8225255: Make SATB qset lock-free
Summary: Refactor PtrQueueSet, use lock-free stack for SATB completed buffers
Reviewed-by: tschatzl, shade
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/satbMarkQueue.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.hpp"
#include "runtime/threadSMR.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/globalCounter.inline.hpp"
SATBMarkQueue::SATBMarkQueue(SATBMarkQueueSet* qset) :
// SATB queues are only active during marking cycles. We create
// them with their active field set to false. If a thread is
// created during a cycle and its SATB queue needs to be activated
// before the thread starts running, we'll need to set its active
// field to true. This must be done in the collector-specific
// BarrierSet thread attachment protocol.
PtrQueue(qset, false /* active */)
{ }
void SATBMarkQueue::flush() {
// Filter now to possibly save work later. If filtering empties the
// buffer then flush_impl can deallocate the buffer.
filter();
flush_impl();
}
// This method will first apply filtering to the buffer. If filtering
// retains a small enough collection in the buffer, we can continue to
// use the buffer as-is, instead of enqueueing and replacing it.
void SATBMarkQueue::handle_completed_buffer() {
// This method should only be called if there is a non-NULL buffer
// that is full.
assert(index() == 0, "pre-condition");
assert(_buf != NULL, "pre-condition");
filter();
size_t threshold = satb_qset()->buffer_enqueue_threshold();
// Ensure we'll enqueue completely full buffers.
assert(threshold > 0, "enqueue threshold = 0");
// Ensure we won't enqueue empty buffers.
assert(threshold <= capacity(),
"enqueue threshold " SIZE_FORMAT " exceeds capacity " SIZE_FORMAT,
threshold, capacity());
if (index() < threshold) {
// Buffer is sufficiently full; enqueue and allocate a new one.
enqueue_completed_buffer();
} // Else continue to accumulate in buffer.
}
void SATBMarkQueue::apply_closure_and_empty(SATBBufferClosure* cl) {
assert(SafepointSynchronize::is_at_safepoint(),
"SATB queues must only be processed at safepoints");
if (_buf != NULL) {
cl->do_buffer(&_buf[index()], size());
reset();
}
}
#ifndef PRODUCT
// Helpful for debugging
static void print_satb_buffer(const char* name,
void** buf,
size_t index,
size_t capacity) {
tty->print_cr(" SATB BUFFER [%s] buf: " PTR_FORMAT " index: " SIZE_FORMAT
" capacity: " SIZE_FORMAT,
name, p2i(buf), index, capacity);
}
void SATBMarkQueue::print(const char* name) {
print_satb_buffer(name, _buf, index(), capacity());
}
#endif // PRODUCT
SATBMarkQueueSet::SATBMarkQueueSet() :
PtrQueueSet(),
_list(),
_count_and_process_flag(0),
_process_completed_buffers_threshold(SIZE_MAX),
_buffer_enqueue_threshold(0)
{}
SATBMarkQueueSet::~SATBMarkQueueSet() {
abandon_completed_buffers();
}
// _count_and_process_flag has flag in least significant bit, count in
// remaining bits. _process_completed_buffers_threshold is scaled
// accordingly, with the lsbit set, so a _count_and_process_flag value
// is directly comparable with the recorded threshold value. The
// process flag is set whenever the count exceeds the threshold, and
// remains set until the count is reduced to zero.
// Increment count. If count > threshold, set flag, else maintain flag.
static void increment_count(volatile size_t* cfptr, size_t threshold) {
size_t old;
size_t value = Atomic::load(cfptr);
do {
old = value;
value += 2;
assert(value > old, "overflow");
if (value > threshold) value |= 1;
value = Atomic::cmpxchg(value, cfptr, old);
} while (value != old);
}
// Decrement count. If count == 0, clear flag, else maintain flag.
static void decrement_count(volatile size_t* cfptr) {
size_t old;
size_t value = Atomic::load(cfptr);
do {
assert((value >> 1) != 0, "underflow");
old = value;
value -= 2;
if (value <= 1) value = 0;
value = Atomic::cmpxchg(value, cfptr, old);
} while (value != old);
}
// Scale requested threshold to align with count field. If scaling
// overflows, just use max value. Set process flag field to make
// comparison in increment_count exact.
static size_t scale_threshold(size_t value) {
size_t scaled_value = value << 1;
if ((scaled_value >> 1) != value) {
scaled_value = SIZE_MAX;
}
return scaled_value | 1;
}
void SATBMarkQueueSet::initialize(BufferNode::Allocator* allocator,
size_t process_completed_buffers_threshold,
uint buffer_enqueue_threshold_percentage) {
PtrQueueSet::initialize(allocator);
_process_completed_buffers_threshold =
scale_threshold(process_completed_buffers_threshold);
assert(buffer_size() != 0, "buffer size not initialized");
// Minimum threshold of 1 ensures enqueuing of completely full buffers.
size_t size = buffer_size();
size_t enqueue_qty = (size * buffer_enqueue_threshold_percentage) / 100;
_buffer_enqueue_threshold = MAX2(size - enqueue_qty, (size_t)1);
}
#ifdef ASSERT
void SATBMarkQueueSet::dump_active_states(bool expected_active) {
log_error(gc, verify)("Expected SATB active state: %s", expected_active ? "ACTIVE" : "INACTIVE");
log_error(gc, verify)("Actual SATB active states:");
log_error(gc, verify)(" Queue set: %s", is_active() ? "ACTIVE" : "INACTIVE");
class DumpThreadStateClosure : public ThreadClosure {
SATBMarkQueueSet* _qset;
public:
DumpThreadStateClosure(SATBMarkQueueSet* qset) : _qset(qset) {}
virtual void do_thread(Thread* t) {
SATBMarkQueue& queue = _qset->satb_queue_for_thread(t);
log_error(gc, verify)(" Thread \"%s\" queue: %s",
t->name(),
queue.is_active() ? "ACTIVE" : "INACTIVE");
}
} closure(this);
Threads::threads_do(&closure);
}
void SATBMarkQueueSet::verify_active_states(bool expected_active) {
// Verify queue set state
if (is_active() != expected_active) {
dump_active_states(expected_active);
fatal("SATB queue set has an unexpected active state");
}
// Verify thread queue states
class VerifyThreadStatesClosure : public ThreadClosure {
SATBMarkQueueSet* _qset;
bool _expected_active;
public:
VerifyThreadStatesClosure(SATBMarkQueueSet* qset, bool expected_active) :
_qset(qset), _expected_active(expected_active) {}
virtual void do_thread(Thread* t) {
if (_qset->satb_queue_for_thread(t).is_active() != _expected_active) {
_qset->dump_active_states(_expected_active);
fatal("Thread SATB queue has an unexpected active state");
}
}
} closure(this, expected_active);
Threads::threads_do(&closure);
}
#endif // ASSERT
void SATBMarkQueueSet::set_active_all_threads(bool active, bool expected_active) {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
#ifdef ASSERT
verify_active_states(expected_active);
#endif // ASSERT
// Update the global state, synchronized with threads list management.
{
MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
_all_active = active;
}
class SetThreadActiveClosure : public ThreadClosure {
SATBMarkQueueSet* _qset;
bool _active;
public:
SetThreadActiveClosure(SATBMarkQueueSet* qset, bool active) :
_qset(qset), _active(active) {}
virtual void do_thread(Thread* t) {
_qset->satb_queue_for_thread(t).set_active(_active);
}
} closure(this, active);
Threads::threads_do(&closure);
}
bool SATBMarkQueueSet::apply_closure_to_completed_buffer(SATBBufferClosure* cl) {
BufferNode* nd = get_completed_buffer();
if (nd != NULL) {
void **buf = BufferNode::make_buffer_from_node(nd);
size_t index = nd->index();
size_t size = buffer_size();
assert(index <= size, "invariant");
cl->do_buffer(buf + index, size - index);
deallocate_buffer(nd);
return true;
} else {
return false;
}
}
// SATB buffer life-cycle - Per-thread queues obtain buffers from the
// qset's buffer allocator, fill them, and push them onto the qset's
// list. The GC concurrently pops buffers from the qset, processes
// them, and returns them to the buffer allocator for re-use. Both
// the allocator and the qset use lock-free stacks. The ABA problem
// is solved by having both allocation pops and GC pops performed
// within GlobalCounter critical sections, while the return of buffers
// to the allocator performs a GlobalCounter synchronize before
// pushing onto the allocator's list.
void SATBMarkQueueSet::enqueue_completed_buffer(BufferNode* node) {
assert(node != NULL, "precondition");
// Increment count and update flag appropriately. Done before
// pushing buffer so count is always at least the actual number in
// the list, and decrement never underflows.
increment_count(&_count_and_process_flag, _process_completed_buffers_threshold);
_list.push(*node);
}
BufferNode* SATBMarkQueueSet::get_completed_buffer() {
BufferNode* node;
{
GlobalCounter::CriticalSection cs(Thread::current());
node = _list.pop();
}
if (node != NULL) {
// Got a buffer so decrement count and update flag appropriately.
decrement_count(&_count_and_process_flag);
}
return node;
}
#ifndef PRODUCT
// Helpful for debugging
#define SATB_PRINTER_BUFFER_SIZE 256
void SATBMarkQueueSet::print_all(const char* msg) {
char buffer[SATB_PRINTER_BUFFER_SIZE];
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
tty->cr();
tty->print_cr("SATB BUFFERS [%s]", msg);
BufferNode* nd = _list.top();
int i = 0;
while (nd != NULL) {
void** buf = BufferNode::make_buffer_from_node(nd);
os::snprintf(buffer, SATB_PRINTER_BUFFER_SIZE, "Enqueued: %d", i);
print_satb_buffer(buffer, buf, nd->index(), buffer_size());
nd = nd->next();
i += 1;
}
class PrintThreadClosure : public ThreadClosure {
SATBMarkQueueSet* _qset;
char* _buffer;
public:
PrintThreadClosure(SATBMarkQueueSet* qset, char* buffer) :
_qset(qset), _buffer(buffer) {}
virtual void do_thread(Thread* t) {
os::snprintf(_buffer, SATB_PRINTER_BUFFER_SIZE, "Thread: %s", t->name());
_qset->satb_queue_for_thread(t).print(_buffer);
}
} closure(this, buffer);
Threads::threads_do(&closure);
tty->cr();
}
#endif // PRODUCT
void SATBMarkQueueSet::abandon_completed_buffers() {
Atomic::store(size_t(0), &_count_and_process_flag);
BufferNode* buffers_to_delete = _list.pop_all();
while (buffers_to_delete != NULL) {
BufferNode* bn = buffers_to_delete;
buffers_to_delete = bn->next();
bn->set_next(NULL);
deallocate_buffer(bn);
}
}
void SATBMarkQueueSet::abandon_partial_marking() {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
abandon_completed_buffers();
class AbandonThreadQueueClosure : public ThreadClosure {
SATBMarkQueueSet* _qset;
public:
AbandonThreadQueueClosure(SATBMarkQueueSet* qset) : _qset(qset) {}
virtual void do_thread(Thread* t) {
_qset->satb_queue_for_thread(t).reset();
}
} closure(this);
Threads::threads_do(&closure);
}