconv = NULL;
char *c_conv = NULL;
char *idealtype = NULL;
char *encoding = NULL;
char *concrete = NULL;
if (_curchar == '(') {
next_char();
callconv = get_ident();
// Parse the internal calling convention, must be NS, SOC, SOE, or AS.
if (callconv == NULL) {
parse_err(SYNERR, "missing register calling convention value\n");
return;
}
if(strcmp(callconv, "SOC") && strcmp(callconv,"SOE") &&
strcmp(callconv, "NS") && strcmp(callconv, "AS")) {
parse_err(SYNERR, "invalid value for register calling convention\n");
}
skipws();
if (_curchar != ',') {
parse_err(SYNERR, "missing comma in register definition statement\n");
return;
}
next_char();
// Parse the native calling convention, must be NS, SOC, SOE, AS
c_conv = get_ident();
if (c_conv == NULL) {
parse_err(SYNERR, "missing register native calling convention value\n");
return;
}
if(strcmp(c_conv, "SOC") && strcmp(c_conv,"SOE") &&
strcmp(c_conv, "NS") && strcmp(c_conv, "AS")) {
parse_err(SYNERR, "invalid value for register calling convention\n");
}
skipws();
if (_curchar != ',') {
parse_err(SYNERR, "missing comma in register definition statement\n");
return;
}
next_char();
skipws();
// Parse the ideal save type
idealtype = get_ident();
if (idealtype == NULL) {
parse_err(SYNERR, "missing register save type value\n");
return;
}
skipws();
if (_curchar != ',') {
parse_err(SYNERR, "missing comma in register definition statement\n");
return;
}
next_char();
skipws();
// Parse the encoding value
encoding = get_expr("encoding", ",");
if (encoding == NULL) {
parse_err(SYNERR, "missing register encoding value\n");
return;
}
trim(encoding);
if (_curchar != ',') {
parse_err(SYNERR, "missing comma in register definition statement\n");
return;
}
next_char();
skipws();
// Parse the concrete name type
// concrete = get_ident();
concrete = get_expr("concrete", ")");
if (concrete == NULL) {
parse_err(SYNERR, "missing vm register name value\n");
return;
}
if (_curchar != ')') {
parse_err(SYNERR, "missing ')' in register definition statement\n");
return;
}
next_char();
}
// Check for closing ';'
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' after reg_def\n");
return;
}
next_char(); // move past ';'
// Debug Stuff
if (_AD._adl_debug > 1) {
fprintf(stderr,"Register Definition: %s ( %s, %s %s )\n", rname,
(callconv ? callconv : ""), (c_conv ? c_conv : ""), concrete);
}
// Record new register definition.
_AD._register->addRegDef(rname, callconv, c_conv, idealtype, encoding, concrete);
return;
}
//------------------------------reg_class_parse--------------------------------
void ADLParser::reg_class_parse(void) {
char *cname; // Name of register class being defined
// Get register class name
skipws(); // Skip leading whitespace
cname = get_ident();
if (cname == NULL) {
parse_err(SYNERR, "missing register class name after 'reg_class'\n");
return;
}
// Debug Stuff
if (_AD._adl_debug >1) fprintf(stderr,"Register Class: %s\n", cname);
RegClass *reg_class = _AD._register->addRegClass(cname);
// Collect registers in class
skipws();
if (_curchar == '(') {
next_char(); // Skip '('
skipws();
while (_curchar != ')') {
char *rname = get_ident();
if (rname==NULL) {
parse_err(SYNERR, "missing identifier inside reg_class list.\n");
return;
}
RegDef *regDef = _AD._register->getRegDef(rname);
if (!regDef) {
parse_err(SEMERR, "unknown identifier %s inside reg_class list.\n", rname);
} else {
reg_class->addReg(regDef); // add regDef to regClass
}
// Check for ',' and position to next token.
skipws();
if (_curchar == ',') {
next_char(); // Skip trailing ','
skipws();
}
}
next_char(); // Skip closing ')'
}
// Check for terminating ';'
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' at end of reg_class definition.\n");
return;
}
next_char(); // Skip trailing ';'
// Check RegClass size, must be <= 32 registers in class.
return;
}
//------------------------------alloc_class_parse------------------------------
void ADLParser::alloc_class_parse(void) {
char *name; // Name of allocation class being defined
// Get allocation class name
skipws(); // Skip leading whitespace
name = get_ident();
if (name == NULL) {
parse_err(SYNERR, "missing allocation class name after 'reg_class'\n");
return;
}
// Debug Stuff
if (_AD._adl_debug >1) fprintf(stderr,"Allocation Class: %s\n", name);
AllocClass *alloc_class = _AD._register->addAllocClass(name);
// Collect registers in class
skipws();
if (_curchar == '(') {
next_char(); // Skip '('
skipws();
while (_curchar != ')') {
char *rname = get_ident();
if (rname==NULL) {
parse_err(SYNERR, "missing identifier inside reg_class list.\n");
return;
}
// Check if name is a RegDef
RegDef *regDef = _AD._register->getRegDef(rname);
if (regDef) {
alloc_class->addReg(regDef); // add regDef to allocClass
} else {
// name must be a RegDef or a RegClass
parse_err(SYNERR, "name %s should be a previously defined reg_def.\n", rname);
return;
}
// Check for ',' and position to next token.
skipws();
if (_curchar == ',') {
next_char(); // Skip trailing ','
skipws();
}
}
next_char(); // Skip closing ')'
}
// Check for terminating ';'
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' at end of reg_class definition.\n");
return;
}
next_char(); // Skip trailing ';'
return;
}
//------------------------------peep_match_child_parse-------------------------
InstructForm *ADLParser::peep_match_child_parse(PeepMatch &match, int parent, int &position, int input){
char *token = NULL;
int lparen = 0; // keep track of parenthesis nesting depth
int rparen = 0; // position of instruction at this depth
InstructForm *inst_seen = NULL;
InstructForm *child_seen = NULL;
// Walk the match tree,
// Record <parent, position, instruction name, input position>
while ( lparen >= rparen ) {
skipws();
// Left paren signals start of an input, collect with recursive call
if (_curchar == '(') {
++lparen;
next_char();
child_seen = peep_match_child_parse(match, parent, position, rparen);
}
// Right paren signals end of an input, may be more
else if (_curchar == ')') {
++rparen;
if( rparen == lparen ) { // IF rparen matches an lparen I've seen
next_char(); // move past ')'
} else { // ELSE leave ')' for parent
assert( rparen == lparen + 1, "Should only see one extra ')'");
// if an instruction was not specified for this paren-pair
if( ! inst_seen ) { // record signal entry
match.add_instruction( parent, position, NameList::_signal, input );
++position;
}
// ++input; // TEMPORARY
return inst_seen;
}
}
// if no parens, then check for instruction name
// This instruction is the parent of a sub-tree
else if ((token = get_ident_dup()) != NULL) {
const Form *form = _AD._globalNames[token];
if (form) {
InstructForm *inst = form->is_instruction();
// Record the first instruction at this level
if( inst_seen == NULL ) {
inst_seen = inst;
}
if (inst) {
match.add_instruction( parent, position, token, input );
parent = position;
++position;
} else {
parse_err(SYNERR, "instruction name expected at identifier %s.\n",
token);
return inst_seen;
}
}
else {
parse_err(SYNERR, "missing identifier in peepmatch rule.\n");
return NULL;
}
}
else {
parse_err(SYNERR, "missing identifier in peepmatch rule.\n");
return NULL;
}
} // end while
assert( false, "ShouldNotReachHere();");
return NULL;
}
//------------------------------peep_match_parse-------------------------------
// Syntax for a peepmatch rule
//
// peepmatch ( root_instr_name [(instruction subtree)] [,(instruction subtree)]* );
//
void ADLParser::peep_match_parse(Peephole &peep) {
skipws();
// Check the structure of the rule
// Check for open paren
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' at start of peepmatch rule.\n");
return;
}
next_char(); // skip '('
// Construct PeepMatch and parse the peepmatch rule.
PeepMatch *match = new PeepMatch(_ptr);
int parent = -1; // parent of root
int position = 0; // zero-based positions
int input = 0; // input position in parent's operands
InstructForm *root= peep_match_child_parse( *match, parent, position, input);
if( root == NULL ) {
parse_err(SYNERR, "missing instruction-name at start of peepmatch.\n");
return;
}
if( _curchar != ')' ) {
parse_err(SYNERR, "missing ')' at end of peepmatch.\n");
return;
}
next_char(); // skip ')'
// Check for closing semicolon
skipws();
if( _curchar != ';' ) {
parse_err(SYNERR, "missing ';' at end of peepmatch.\n");
return;
}
next_char(); // skip ';'
// Store match into peep, and store peep into instruction
peep.add_match(match);
root->append_peephole(&peep);
}
//------------------------------peep_constraint_parse--------------------------
// Syntax for a peepconstraint rule
// A parenthesized list of relations between operands in peepmatch subtree
//
// peepconstraint %{
// (instruction_number.operand_name
// relational_op
// instruction_number.operand_name OR register_name
// [, ...] );
//
// // instruction numbers are zero-based using topological order in peepmatch
//
void ADLParser::peep_constraint_parse(Peephole &peep) {
skipws();
// Check the structure of the rule
// Check for open paren
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' at start of peepconstraint rule.\n");
return;
}
else {
next_char(); // Skip '('
}
// Check for a constraint
skipws();
while( _curchar != ')' ) {
// Get information on the left instruction and its operand
// left-instructions's number
int left_inst = get_int();
// Left-instruction's operand
skipws();
if( _curchar != '.' ) {
parse_err(SYNERR, "missing '.' in peepconstraint after instruction number.\n");
return;
}
next_char(); // Skip '.'
char *left_op = get_ident_dup();
skipws();
// Collect relational operator
char *relation = get_relation_dup();
skipws();
// Get information on the right instruction and its operand
int right_inst; // Right-instructions's number
if( isdigit(_curchar) ) {
right_inst = get_int();
// Right-instruction's operand
skipws();
if( _curchar != '.' ) {
parse_err(SYNERR, "missing '.' in peepconstraint after instruction number.\n");
return;
}
next_char(); // Skip '.'
} else {
right_inst = -1; // Flag as being a register constraint
}
char *right_op = get_ident_dup();
// Construct the next PeepConstraint
PeepConstraint *constraint = new PeepConstraint( left_inst, left_op,
relation,
right_inst, right_op );
// And append it to the list for this peephole rule
peep.append_constraint( constraint );
// Check for another constraint, or end of rule
skipws();
if( _curchar == ',' ) {
next_char(); // Skip ','
skipws();
}
else if( _curchar != ')' ) {
parse_err(SYNERR, "expected ',' or ')' after peephole constraint.\n");
return;
}
} // end while( processing constraints )
next_char(); // Skip ')'
// Check for terminating ';'
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' at end of peepconstraint.\n");
return;
}
next_char(); // Skip trailing ';'
}
//------------------------------peep_replace_parse-----------------------------
// Syntax for a peepreplace rule
// root instruction name followed by a
// parenthesized list of whitespace separated instruction.operand specifiers
//
// peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
//
//
void ADLParser::peep_replace_parse(Peephole &peep) {
int lparen = 0; // keep track of parenthesis nesting depth
int rparen = 0; // keep track of parenthesis nesting depth
int icount = 0; // count of instructions in rule for naming
char *str = NULL;
char *token = NULL;
skipws();
// Check for open paren
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' at start of peepreplace rule.\n");
return;
}
else {
lparen++;
next_char();
}
// Check for root instruction
char *inst = get_ident_dup();
const Form *form = _AD._globalNames[inst];
if( form == NULL || form->is_instruction() == NULL ) {
parse_err(SYNERR, "Instruction name expected at start of peepreplace.\n");
return;
}
// Store string representation of rule into replace
PeepReplace *replace = new PeepReplace(str);
replace->add_instruction( inst );
skipws();
// Start of root's operand-list
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' at peepreplace root's operand-list.\n");
return;
}
else {
lparen++;
next_char();
}
skipws();
// Get the list of operands
while( _curchar != ')' ) {
// Get information on an instruction and its operand
// instructions's number
int inst_num = get_int();
// Left-instruction's operand
skipws();
if( _curchar != '.' ) {
parse_err(SYNERR, "missing '.' in peepreplace after instruction number.\n");
return;
}
next_char(); // Skip '.'
char *inst_op = get_ident_dup();
if( inst_op == NULL ) {
parse_err(SYNERR, "missing operand identifier in peepreplace.\n");
return;
}
// Record this operand's position in peepmatch
replace->add_operand( inst_num, inst_op );
skipws();
}
// Check for the end of operands list
skipws();
assert( _curchar == ')', "While loop should have advanced to ')'.");
next_char(); // Skip ')'
skipws();
// Check for end of peepreplace
if( _curchar != ')' ) {
parse_err(SYNERR, "missing ')' at end of peepmatch.\n");
parse_err(SYNERR, "Support one replacement instruction.\n");
return;
}
next_char(); // Skip ')'
// Check for closing semicolon
skipws();
if( _curchar != ';' ) {
parse_err(SYNERR, "missing ';' at end of peepreplace.\n");
return;
}
next_char(); // skip ';'
// Store replace into peep
peep.add_replace( replace );
}
//------------------------------pred_parse-------------------------------------
Predicate *ADLParser::pred_parse(void) {
Predicate *predicate; // Predicate class for operand
char *rule = NULL; // String representation of predicate
skipws(); // Skip leading whitespace
int line = linenum();
if ( (rule = get_paren_expr("pred expression", true)) == NULL ) {
parse_err(SYNERR, "incorrect or missing expression for 'predicate'\n");
return NULL;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Predicate: %s\n", rule);
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in predicate definition\n");
return NULL;
}
next_char(); // Point after the terminator
predicate = new Predicate(rule); // Build new predicate object
skipws();
return predicate;
}
//------------------------------ins_encode_parse_block-------------------------
// Parse the block form of ins_encode. See ins_encode_parse for more details
InsEncode *ADLParser::ins_encode_parse_block(InstructForm &inst) {
// Create a new encoding name based on the name of the instruction
// definition, which should be unique.
const char * prefix = "__enc_";
char* ec_name = (char*)malloc(strlen(inst._ident) + strlen(prefix) + 1);
sprintf(ec_name, "%s%s", prefix, inst._ident);
assert(_AD._encode->encClass(ec_name) == NULL, "shouldn't already exist");
EncClass *encoding = _AD._encode->add_EncClass(ec_name);
encoding->_linenum = linenum();
// synthesize the arguments list for the enc_class from the
// arguments to the instruct definition.
const char * param = NULL;
inst._parameters.reset();
while ((param = inst._parameters.iter()) != NULL) {
OperandForm *opForm = (OperandForm*)inst._localNames[param];
encoding->add_parameter(opForm->_ident, param);
}
// Add the prologue to create the MacroAssembler
encoding->add_code("\n"
" // Define a MacroAssembler instance for use by the encoding. The\n"
" // name is chosen to match the __ idiom used for assembly in other\n"
" // parts of hotspot and assumes the existence of the standard\n"
" // #define __ _masm.\n"
" MacroAssembler _masm(&cbuf);\n");
// Parse the following %{ }% block
enc_class_parse_block(encoding, ec_name);
// Build an encoding rule which invokes the encoding rule we just
// created, passing all arguments that we received.
InsEncode *encrule = new InsEncode(); // Encode class for instruction
NameAndList *params = encrule->add_encode(ec_name);
inst._parameters.reset();
while ((param = inst._parameters.iter()) != NULL) {
params->add_entry(param);
}
return encrule;
}
//------------------------------ins_encode_parse-------------------------------
// Encode rules have the form
// ins_encode( encode_class_name(parameter_list), ... );
//
// The "encode_class_name" must be defined in the encode section
// The parameter list contains $names that are locals.
//
// Alternatively it can be written like this:
//
// ins_encode %{
// ... // body
// %}
//
// which synthesizes a new encoding class taking the same arguments as
// the InstructForm, and automatically prefixes the definition with:
//
// MacroAssembler masm(&cbuf);\n");
//
// making it more compact to take advantage of the MacroAssembler and
// placing the assembly closer to it's use by instructions.
InsEncode *ADLParser::ins_encode_parse(InstructForm &inst) {
// Parse encode class name
skipws(); // Skip whitespace
if (_curchar != '(') {
// Check for ins_encode %{ form
if ((_curchar == '%') && (*(_ptr+1) == '{')) {
next_char(); // Skip '%'
next_char(); // Skip '{'
// Parse the block form of ins_encode
return ins_encode_parse_block(inst);
}
parse_err(SYNERR, "missing '%%{' or '(' in ins_encode definition\n");
return NULL;
}
next_char(); // move past '('
skipws();
InsEncode *encrule = new InsEncode(); // Encode class for instruction
encrule->_linenum = linenum();
char *ec_name = NULL; // String representation of encode rule
// identifier is optional.
while (_curchar != ')') {
ec_name = get_ident();
if (ec_name == NULL) {
parse_err(SYNERR, "Invalid encode class name after 'ins_encode('.\n");
return NULL;
}
// Check that encoding is defined in the encode section
EncClass *encode_class = _AD._encode->encClass(ec_name);
if (encode_class == NULL) {
// Like to defer checking these till later...
// parse_err(WARN, "Using an undefined encode class '%s' in 'ins_encode'.\n", ec_name);
}
// Get list for encode method's parameters
NameAndList *params = encrule->add_encode(ec_name);
// Parse the parameters to this encode method.
skipws();
if ( _curchar == '(' ) {
next_char(); // move past '(' for parameters
// Parse the encode method's parameters
while (_curchar != ')') {
char *param = get_ident_or_literal_constant("encoding operand");
if ( param != NULL ) {
// Found a parameter:
// Check it is a local name, add it to the list, then check for more
// New: allow hex constants as parameters to an encode method.
// New: allow parenthesized expressions as parameters.
// New: allow "primary", "secondary", "tertiary" as parameters.
// New: allow user-defined register name as parameter
if ( (inst._localNames[param] == NULL) &&
!ADLParser::is_literal_constant(param) &&
(Opcode::as_opcode_type(param) == Opcode::NOT_AN_OPCODE) &&
((_AD._register == NULL ) || (_AD._register->getRegDef(param) == NULL)) ) {
parse_err(SYNERR, "Using non-locally defined parameter %s for encoding %s.\n", param, ec_name);
return NULL;
}
params->add_entry(param);
skipws();
if (_curchar == ',' ) {
// More parameters to come
next_char(); // move past ',' between parameters
skipws(); // Skip to next parameter
}
else if (_curchar == ')') {
// Done with parameter list
}
else {
// Only ',' or ')' are valid after a parameter name
parse_err(SYNERR, "expected ',' or ')' after parameter %s.\n",
ec_name);
return NULL;
}
} else {
skipws();
// Did not find a parameter
if (_curchar == ',') {
parse_err(SYNERR, "Expected encode parameter before ',' in encoding %s.\n", ec_name);
return NULL;
}
if (_curchar != ')') {
parse_err(SYNERR, "Expected ')' after encode parameters.\n");
return NULL;
}
}
} // WHILE loop collecting parameters
next_char(); // move past ')' at end of parameters
} // done with parameter list for encoding
// Check for ',' or ')' after encoding
skipws(); // move to character after parameters
if ( _curchar == ',' ) {
// Found a ','
next_char(); // move past ',' between encode methods
skipws();
}
else if ( _curchar != ')' ) {
// If not a ',' then only a ')' is allowed
parse_err(SYNERR, "Expected ')' after encoding %s.\n", ec_name);
return NULL;
}
// Check for ',' separating parameters
// if ( _curchar != ',' && _curchar != ')' ) {
// parse_err(SYNERR, "expected ',' or ')' after encode method inside ins_encode.\n");
// return NULL;
// }
} // done parsing ins_encode methods and their parameters
if (_curchar != ')') {
parse_err(SYNERR, "Missing ')' at end of ins_encode description.\n");
return NULL;
}
next_char(); // move past ')'
skipws(); // Skip leading whitespace
if ( _curchar != ';' ) {
parse_err(SYNERR, "Missing ';' at end of ins_encode.\n");
return NULL;
}
next_char(); // move past ';'
skipws(); // be friendly to oper_parse()
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Instruction Encode: %s\n", ec_name);
return encrule;
}
//------------------------------size_parse-----------------------------------
char* ADLParser::size_parse(InstructForm *instr) {
char* sizeOfInstr = NULL;
// Get value of the instruction's size
skipws();
// Parse size
sizeOfInstr = get_paren_expr("size expression");
if (sizeOfInstr == NULL) {
parse_err(SYNERR, "size of opcode expected at %c\n", _curchar);
return NULL;
}
skipws();
// Check for terminator
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in ins_attrib definition\n");
return NULL;
}
next_char(); // Advance past the ';'
skipws(); // necessary for instr_parse()
// Debug Stuff
if (_AD._adl_debug > 1) {
if (sizeOfInstr != NULL) {
fprintf(stderr,"size of opcode: %s\n", sizeOfInstr);
}
}
return sizeOfInstr;
}
//------------------------------opcode_parse-----------------------------------
Opcode * ADLParser::opcode_parse(InstructForm *instr) {
char *primary = NULL;
char *secondary = NULL;
char *tertiary = NULL;
char *val = NULL;
Opcode *opcode = NULL;
// Get value of the instruction's opcode
skipws();
if (_curchar != '(') { // Check for parenthesized operand list
parse_err(SYNERR, "missing '(' in expand instruction declaration\n");
return NULL;
}
next_char(); // skip open paren
skipws();
if (_curchar != ')') {
// Parse primary, secondary, and tertiary opcodes, if provided.
if ( ((primary = get_ident_or_literal_constant("primary opcode")) == NULL) ) {
parse_err(SYNERR, "primary hex opcode expected at %c\n", _curchar);
return NULL;
}
skipws();
if (_curchar == ',') {
next_char();
skipws();
// Parse secondary opcode
if ( ((secondary = get_ident_or_literal_constant("secondary opcode")) == NULL) ) {
parse_err(SYNERR, "secondary hex opcode expected at %c\n", _curchar);
return NULL;
}
skipws();
if (_curchar == ',') {
next_char();
skipws();
// Parse tertiary opcode
if ( ((tertiary = get_ident_or_literal_constant("tertiary opcode")) == NULL) ) {
parse_err(SYNERR,"tertiary hex opcode expected at %c\n", _curchar);
return NULL;
}
skipws();
}
}
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "Missing ')' in opcode description\n");
return NULL;
}
}
next_char(); // Skip ')'
skipws();
// Check for terminator
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in ins_attrib definition\n");
return NULL;
}
next_char(); // Advance past the ';'
skipws(); // necessary for instr_parse()
// Debug Stuff
if (_AD._adl_debug > 1) {
if (primary != NULL) fprintf(stderr,"primary opcode: %s\n", primary);
if (secondary != NULL) fprintf(stderr,"secondary opcode: %s\n", secondary);
if (tertiary != NULL) fprintf(stderr,"tertiary opcode: %s\n", tertiary);
}
// Generate new object and return
opcode = new Opcode(primary, secondary, tertiary);
return opcode;
}
//------------------------------interface_parse--------------------------------
Interface *ADLParser::interface_parse(void) {
char *iface_name = NULL; // Name of interface class being used
char *iface_code = NULL; // Describe components of this class
// Get interface class name
skipws(); // Skip whitespace
if (_curchar != '(') {
parse_err(SYNERR, "Missing '(' at start of interface description.\n");
return NULL;
}
next_char(); // move past '('
skipws();
iface_name = get_ident();
if (iface_name == NULL) {
parse_err(SYNERR, "missing interface name after 'interface'.\n");
return NULL;
}
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "Missing ')' after name of interface.\n");
return NULL;
}
next_char(); // move past ')'
// Get details of the interface,
// for the type of interface indicated by iface_name.
Interface *inter = NULL;
skipws();
if ( _curchar != ';' ) {
if ( strcmp(iface_name,"MEMORY_INTER") == 0 ) {
inter = mem_interface_parse();
}
else if ( strcmp(iface_name,"COND_INTER") == 0 ) {
inter = cond_interface_parse();
}
// The parse routines consume the "%}"
// Check for probable extra ';' after defining block.
if ( _curchar == ';' ) {
parse_err(SYNERR, "Extra ';' after defining interface block.\n");
next_char(); // Skip ';'
return NULL;
}
} else {
next_char(); // move past ';'
// Create appropriate interface object
if ( strcmp(iface_name,"REG_INTER") == 0 ) {
inter = new RegInterface();
}
else if ( strcmp(iface_name,"CONST_INTER") == 0 ) {
inter = new ConstInterface();
}
}
skipws(); // be friendly to oper_parse()
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Interface Form: %s\n", iface_name);
// Create appropriate interface object and return.
return inter;
}
//------------------------------mem_interface_parse----------------------------
Interface *ADLParser::mem_interface_parse(void) {
// Fields for MemInterface
char *base = NULL;
char *index = NULL;
char *scale = NULL;
char *disp = NULL;
if (_curchar != '%') {
parse_err(SYNERR, "Missing '%{' for 'interface' block.\n");
return NULL;
}
next_char(); // Skip '%'
if (_curchar != '{') {
parse_err(SYNERR, "Missing '%{' for 'interface' block.\n");
return NULL;
}
next_char(); // Skip '{'
skipws();
do {
char *field = get_ident();
if (field == NULL) {
parse_err(SYNERR, "Expected keyword, base|index|scale|disp, or '%}' ending interface.\n");
return NULL;
}
if ( strcmp(field,"base") == 0 ) {
base = interface_field_parse();
}
else if ( strcmp(field,"index") == 0 ) {
index = interface_field_parse();
}
else if ( strcmp(field,"scale") == 0 ) {
scale = interface_field_parse();
}
else if ( strcmp(field,"disp") == 0 ) {
disp = interface_field_parse();
}
else {
parse_err(SYNERR, "Expected keyword, base|index|scale|disp, or '%}' ending interface.\n");
return NULL;
}
} while( _curchar != '%' );
next_char(); // Skip '%'
if ( _curchar != '}' ) {
parse_err(SYNERR, "Missing '%}' for 'interface' block.\n");
return NULL;
}
next_char(); // Skip '}'
// Construct desired object and return
Interface *inter = new MemInterface(base, index, scale, disp);
return inter;
}
//------------------------------cond_interface_parse---------------------------
Interface *ADLParser::cond_interface_parse(void) {
char *equal;
char *not_equal;
char *less;
char *greater_equal;
char *less_equal;
char *greater;
const char *equal_format = "eq";
const char *not_equal_format = "ne";
const char *less_format = "lt";
const char *greater_equal_format = "ge";
const char *less_equal_format = "le";
const char *greater_format = "gt";
if (_curchar != '%') {
parse_err(SYNERR, "Missing '%{' for 'cond_interface' block.\n");
return NULL;
}
next_char(); // Skip '%'
if (_curchar != '{') {
parse_err(SYNERR, "Missing '%{' for 'cond_interface' block.\n");
return NULL;
}
next_char(); // Skip '{'
skipws();
do {
char *field = get_ident();
if (field == NULL) {
parse_err(SYNERR, "Expected keyword, base|index|scale|disp, or '%}' ending interface.\n");
return NULL;
}
if ( strcmp(field,"equal") == 0 ) {
equal = interface_field_parse(&equal_format);
}
else if ( strcmp(field,"not_equal") == 0 ) {
not_equal = interface_field_parse(¬_equal_format);
}
else if ( strcmp(field,"less") == 0 ) {
less = interface_field_parse(&less_format);
}
else if ( strcmp(field,"greater_equal") == 0 ) {
greater_equal = interface_field_parse(&greater_equal_format);
}
else if ( strcmp(field,"less_equal") == 0 ) {
less_equal = interface_field_parse(&less_equal_format);
}
else if ( strcmp(field,"greater") == 0 ) {
greater = interface_field_parse(&greater_format);
}
else {
parse_err(SYNERR, "Expected keyword, base|index|scale|disp, or '%}' ending interface.\n");
return NULL;
}
} while( _curchar != '%' );
next_char(); // Skip '%'
if ( _curchar != '}' ) {
parse_err(SYNERR, "Missing '%}' for 'interface' block.\n");
return NULL;
}
next_char(); // Skip '}'
// Construct desired object and return
Interface *inter = new CondInterface(equal, equal_format,
not_equal, not_equal_format,
less, less_format,
greater_equal, greater_equal_format,
less_equal, less_equal_format,
greater, greater_format);
return inter;
}
//------------------------------interface_field_parse--------------------------
char *ADLParser::interface_field_parse(const char ** format) {
char *iface_field = NULL;
// Get interface field
skipws(); // Skip whitespace
if (_curchar != '(') {
parse_err(SYNERR, "Missing '(' at start of interface field.\n");
return NULL;
}
next_char(); // move past '('
skipws();
if ( _curchar != '0' && _curchar != '$' ) {
parse_err(SYNERR, "missing or invalid interface field contents.\n");
return NULL;
}
iface_field = get_rep_var_ident();
if (iface_field == NULL) {
parse_err(SYNERR, "missing or invalid interface field contents.\n");
return NULL;
}
skipws();
if (format != NULL && _curchar == ',') {
next_char();
skipws();
if (_curchar != '"') {
parse_err(SYNERR, "Missing '\"' in field format .\n");
return NULL;
}
next_char();
char *start = _ptr; // Record start of the next string
while ((_curchar != '"') && (_curchar != '%') && (_curchar != '\n')) {
if (_curchar == '\\') next_char(); // superquote
if (_curchar == '\n') parse_err(SYNERR, "newline in string"); // unimplemented!
next_char();
}
if (_curchar != '"') {
parse_err(SYNERR, "Missing '\"' at end of field format .\n");
return NULL;
}
// If a string was found, terminate it and record in FormatRule
if ( start != _ptr ) {
*_ptr = '\0'; // Terminate the string
*format = start;
}
next_char();
skipws();
}
if (_curchar != ')') {
parse_err(SYNERR, "Missing ')' after interface field.\n");
return NULL;
}
next_char(); // move past ')'
skipws();
if ( _curchar != ';' ) {
parse_err(SYNERR, "Missing ';' at end of interface field.\n");
return NULL;
}
next_char(); // move past ';'
skipws(); // be friendly to interface_parse()
return iface_field;
}
//------------------------------match_parse------------------------------------
MatchRule *ADLParser::match_parse(FormDict &operands) {
MatchRule *match; // Match Rule class for instruction/operand
char *cnstr = NULL; // Code for constructor
int depth = 0; // Counter for matching parentheses
int numleaves = 0; // Counter for number of leaves in rule
// Parse the match rule tree
MatchNode *mnode = matchNode_parse(operands, depth, numleaves, true);
// Either there is a block with a constructor, or a ';' here
skipws(); // Skip whitespace
if ( _curchar == ';' ) { // Semicolon is valid terminator
cnstr = NULL; // no constructor for this form
next_char(); // Move past the ';', replaced with '\0'
}
else if ((cnstr = find_cpp_block("match constructor")) == NULL ) {
parse_err(SYNERR, "invalid construction of match rule\n"
"Missing ';' or invalid '%{' and '%}' constructor\n");
return NULL; // No MatchRule to return
}
if (_AD._adl_debug > 1)
if (cnstr) fprintf(stderr,"Match Constructor: %s\n", cnstr);
// Build new MatchRule object
match = new MatchRule(_AD, mnode, depth, cnstr, numleaves);
skipws(); // Skip any trailing whitespace
return match; // Return MatchRule object
}
//------------------------------format_parse-----------------------------------
FormatRule* ADLParser::format_parse(void) {
char *desc = NULL;
FormatRule *format = (new FormatRule(desc));
// Without expression form, MUST have a code block;
skipws(); // Skip whitespace
if ( _curchar == ';' ) { // Semicolon is valid terminator
desc = NULL; // no constructor for this form
next_char(); // Move past the ';', replaced with '\0'
}
else if ( _curchar == '%' && *(_ptr+1) == '{') {
next_char(); // Move past the '%'
next_char(); // Move past the '{'
skipws();
if (_curchar == '$') {
char* ident = get_rep_var_ident();
if (strcmp(ident, "$$template") == 0) return template_parse();
parse_err(SYNERR, "Unknown \"%s\" directive in format", ident);
return NULL;
}
// Check for the opening '"' inside the format description
if ( _curchar == '"' ) {
next_char(); // Move past the initial '"'
if( _curchar == '"' ) { // Handle empty format string case
*_ptr = '\0'; // Terminate empty string
format->_strings.addName(_ptr);
}
// Collect the parts of the format description
// (1) strings that are passed through to tty->print
// (2) replacement/substitution variable, preceeded by a '$'
// (3) multi-token ANSIY C style strings
while ( true ) {
if ( _curchar == '%' || _curchar == '\n' ) {
if ( _curchar != '"' ) {
parse_err(SYNERR, "missing '\"' at end of format block");
return NULL;
}
}
// (1)
// Check if there is a string to pass through to output
char *start = _ptr; // Record start of the next string
while ((_curchar != '$') && (_curchar != '"') && (_curchar != '%') && (_curchar != '\n')) {
if (_curchar == '\\') {
next_char(); // superquote
if ((_curchar == '$') || (_curchar == '%'))
// hack to avoid % escapes and warnings about undefined \ escapes
*(_ptr-1) = _curchar;
}
if (_curchar == '\n') parse_err(SYNERR, "newline in string"); // unimplemented!
next_char();
}
// If a string was found, terminate it and record in FormatRule
if ( start != _ptr ) {
*_ptr = '\0'; // Terminate the string
format->_strings.addName(start);
}
// (2)
// If we are at a replacement variable,
// copy it and record in FormatRule
if ( _curchar == '$' ) {
next_char(); // Move past the '$'
char* rep_var = get_ident(); // Nil terminate the variable name
rep_var = strdup(rep_var);// Copy the string
*_ptr = _curchar; // and replace Nil with original character
format->_rep_vars.addName(rep_var);
// Add flag to _strings list indicating we should check _rep_vars
format->_strings.addName(NameList::_signal);
}
// (3)
// Allow very long strings to be broken up,
// using the ANSI C syntax "foo\n" <newline> "bar"
if ( _curchar == '"') {
next_char(); // Move past the '"'
skipws(); // Skip white space before next string token
if ( _curchar != '"') {
break;
} else {
// Found one. Skip both " and the whitespace in between.
next_char();
}
}
} // end while part of format description
// Check for closing '"' and '%}' in format description
skipws(); // Move to closing '%}'
if ( _curchar != '%' ) {
parse_err(SYNERR, "non-blank characters between closing '\"' and '%' in format");
return NULL;
}
} // Done with format description inside
skipws();
// Past format description, at '%'
if ( _curchar != '%' || *(_ptr+1) != '}' ) {
parse_err(SYNERR, "missing '%}' at end of format block");
return NULL;
}
next_char(); // Move past the '%'
next_char(); // Move past the '}'
}
else { // parameter list alone must terminate with a ';'
parse_err(SYNERR, "missing ';' after Format expression");
return NULL;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Format Rule: %s\n", desc);
skipws();
return format;
}
//------------------------------template_parse-----------------------------------
FormatRule* ADLParser::template_parse(void) {
char *desc = NULL;
FormatRule *format = (new FormatRule(desc));
skipws();
while ( (_curchar != '%') && (*(_ptr+1) != '}') ) {
// (1)
// Check if there is a string to pass through to output
{
char *start = _ptr; // Record start of the next string
while ((_curchar != '$') && ((_curchar != '%') || (*(_ptr+1) != '}')) ) {
// If at the start of a comment, skip past it
if( (_curchar == '/') && ((*(_ptr+1) == '/') || (*(_ptr+1) == '*')) ) {
skipws_no_preproc();
} else {
// ELSE advance to the next character, or start of the next line
next_char_or_line();
}
}
// If a string was found, terminate it and record in EncClass
if ( start != _ptr ) {
*_ptr = '\0'; // Terminate the string
// Add flag to _strings list indicating we should check _rep_vars
format->_strings.addName(NameList::_signal2);
format->_strings.addName(start);
}
}
// (2)
// If we are at a replacement variable,
// copy it and record in EncClass
if ( _curchar == '$' ) {
// Found replacement Variable
char *rep_var = get_rep_var_ident_dup();
if (strcmp(rep_var, "$emit") == 0) {
// switch to normal format parsing
next_char();
next_char();
skipws();
// Check for the opening '"' inside the format description
if ( _curchar == '"' ) {
next_char(); // Move past the initial '"'
if( _curchar == '"' ) { // Handle empty format string case
*_ptr = '\0'; // Terminate empty string
format->_strings.addName(_ptr);
}
// Collect the parts of the format description
// (1) strings that are passed through to tty->print
// (2) replacement/substitution variable, preceeded by a '$'
// (3) multi-token ANSIY C style strings
while ( true ) {
if ( _curchar == '%' || _curchar == '\n' ) {
parse_err(SYNERR, "missing '\"' at end of format block");
return NULL;
}
// (1)
// Check if there is a string to pass through to output
char *start = _ptr; // Record start of the next string
while ((_curchar != '$') && (_curchar != '"') && (_curchar != '%') && (_curchar != '\n')) {
if (_curchar == '\\') next_char(); // superquote
if (_curchar == '\n') parse_err(SYNERR, "newline in string"); // unimplemented!
next_char();
}
// If a string was found, terminate it and record in FormatRule
if ( start != _ptr ) {
*_ptr = '\0'; // Terminate the string
format->_strings.addName(start);
}
// (2)
// If we are at a replacement variable,
// copy it and record in FormatRule
if ( _curchar == '$' ) {
next_char(); // Move past the '$'
char* next_rep_var = get_ident(); // Nil terminate the variable name
next_rep_var = strdup(next_rep_var);// Copy the string
*_ptr = _curchar; // and replace Nil with original character
format->_rep_vars.addName(next_rep_var);
// Add flag to _strings list indicating we should check _rep_vars
format->_strings.addName(NameList::_signal);
}
// (3)
// Allow very long strings to be broken up,
// using the ANSI C syntax "foo\n" <newline> "bar"
if ( _curchar == '"') {
next_char(); // Move past the '"'
skipws(); // Skip white space before next string token
if ( _curchar != '"') {
break;
} else {
// Found one. Skip both " and the whitespace in between.
next_char();
}
}
} // end while part of format description
}
} else {
// Add flag to _strings list indicating we should check _rep_vars
format->_rep_vars.addName(rep_var);
// Add flag to _strings list indicating we should check _rep_vars
format->_strings.addName(NameList::_signal3);
}
} // end while part of format description
}
skipws();
// Past format description, at '%'
if ( _curchar != '%' || *(_ptr+1) != '}' ) {
parse_err(SYNERR, "missing '%}' at end of format block");
return NULL;
}
next_char(); // Move past the '%'
next_char(); // Move past the '}'
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Format Rule: %s\n", desc);
skipws();
return format;
}
//------------------------------effect_parse-----------------------------------
void ADLParser::effect_parse(InstructForm *instr) {
char* desc = NULL;
skipws(); // Skip whitespace
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' in effect definition\n");
return;
}
// Get list of effect-operand pairs and insert into dictionary
else get_effectlist(instr->_effects, instr->_localNames);
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Effect description: %s\n", desc);
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in Effect definition\n");
}
next_char(); // Skip ';'
}
//------------------------------expand_parse-----------------------------------
ExpandRule* ADLParser::expand_parse(InstructForm *instr) {
char *ident, *ident2;
OperandForm *oper;
InstructForm *ins;
NameAndList *instr_and_operands = NULL;
ExpandRule *exp = new ExpandRule();
// Expand is a block containing an ordered list of instructions, each of
// which has an ordered list of operands.
// Check for block delimiter
skipws(); // Skip leading whitespace
if ((_curchar != '%')
|| (next_char(), (_curchar != '{')) ) { // If not open block
parse_err(SYNERR, "missing '%{' in expand definition\n");
return(NULL);
}
next_char(); // Maintain the invariant
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "identifier expected at %c\n", _curchar);
continue;
} // Check that you have a valid instruction
const Form *form = _globalNames[ident];
ins = form ? form->is_instruction() : NULL;
if (ins == NULL) {
// This is a new operand
oper = form ? form->is_operand() : NULL;
if (oper == NULL) {
parse_err(SYNERR, "instruction/operand name expected at %s\n", ident);
continue;
}
// Throw the operand on the _newopers list
skipws();
ident = get_unique_ident(instr->_localNames,"Operand");
if (ident == NULL) {
parse_err(SYNERR, "identifier expected at %c\n", _curchar);
continue;
}
exp->_newopers.addName(ident);
// Add new operand to LocalNames
instr->_localNames.Insert(ident, oper);
// Grab any constructor code and save as a string
char *c = NULL;
skipws();
if (_curchar == '%') { // Need a constructor for the operand
c = find_cpp_block("Operand Constructor");
if (c == NULL) {
parse_err(SYNERR, "Invalid code block for operand constructor\n", _curchar);
continue;
}
// Add constructor to _newopconst Dict
exp->_newopconst.Insert(ident, c);
}
else if (_curchar != ';') { // If no constructor, need a ;
parse_err(SYNERR, "Missing ; in expand rule operand declaration\n");
continue;
}
else next_char(); // Skip the ;
skipws();
}
else {
// Add instruction to list
instr_and_operands = new NameAndList(ident);
// Grab operands, build nameList of them, and then put into dictionary
skipws();
if (_curchar != '(') { // Check for parenthesized operand list
parse_err(SYNERR, "missing '(' in expand instruction declaration\n");
continue;
}
do {
next_char(); // skip open paren & comma characters
skipws();
if (_curchar == ')') break;
ident2 = get_ident();
skipws();
if (ident2 == NULL) {
parse_err(SYNERR, "identifier expected at %c\n", _curchar);
continue;
} // Check that you have a valid operand
const Form *form2 = instr->_localNames[ident2];
if (!form2) {
parse_err(SYNERR, "operand name expected at %s\n", ident2);
continue;
}
oper = form2->is_operand();
if (oper == NULL && !form2->is_opclass()) {
parse_err(SYNERR, "operand name expected at %s\n", ident2);
continue;
} // Add operand to list
instr_and_operands->add_entry(ident2);
} while(_curchar == ',');
if (_curchar != ')') {
parse_err(SYNERR, "missing ')'in expand instruction declaration\n");
continue;
}
next_char();
if (_curchar != ';') {
parse_err(SYNERR, "missing ';'in expand instruction declaration\n");
continue;
}
next_char();
// Record both instruction name and its operand list
exp->add_instruction(instr_and_operands);
skipws();
}
} while(_curchar != '%');
next_char();
if (_curchar != '}') {
parse_err(SYNERR, "missing '%}' in expand rule definition\n");
return(NULL);
}
next_char();
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Expand Rule:\n");
skipws();
return (exp);
}
//------------------------------rewrite_parse----------------------------------
RewriteRule* ADLParser::rewrite_parse(void) {
char* params = NULL;
char* desc = NULL;
// This feature targeted for second generation description language.
skipws(); // Skip whitespace
// Get parameters for rewrite
if ((params = get_paren_expr("rewrite parameters")) == NULL) {
parse_err(SYNERR, "missing '(' in rewrite rule\n");
return NULL;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Rewrite parameters: %s\n", params);
// For now, grab entire block;
skipws();
if ( (desc = find_cpp_block("rewrite block")) == NULL ) {
parse_err(SYNERR, "incorrect or missing block for 'rewrite'.\n");
return NULL;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Rewrite Rule: %s\n", desc);
skipws();
return (new RewriteRule(params,desc));
}
//------------------------------attr_parse-------------------------------------
Attribute *ADLParser::attr_parse(char* ident) {
Attribute *attrib; // Attribute class
char *cost = NULL; // String representation of cost attribute
skipws(); // Skip leading whitespace
if ( (cost = get_paren_expr("attribute")) == NULL ) {
parse_err(SYNERR, "incorrect or missing expression for 'attribute'\n");
return NULL;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Attribute: %s\n", cost);
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in attribute definition\n");
return NULL;
}
next_char(); // Point after the terminator
skipws();
attrib = new Attribute(ident,cost,INS_ATTR); // Build new predicate object
return attrib;
}
//------------------------------matchNode_parse--------------------------------
MatchNode *ADLParser::matchNode_parse(FormDict &operands, int &depth, int &numleaves, bool atroot) {
// Count depth of parenthesis nesting for both left and right children
int lParens = depth;
int rParens = depth;
// MatchNode objects for left, right, and root of subtree.
MatchNode *lChild = NULL;
MatchNode *rChild = NULL;
char *token; // Identifier which may be opcode or operand
// Match expression starts with a '('
if (cur_char() != '(')
return NULL;
next_char(); // advance past '('
// Parse the opcode
token = get_ident(); // Get identifier, opcode
if (token == NULL) {
parse_err(SYNERR, "missing opcode in match expression\n");
return NULL;
}
// Take note if we see one of a few special operations - those that are
// treated differently on different architectures in the sense that on
// one architecture there is a match rule and on another there isn't (so
// a call will eventually be generated).
for (int i = _last_machine_leaf + 1; i < _last_opcode; i++) {
if (strcmp(token, NodeClassNames[i]) == 0) {
_AD.has_match_rule(i, true);
}
}
// Lookup the root value in the operands dict to perform substitution
const char *result = NULL; // Result type will be filled in later
const char *name = token; // local name associated with this node
const char *operation = token; // remember valid operation for later
const Form *form = operands[token];
OpClassForm *opcForm = form ? form->is_opclass() : NULL;
if (opcForm != NULL) {
// If this token is an entry in the local names table, record its type
if (!opcForm->ideal_only()) {
operation = opcForm->_ident;
result = operation; // Operands result in their own type
}
// Otherwise it is an ideal type, and so, has no local name
else name = NULL;
}
// Parse the operands
skipws();
if (cur_char() != ')') {
// Parse the left child
if (strcmp(operation,"Set"))
lChild = matchChild_parse(operands, lParens, numleaves, false);
else
lChild = matchChild_parse(operands, lParens, numleaves, true);
skipws();
if (cur_char() != ')' ) {
if(strcmp(operation, "Set"))
rChild = matchChild_parse(operands,rParens,numleaves,false);
else
rChild = matchChild_parse(operands,rParens,numleaves,true);
}
}
// Check for required ')'
skipws();
if (cur_char() != ')') {
parse_err(SYNERR, "missing ')' in match expression\n");
return NULL;
}
next_char(); // skip the ')'
MatchNode* mroot = new MatchNode(_AD,result,name,operation,lChild,rChild);
// If not the root, reduce this subtree to an internal operand
if (!atroot) {
mroot->build_internalop();
}
// depth is greater of left and right paths.
depth = (lParens > rParens) ? lParens : rParens;
return mroot;
}
//------------------------------matchChild_parse-------------------------------
MatchNode *ADLParser::matchChild_parse(FormDict &operands, int &parens, int &numleaves, bool atroot) {
MatchNode *child = NULL;
const char *result = NULL;
const char *token = NULL;
const char *opType = NULL;
if (cur_char() == '(') { // child is an operation
++parens;
child = matchNode_parse(operands, parens, numleaves, atroot);
}
else { // child is an operand
token = get_ident();
const Form *form = operands[token];
OpClassForm *opcForm = form ? form->is_opclass() : NULL;
if (opcForm != NULL) {
opType = opcForm->_ident;
result = opcForm->_ident; // an operand's result matches its type
} else {
parse_err(SYNERR, "undefined operand %s in match rule\n", token);
return NULL;
}
if (opType == NULL) {
parse_err(SYNERR, "missing type for argument '%s'\n", token);
}
child = new MatchNode(_AD, result, token, opType);
++numleaves;
}
return child;
}
// ******************** Private Utility Functions *************************
char* ADLParser::find_cpp_block(const char* description) {
char *next; // Pointer for finding block delimiters
char* cppBlock = NULL; // Beginning of C++ code block
if (_curchar == '%') { // Encoding is a C++ expression
next_char();
if (_curchar != '{') {
parse_err(SYNERR, "missing '{' in %s \n", description);
return NULL;
}
next_char(); // Skip block delimiter
skipws_no_preproc(); // Skip leading whitespace
cppBlock = _ptr; // Point to start of expression
int line = linenum();
next = _ptr + 1;
while(((_curchar != '%') || (*next != '}')) && (_curchar != '\0')) {
next_char_or_line();
next = _ptr+1; // Maintain the next pointer
} // Grab string
if (_curchar == '\0') {
parse_err(SYNERR, "invalid termination of %s \n", description);
return NULL;
}
*_ptr = '\0'; // Terminate string
_ptr += 2; // Skip block delimiter
_curchar = *_ptr; // Maintain invariant
// Prepend location descriptor, for debugging.
if (_AD._adlocation_debug) {
char* location = get_line_string(line);
char* end_loc = end_line_marker();
char* result = (char *)malloc(strlen(location) + strlen(cppBlock) + strlen(end_loc) + 1);
strcpy(result, location);
strcat(result, cppBlock);
strcat(result, end_loc);
cppBlock = result;
free(location);
}
}
return cppBlock;
}
// Move to the closing token of the expression we are currently at,
// as defined by stop_chars. Match parens and quotes.
char* ADLParser::get_expr(const char *desc, const char *stop_chars) {
char* expr = NULL;
int paren = 0;
expr = _ptr;
while (paren > 0 || !strchr(stop_chars, _curchar)) {
if (_curchar == '(') { // Down level of nesting
paren++; // Bump the parenthesis counter
next_char(); // maintain the invariant
}
else if (_curchar == ')') { // Up one level of nesting
if (paren == 0) {
// Paren underflow: We didn't encounter the required stop-char.
parse_err(SYNERR, "too many )'s, did not find %s after %s\n",
stop_chars, desc);
return NULL;
}
paren--; // Drop the parenthesis counter
next_char(); // Maintain the invariant
}
else if (_curchar == '"' || _curchar == '\'') {
int qchar = _curchar;
while (true) {
next_char();
if (_curchar == qchar) { next_char(); break; }
if (_curchar == '\\') next_char(); // superquote
if (_curchar == '\n' || _curchar == '\0') {
parse_err(SYNERR, "newline in string in %s\n", desc);
return NULL;
}
}
}
else if (_curchar == '%' && (_ptr[1] == '{' || _ptr[1] == '}')) {
// Make sure we do not stray into the next ADLC-level form.
parse_err(SYNERR, "unexpected %%%c in %s\n", _ptr[1], desc);
return NULL;
}
else if (_curchar == '\0') {
parse_err(SYNERR, "unexpected EOF in %s\n", desc);
return NULL;
}
else {
// Always walk over whitespace, comments, preprocessor directives, etc.
char* pre_skip_ptr = _ptr;
skipws();
// If the parser declined to make progress on whitespace,
// skip the next character, which is therefore NOT whitespace.
if (pre_skip_ptr == _ptr) {
next_char();
} else if (pre_skip_ptr+strlen(pre_skip_ptr) != _ptr+strlen(_ptr)) {
parse_err(SYNERR, "unimplemented: preprocessor must not elide subexpression in %s", desc);
}
}
}
assert(strchr(stop_chars, _curchar), "non-null return must be at stop-char");
*_ptr = '\0'; // Replace ')' or other stop-char with '\0'
return expr;
}
// Helper function around get_expr
// Sets _curchar to '(' so that get_paren_expr will search for a matching ')'
char *ADLParser::get_paren_expr(const char *description, bool include_location) {
int line = linenum();
if (_curchar != '(') // Escape if not valid starting position
return NULL;
next_char(); // Skip the required initial paren.
char *token2 = get_expr(description, ")");
if (_curchar == ')')
next_char(); // Skip required final paren.
int junk = 0;
if (include_location && _AD._adlocation_debug && !is_int_token(token2, junk)) {
// Prepend location descriptor, for debugging.
char* location = get_line_string(line);
char* end_loc = end_line_marker();
char* result = (char *)malloc(strlen(location) + strlen(token2) + strlen(end_loc) + 1);
strcpy(result, location);
strcat(result, token2);
strcat(result, end_loc);
token2 = result;
free(location);
}
return token2;
}
//------------------------------get_ident_common-------------------------------
// Looks for an identifier in the buffer, and turns it into a null terminated
// string(still inside the file buffer). Returns a pointer to the string or
// NULL if some other token is found instead.
char *ADLParser::get_ident_common(bool do_preproc) {
register char c;
char *start; // Pointer to start of token
char *end; // Pointer to end of token
if( _curline == NULL ) // Return NULL at EOF.
return NULL;
skipws_common(do_preproc); // Skip whitespace before identifier
start = end = _ptr; // Start points at first character
end--; // unwind end by one to prepare for loop
do {
end++; // Increment end pointer
c = *end; // Grab character to test
} while ( ((c >= 'a') && (c <= 'z')) || ((c >= 'A') && (c <= 'Z'))
|| ((c >= '0') && (c <= '9'))
|| ((c == '_')) || ((c == ':')) || ((c == '#')) );
if (start == end) { // We popped out on the first try
parse_err(SYNERR, "identifier expected at %c\n", c);
start = NULL;
}
else {
_curchar = c; // Save the first character of next token
*end = '\0'; // NULL terminate the string in place
}
_ptr = end; // Reset _ptr to point to next char after token
// Make sure we do not try to use #defined identifiers. If start is
// NULL an error was already reported.
if (do_preproc && start != NULL) {
const char* def = _AD.get_preproc_def(start);
if (def != NULL && strcmp(def, start)) {
const char* def1 = def;
const char* def2 = _AD.get_preproc_def(def1);
// implement up to 2 levels of #define
if (def2 != NULL && strcmp(def2, def1)) {
def = def2;
const char* def3 = _AD.get_preproc_def(def2);
if (def3 != NULL && strcmp(def3, def2) && strcmp(def3, def1)) {
parse_err(SYNERR, "unimplemented: using %s defined as %s => %s => %s",
start, def1, def2, def3);
}
}
start = strdup(def);
}
}
return start; // Pointer to token in filebuf
}
//------------------------------get_ident_dup----------------------------------
// Looks for an identifier in the buffer, and returns a duplicate
// or NULL if some other token is found instead.
char *ADLParser::get_ident_dup(void) {
char *ident = get_ident();
// Duplicate an identifier before returning and restore string.
if( ident != NULL ) {
ident = strdup(ident); // Copy the string
*_ptr = _curchar; // and replace Nil with original character
}
return ident;
}
//----------------------get_ident_or_literal_constant--------------------------
// Looks for an identifier in the buffer, or a parenthesized expression.
char *ADLParser::get_ident_or_literal_constant(const char* description) {
char* param = NULL;
skipws();
if (_curchar == '(') {
// Grab a constant expression.
param = get_paren_expr(description);
if (param[0] != '(') {
char* buf = (char*) malloc(strlen(param) + 3);
sprintf(buf, "(%s)", param);
param = buf;
}
assert(is_literal_constant(param),
"expr must be recognizable as a constant");
} else {
param = get_ident();
}
return param;
}
//------------------------------get_rep_var_ident-----------------------------
// Do NOT duplicate,
// Leave nil terminator in buffer
// Preserve initial '$'(s) in string
char *ADLParser::get_rep_var_ident(void) {
// Remember starting point
char *rep_var = _ptr;
// Check for replacement variable indicator '$' and pass if present
if ( _curchar == '$' ) {
next_char();
}
// Check for a subfield indicator, a second '$', and pass if present
if ( _curchar == '$' ) {
next_char();
}
// Check for a control indicator, a third '$':
if ( _curchar == '$' ) {
next_char();
}
// Check for more than three '$'s in sequence, SYNERR
if( _curchar == '$' ) {
parse_err(SYNERR, "Replacement variables and field specifiers can not start with '$$$$'");
next_char();
return NULL;
}
// Nil terminate the variable name following the '$'
char *rep_var_name = get_ident();
assert( rep_var_name != NULL,
"Missing identifier after replacement variable indicator '$'");
return rep_var;
}
//------------------------------get_rep_var_ident_dup-------------------------
// Return the next replacement variable identifier, skipping first '$'
// given a pointer into a line of the buffer.
// Null terminates string, still inside the file buffer,
// Returns a pointer to a copy of the string, or NULL on failure
char *ADLParser::get_rep_var_ident_dup(void) {
if( _curchar != '$' ) return NULL;
next_char(); // Move past the '$'
char *rep_var = _ptr; // Remember starting point
// Check for a subfield indicator, a second '$':
if ( _curchar == '$' ) {
next_char();
}
// Check for a control indicator, a third '$':
if ( _curchar == '$' ) {
next_char();
}
// Check for more than three '$'s in sequence, SYNERR
if( _curchar == '$' ) {
parse_err(SYNERR, "Replacement variables and field specifiers can not start with '$$$$'");
next_char();
return NULL;
}
// Nil terminate the variable name following the '$'
char *rep_var_name = get_ident();
assert( rep_var_name != NULL,
"Missing identifier after replacement variable indicator '$'");
rep_var = strdup(rep_var); // Copy the string
*_ptr = _curchar; // and replace Nil with original character
return rep_var;
}
//------------------------------get_unique_ident------------------------------
// Looks for an identifier in the buffer, terminates it with a NULL,
// and checks that it is unique
char *ADLParser::get_unique_ident(FormDict& dict, const char* nameDescription){
char* ident = get_ident();
if (ident == NULL) {
parse_err(SYNERR, "missing %s identifier at %c\n", nameDescription, _curchar);
}
else {
if (dict[ident] != NULL) {
parse_err(SYNERR, "duplicate name %s for %s\n", ident, nameDescription);
ident = NULL;
}
}
return ident;
}
//------------------------------get_int----------------------------------------
// Looks for a character string integer in the buffer, and turns it into an int
// invokes a parse_err if the next token is not an integer.
// This routine does not leave the integer null-terminated.
int ADLParser::get_int(void) {
register char c;
char *start; // Pointer to start of token
char *end; // Pointer to end of token
int result; // Storage for integer result
if( _curline == NULL ) // Return NULL at EOF.
return 0;
skipws(); // Skip whitespace before identifier
start = end = _ptr; // Start points at first character
c = *end; // Grab character to test
while ((c >= '0') && (c <= '9')
|| ((c == '-') && (end == start))) {
end++; // Increment end pointer
c = *end; // Grab character to test
}
if (start == end) { // We popped out on the first try
parse_err(SYNERR, "integer expected at %c\n", c);
result = 0;
}
else {
_curchar = c; // Save the first character of next token
*end = '\0'; // NULL terminate the string in place
result = atoi(start); // Convert the string to an integer
*end = _curchar; // Restore buffer to original condition
}
// Reset _ptr to next char after token
_ptr = end;
return result; // integer
}
//------------------------------get_relation_dup------------------------------
// Looks for a relational operator in the buffer
// invokes a parse_err if the next token is not a relation
// This routine creates a duplicate of the string in the buffer.
char *ADLParser::get_relation_dup(void) {
char *result = NULL; // relational operator being returned
if( _curline == NULL ) // Return NULL at EOF.
return NULL;
skipws(); // Skip whitespace before relation
char *start = _ptr; // Store start of relational operator
char first = *_ptr; // the first character
if( (first == '=') || (first == '!') || (first == '<') || (first == '>') ) {
next_char();
char second = *_ptr; // the second character
if( (second == '=') ) {
next_char();
char tmp = *_ptr;
*_ptr = '\0'; // NULL terminate
result = strdup(start); // Duplicate the string
*_ptr = tmp; // restore buffer
} else {
parse_err(SYNERR, "relational operator expected at %s\n", _ptr);
}
} else {
parse_err(SYNERR, "relational operator expected at %s\n", _ptr);
}
return result;
}
//------------------------------get_oplist-------------------------------------
// Looks for identifier pairs where first must be the name of an operand, and
// second must be a name unique in the scope of this instruction. Stores the
// names with a pointer to the OpClassForm of their type in a local name table.
void ADLParser::get_oplist(NameList ¶meters, FormDict &operands) {
OpClassForm *opclass = NULL;
char *ident = NULL;
do {
next_char(); // skip open paren & comma characters
skipws();
if (_curchar == ')') break;
// Get operand type, and check it against global name table
ident = get_ident();
if (ident == NULL) {
parse_err(SYNERR, "optype identifier expected at %c\n", _curchar);
return;
}
else {
const Form *form = _globalNames[ident];
if( form == NULL ) {
parse_err(SYNERR, "undefined operand type %s\n", ident);
return;
}
// Check for valid operand type
OpClassForm *opc = form->is_opclass();
OperandForm *oper = form->is_operand();
if((oper == NULL) && (opc == NULL)) {
parse_err(SYNERR, "identifier %s not operand type\n", ident);
return;
}
opclass = opc;
}
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr, "\tOperand Type: %s\t", ident);
// Get name of operand and add it to local name table
if( (ident = get_unique_ident(operands, "operand")) == NULL) {
return;
}
// Parameter names must not be global names.
if( _globalNames[ident] != NULL ) {
parse_err(SYNERR, "Reuse of global name %s as operand.\n",ident);
return;
}
operands.Insert(ident, opclass);
parameters.addName(ident);
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr, "\tOperand Name: %s\n", ident);
skipws();
} while(_curchar == ',');
if (_curchar != ')') parse_err(SYNERR, "missing ')'\n");
else {
next_char(); // set current character position past the close paren
}
}
//------------------------------get_effectlist---------------------------------
// Looks for identifier pairs where first must be the name of a pre-defined,
// effect, and the second must be the name of an operand defined in the
// operand list of this instruction. Stores the names with a pointer to the
// effect form in a local effects table.
void ADLParser::get_effectlist(FormDict &effects, FormDict &operands) {
OperandForm *opForm;
Effect *eForm;
char *ident;
do {
next_char(); // skip open paren & comma characters
skipws();
if (_curchar == ')') break;
// Get effect type, and check it against global name table
ident = get_ident();
if (ident == NULL) {
parse_err(SYNERR, "effect type identifier expected at %c\n", _curchar);
return;
}
else {
// Check for valid effect type
const Form *form = _globalNames[ident];
if( form == NULL ) {
parse_err(SYNERR, "undefined effect type %s\n", ident);
return;
}
else {
if( (eForm = form->is_effect()) == NULL) {
parse_err(SYNERR, "identifier %s not effect type\n", ident);
return;
}
}
}
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr, "\tEffect Type: %s\t", ident);
skipws();
// Get name of operand and check that it is in the local name table
if( (ident = get_unique_ident(effects, "effect")) == NULL) {
parse_err(SYNERR, "missing operand identifier in effect list\n");
return;
}
const Form *form = operands[ident];
opForm = form ? form->is_operand() : NULL;
if( opForm == NULL ) {
if( form && form->is_opclass() ) {
const char* cname = form->is_opclass()->_ident;
parse_err(SYNERR, "operand classes are illegal in effect lists (found %s %s)\n", cname, ident);
} else {
parse_err(SYNERR, "undefined operand %s in effect list\n", ident);
}
return;
}
// Add the pair to the effects table
effects.Insert(ident, eForm);
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr, "\tOperand Name: %s\n", ident);
skipws();
} while(_curchar == ',');
if (_curchar != ')') parse_err(SYNERR, "missing ')'\n");
else {
next_char(); // set current character position past the close paren
}
}
//-------------------------------preproc_line----------------------------------
// A "#line" keyword has been seen, so parse the rest of the line.
void ADLParser::preproc_line(void) {
int line = get_int();
skipws_no_preproc();
const char* file = NULL;
if (_curchar == '"') {
next_char(); // Move past the initial '"'
file = _ptr;
while (true) {
if (_curchar == '\n') {
parse_err(SYNERR, "missing '\"' at end of #line directive");
return;
}
if (_curchar == '"') {
*_ptr = '\0'; // Terminate the string
next_char();
skipws_no_preproc();
break;
}
next_char();
}
}
ensure_end_of_line();
if (file != NULL)
_AD._ADL_file._name = file;
_buf.set_linenum(line);
}
//------------------------------preproc_define---------------------------------
// A "#define" keyword has been seen, so parse the rest of the line.
void ADLParser::preproc_define(void) {
char* flag = get_ident_no_preproc();
skipws_no_preproc();
// only #define x y is supported for now
char* def = get_ident_no_preproc();
_AD.set_preproc_def(flag, def);
skipws_no_preproc();
if (_curchar != '\n') {
parse_err(SYNERR, "non-identifier in preprocessor definition\n");
}
}
//------------------------------preproc_undef----------------------------------
// An "#undef" keyword has been seen, so parse the rest of the line.
void ADLParser::preproc_undef(void) {
char* flag = get_ident_no_preproc();
skipws_no_preproc();
ensure_end_of_line();
_AD.set_preproc_def(flag, NULL);
}
//------------------------------parse_err--------------------------------------
// Issue a parser error message, and skip to the end of the current line
void ADLParser::parse_err(int flag, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
if (flag == 1)
_AD._syntax_errs += _AD.emit_msg(0, flag, linenum(), fmt, args);
else if (flag == 2)
_AD._semantic_errs += _AD.emit_msg(0, flag, linenum(), fmt, args);
else
_AD._warnings += _AD.emit_msg(0, flag, linenum(), fmt, args);
int error_char = _curchar;
char* error_ptr = _ptr+1;
for(;*_ptr != '\n'; _ptr++) ; // Skip to the end of the current line
_curchar = '\n';
va_end(args);
_AD._no_output = 1;
if (flag == 1) {
char* error_tail = strchr(error_ptr, '\n');
char tem = *error_ptr;
error_ptr[-1] = '\0';
char* error_head = error_ptr-1;
while (error_head > _curline && *error_head) --error_head;
if (error_tail) *error_tail = '\0';
fprintf(stderr, "Error Context: %s>>>%c<<<%s\n",
error_head, error_char, error_ptr);
if (error_tail) *error_tail = '\n';
error_ptr[-1] = tem;
}
}
//---------------------------ensure_start_of_line------------------------------
// A preprocessor directive has been encountered. Be sure it has fallen at
// the beginning of a line, or else report an error.
void ADLParser::ensure_start_of_line(void) {
if (_curchar == '\n') { next_line(); return; }
assert( _ptr >= _curline && _ptr < _curline+strlen(_curline),
"Must be able to find which line we are in" );
for (char *s = _curline; s < _ptr; s++) {
if (*s > ' ') {
parse_err(SYNERR, "'%c' must be at beginning of line\n", _curchar);
break;
}
}
}
//---------------------------ensure_end_of_line--------------------------------
// A preprocessor directive has been parsed. Be sure there is no trailing
// garbage at the end of this line. Set the scan point to the beginning of
// the next line.
void ADLParser::ensure_end_of_line(void) {
skipws_no_preproc();
if (_curchar != '\n' && _curchar != '\0') {
parse_err(SYNERR, "garbage char '%c' at end of line\n", _curchar);
} else {
next_char_or_line();
}
}
//---------------------------handle_preproc------------------------------------
// The '#' character introducing a preprocessor directive has been found.
// Parse the whole directive name (e.g., #define, #endif) and take appropriate
// action. If we are in an "untaken" span of text, simply keep track of
// #ifdef nesting structure, so we can find out when to start taking text
// again. (In this state, we "sort of support" C's #if directives, enough
// to disregard their associated #else and #endif lines.) If we are in a
// "taken" span of text, there are two cases: "#define" and "#undef"
// directives are preserved and passed up to the caller, which eventually
// passes control to the top-level parser loop, which handles #define and
// #undef directly. (This prevents these directives from occurring in
// arbitrary positions in the AD file--we require better structure than C.)
// In the other case, and #ifdef, #ifndef, #else, or #endif is silently
// processed as whitespace, with the "taken" state of the text correctly
// updated. This routine returns "false" exactly in the case of a "taken"
// #define or #undef, which tells the caller that a preprocessor token
// has appeared which must be handled explicitly by the parse loop.
bool ADLParser::handle_preproc_token() {
assert(*_ptr == '#', "must be at start of preproc");
ensure_start_of_line();
next_char();
skipws_no_preproc();
char* start_ident = _ptr;
char* ident = (_curchar == '\n') ? NULL : get_ident_no_preproc();
if (ident == NULL) {
parse_err(SYNERR, "expected preprocessor command, got end of line\n");
} else if (!strcmp(ident, "ifdef") ||
!strcmp(ident, "ifndef")) {
char* flag = get_ident_no_preproc();
ensure_end_of_line();
// Test the identifier only if we are already in taken code:
bool flag_def = preproc_taken() && (_AD.get_preproc_def(flag) != NULL);
bool now_taken = !strcmp(ident, "ifdef") ? flag_def : !flag_def;
begin_if_def(now_taken);
} else if (!strcmp(ident, "if")) {
if (preproc_taken())
parse_err(SYNERR, "unimplemented: #%s %s", ident, _ptr+1);
next_line();
// Intelligently skip this nested C preprocessor directive:
begin_if_def(true);
} else if (!strcmp(ident, "else")) {
ensure_end_of_line();
invert_if_def();
} else if (!strcmp(ident, "endif")) {
ensure_end_of_line();
end_if_def();
} else if (preproc_taken()) {
// pass this token up to the main parser as "#define" or "#undef"
_ptr = start_ident;
_curchar = *--_ptr;
if( _curchar != '#' ) {
parse_err(SYNERR, "no space allowed after # in #define or #undef");
assert(_curchar == '#', "no space allowed after # in #define or #undef");
}
return false;
}
return true;
}
//---------------------------skipws_common-------------------------------------
// Skip whitespace, including comments and newlines, while keeping an accurate
// line count.
// Maybe handle certain preprocessor constructs: #ifdef, #ifndef, #else, #endif
void ADLParser::skipws_common(bool do_preproc) {
char *start = _ptr;
char *next = _ptr + 1;
if (*_ptr == '\0') {
// Check for string terminator
if (_curchar > ' ') return;
if (_curchar == '\n') {
if (!do_preproc) return; // let caller handle the newline
next_line();
_ptr = _curline; next = _ptr + 1;
}
else if (_curchar == '#' ||
(_curchar == '/' && (*next == '/' || *next == '*'))) {
parse_err(SYNERR, "unimplemented: comment token in a funny place");
}
}
while(_curline != NULL) { // Check for end of file
if (*_ptr == '\n') { // keep proper track of new lines
if (!do_preproc) break; // let caller handle the newline
next_line();
_ptr = _curline; next = _ptr + 1;
}
else if ((*_ptr == '/') && (*next == '/')) // C++ comment
do { _ptr++; next++; } while(*_ptr != '\n'); // So go to end of line
else if ((*_ptr == '/') && (*next == '*')) { // C comment
_ptr++; next++;
do {
_ptr++; next++;
if (*_ptr == '\n') { // keep proper track of new lines
next_line(); // skip newlines within comments
if (_curline == NULL) { // check for end of file
parse_err(SYNERR, "end-of-file detected inside comment\n");
break;
}
_ptr = _curline; next = _ptr + 1;
}
} while(!((*_ptr == '*') && (*next == '/'))); // Go to end of comment
_ptr = ++next; next++; // increment _ptr past comment end
}
else if (do_preproc && *_ptr == '#') {
// Note that this calls skipws_common(false) recursively!
bool preproc_handled = handle_preproc_token();
if (!preproc_handled) {
if (preproc_taken()) {
return; // short circuit
}
++_ptr; // skip the preprocessor character
}
next = _ptr+1;
} else if(*_ptr > ' ' && !(do_preproc && !preproc_taken())) {
break;
}
else if (*_ptr == '"' || *_ptr == '\'') {
assert(do_preproc, "only skip strings if doing preproc");
// skip untaken quoted string
int qchar = *_ptr;
while (true) {
++_ptr;
if (*_ptr == qchar) { ++_ptr; break; }
if (*_ptr == '\\') ++_ptr;
if (*_ptr == '\n' || *_ptr == '\0') {
parse_err(SYNERR, "newline in string");
break;
}
}
next = _ptr + 1;
}
else { ++_ptr; ++next; }
}
if( _curline != NULL ) // at end of file _curchar isn't valid
_curchar = *_ptr; // reset _curchar to maintain invariant
}
//---------------------------cur_char-----------------------------------------
char ADLParser::cur_char() {
return (_curchar);
}
//---------------------------next_char-----------------------------------------
void ADLParser::next_char() {
if (_curchar == '\n') parse_err(WARN, "must call next_line!");
_curchar = *++_ptr;
// if ( _curchar == '\n' ) {
// next_line();
// }
}
//---------------------------next_char_or_line---------------------------------
void ADLParser::next_char_or_line() {
if ( _curchar != '\n' ) {
_curchar = *++_ptr;
} else {
next_line();
_ptr = _curline;
_curchar = *_ptr; // maintain invariant
}
}
//---------------------------next_line-----------------------------------------
void ADLParser::next_line() {
_curline = _buf.get_line();
_curchar = ' ';
}
//------------------------get_line_string--------------------------------------
// Prepended location descriptor, for debugging.
// Must return a malloced string (that can be freed if desired).
char* ADLParser::get_line_string(int linenum) {
const char* file = _AD._ADL_file._name;
int line = linenum ? linenum : this->linenum();
char* location = (char *)malloc(strlen(file) + 100);
sprintf(location, "\n#line %d \"%s\"\n", line, file);
return location;
}
//-------------------------is_literal_constant---------------------------------
bool ADLParser::is_literal_constant(const char *param) {
if (param[0] == 0) return false; // null string
if (param[0] == '(') return true; // parenthesized expression
if (param[0] == '0' && (param[1] == 'x' || param[1] == 'X')) {
// Make sure it's a hex constant.
int i = 2;
do {
if( !ADLParser::is_hex_digit(*(param+i)) ) return false;
++i;
} while( *(param+i) != 0 );
return true;
}
return false;
}
//---------------------------is_hex_digit--------------------------------------
bool ADLParser::is_hex_digit(char digit) {
return ((digit >= '0') && (digit <= '9'))
||((digit >= 'a') && (digit <= 'f'))
||((digit >= 'A') && (digit <= 'F'));
}
//---------------------------is_int_token--------------------------------------
bool ADLParser::is_int_token(const char* token, int& intval) {
const char* cp = token;
while (*cp != '\0' && *cp <= ' ') cp++;
if (*cp == '-') cp++;
int ndigit = 0;
while (*cp >= '0' && *cp <= '9') { cp++; ndigit++; }
while (*cp != '\0' && *cp <= ' ') cp++;
if (ndigit == 0 || *cp != '\0') {
return false;
}
intval = atoi(token);
return true;
}
static const char* skip_expr_ws(const char* str) {
const char * cp = str;
while (cp[0]) {
if (cp[0] <= ' ') {
++cp;
} else if (cp[0] == '#') {
++cp;
while (cp[0] == ' ') ++cp;
assert(0 == strncmp(cp, "line", 4), "must be a #line directive");
const char* eol = strchr(cp, '\n');
assert(eol != NULL, "must find end of line");
if (eol == NULL) eol = cp + strlen(cp);
cp = eol;
} else {
break;
}
}
return cp;
}
//-----------------------equivalent_expressions--------------------------------
bool ADLParser::equivalent_expressions(const char* str1, const char* str2) {
if (str1 == str2)
return true;
else if (str1 == NULL || str2 == NULL)
return false;
const char* cp1 = str1;
const char* cp2 = str2;
char in_quote = '\0';
while (cp1[0] && cp2[0]) {
if (!in_quote) {
// skip spaces and/or cpp directives
const char* cp1a = skip_expr_ws(cp1);
const char* cp2a = skip_expr_ws(cp2);
if (cp1a > cp1 && cp2a > cp2) {
cp1 = cp1a; cp2 = cp2a;
continue;
}
if (cp1a > cp1 || cp2a > cp2) break; // fail
}
// match one non-space char
if (cp1[0] != cp2[0]) break; // fail
char ch = cp1[0];
cp1++; cp2++;
// watch for quotes
if (in_quote && ch == '\\') {
if (cp1[0] != cp2[0]) break; // fail
if (!cp1[0]) break;
cp1++; cp2++;
}
if (in_quote && ch == in_quote) {
in_quote = '\0';
} else if (!in_quote && (ch == '"' || ch == '\'')) {
in_quote = ch;
}
}
return (!cp1[0] && !cp2[0]);
}
//-------------------------------trim------------------------------------------
void ADLParser::trim(char* &token) {
while (*token <= ' ') token++;
char* end = token + strlen(token);
while (end > token && *(end-1) <= ' ') --end;
*end = '\0';
}