8214202: DirtyCardQueueSet::get_completed_buffer should not clear _process_completed
Summary: Remove flag clearing and simplify get_completed-buffer.
Reviewed-by: tschatzl, sjohanss
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/ptrQueue.hpp"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/mutex.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/thread.inline.hpp"
#include <new>
PtrQueue::PtrQueue(PtrQueueSet* qset, bool permanent, bool active) :
_qset(qset),
_active(active),
_permanent(permanent),
_index(0),
_capacity_in_bytes(0),
_buf(NULL),
_lock(NULL)
{}
PtrQueue::~PtrQueue() {
assert(_permanent || (_buf == NULL), "queue must be flushed before delete");
}
void PtrQueue::flush_impl() {
if (_buf != NULL) {
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
if (is_empty()) {
// No work to do.
qset()->deallocate_buffer(node);
} else {
qset()->enqueue_complete_buffer(node);
}
_buf = NULL;
set_index(0);
}
}
void PtrQueue::enqueue_known_active(void* ptr) {
while (_index == 0) {
handle_zero_index();
}
assert(_buf != NULL, "postcondition");
assert(index() > 0, "postcondition");
assert(index() <= capacity(), "invariant");
_index -= _element_size;
_buf[index()] = ptr;
}
BufferNode* BufferNode::allocate(size_t size) {
size_t byte_size = size * sizeof(void*);
void* data = NEW_C_HEAP_ARRAY(char, buffer_offset() + byte_size, mtGC);
return new (data) BufferNode;
}
void BufferNode::deallocate(BufferNode* node) {
node->~BufferNode();
FREE_C_HEAP_ARRAY(char, node);
}
BufferNode::Allocator::Allocator(size_t buffer_size, Mutex* lock) :
_buffer_size(buffer_size),
_lock(lock),
_free_list(NULL),
_free_count(0)
{
assert(lock != NULL, "precondition");
}
BufferNode::Allocator::~Allocator() {
while (_free_list != NULL) {
BufferNode* node = _free_list;
_free_list = node->next();
BufferNode::deallocate(node);
}
}
size_t BufferNode::Allocator::free_count() const {
return Atomic::load(&_free_count);
}
BufferNode* BufferNode::Allocator::allocate() {
BufferNode* node = NULL;
{
MutexLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
node = _free_list;
if (node != NULL) {
_free_list = node->next();
--_free_count;
node->set_next(NULL);
node->set_index(0);
return node;
}
}
return BufferNode::allocate(_buffer_size);
}
void BufferNode::Allocator::release(BufferNode* node) {
MutexLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
node->set_next(_free_list);
_free_list = node;
++_free_count;
}
void BufferNode::Allocator::reduce_free_list() {
BufferNode* head = NULL;
{
MutexLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
// For now, delete half.
size_t remove = _free_count / 2;
if (remove > 0) {
head = _free_list;
BufferNode* tail = head;
BufferNode* prev = NULL;
for (size_t i = 0; i < remove; ++i) {
assert(tail != NULL, "free list size is wrong");
prev = tail;
tail = tail->next();
}
assert(prev != NULL, "invariant");
assert(prev->next() == tail, "invariant");
prev->set_next(NULL);
_free_list = tail;
_free_count -= remove;
}
}
while (head != NULL) {
BufferNode* next = head->next();
BufferNode::deallocate(head);
head = next;
}
}
PtrQueueSet::PtrQueueSet(bool notify_when_complete) :
_allocator(NULL),
_cbl_mon(NULL),
_completed_buffers_head(NULL),
_completed_buffers_tail(NULL),
_n_completed_buffers(0),
_process_completed_threshold(0),
_process_completed(false),
_all_active(false),
_notify_when_complete(notify_when_complete),
_max_completed_queue(0),
_completed_queue_padding(0)
{}
PtrQueueSet::~PtrQueueSet() {
// There are presently only a couple (derived) instances ever
// created, and they are permanent, so no harm currently done by
// doing nothing here.
}
void PtrQueueSet::initialize(Monitor* cbl_mon,
BufferNode::Allocator* allocator,
int process_completed_threshold,
int max_completed_queue) {
_max_completed_queue = max_completed_queue;
_process_completed_threshold = process_completed_threshold;
_completed_queue_padding = 0;
assert(cbl_mon != NULL && allocator != NULL, "Init order issue?");
_cbl_mon = cbl_mon;
_allocator = allocator;
}
void** PtrQueueSet::allocate_buffer() {
BufferNode* node = _allocator->allocate();
return BufferNode::make_buffer_from_node(node);
}
void PtrQueueSet::deallocate_buffer(BufferNode* node) {
_allocator->release(node);
}
void PtrQueue::handle_zero_index() {
assert(index() == 0, "precondition");
// This thread records the full buffer and allocates a new one (while
// holding the lock if there is one).
if (_buf != NULL) {
if (!should_enqueue_buffer()) {
assert(index() > 0, "the buffer can only be re-used if it's not full");
return;
}
if (_lock) {
assert(_lock->owned_by_self(), "Required.");
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
_buf = NULL; // clear shared _buf field
qset()->enqueue_complete_buffer(node);
assert(_buf == NULL, "multiple enqueuers appear to be racing");
} else {
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
if (qset()->process_or_enqueue_complete_buffer(node)) {
// Recycle the buffer. No allocation.
assert(_buf == BufferNode::make_buffer_from_node(node), "invariant");
assert(capacity() == qset()->buffer_size(), "invariant");
reset();
return;
}
}
}
// Set capacity in case this is the first allocation.
set_capacity(qset()->buffer_size());
// Allocate a new buffer.
_buf = qset()->allocate_buffer();
reset();
}
bool PtrQueueSet::process_or_enqueue_complete_buffer(BufferNode* node) {
if (Thread::current()->is_Java_thread()) {
// We don't lock. It is fine to be epsilon-precise here.
if (_max_completed_queue == 0 ||
(_max_completed_queue > 0 &&
_n_completed_buffers >= _max_completed_queue + _completed_queue_padding)) {
bool b = mut_process_buffer(node);
if (b) {
// True here means that the buffer hasn't been deallocated and the caller may reuse it.
return true;
}
}
}
// The buffer will be enqueued. The caller will have to get a new one.
enqueue_complete_buffer(node);
return false;
}
void PtrQueueSet::enqueue_complete_buffer(BufferNode* cbn) {
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
cbn->set_next(NULL);
if (_completed_buffers_tail == NULL) {
assert(_completed_buffers_head == NULL, "Well-formedness");
_completed_buffers_head = cbn;
_completed_buffers_tail = cbn;
} else {
_completed_buffers_tail->set_next(cbn);
_completed_buffers_tail = cbn;
}
_n_completed_buffers++;
if (!_process_completed && _process_completed_threshold >= 0 &&
_n_completed_buffers >= (size_t)_process_completed_threshold) {
_process_completed = true;
if (_notify_when_complete) {
_cbl_mon->notify();
}
}
DEBUG_ONLY(assert_completed_buffer_list_len_correct_locked());
}
size_t PtrQueueSet::completed_buffers_list_length() {
size_t n = 0;
BufferNode* cbn = _completed_buffers_head;
while (cbn != NULL) {
n++;
cbn = cbn->next();
}
return n;
}
void PtrQueueSet::assert_completed_buffer_list_len_correct() {
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
assert_completed_buffer_list_len_correct_locked();
}
void PtrQueueSet::assert_completed_buffer_list_len_correct_locked() {
guarantee(completed_buffers_list_length() == _n_completed_buffers,
"Completed buffer length is wrong.");
}
// Merge lists of buffers. Notify the processing threads.
// The source queue is emptied as a result. The queues
// must share the monitor.
void PtrQueueSet::merge_bufferlists(PtrQueueSet *src) {
assert(_cbl_mon == src->_cbl_mon, "Should share the same lock");
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
if (_completed_buffers_tail == NULL) {
assert(_completed_buffers_head == NULL, "Well-formedness");
_completed_buffers_head = src->_completed_buffers_head;
_completed_buffers_tail = src->_completed_buffers_tail;
} else {
assert(_completed_buffers_head != NULL, "Well formedness");
if (src->_completed_buffers_head != NULL) {
_completed_buffers_tail->set_next(src->_completed_buffers_head);
_completed_buffers_tail = src->_completed_buffers_tail;
}
}
_n_completed_buffers += src->_n_completed_buffers;
src->_n_completed_buffers = 0;
src->_completed_buffers_head = NULL;
src->_completed_buffers_tail = NULL;
assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL ||
_completed_buffers_head != NULL && _completed_buffers_tail != NULL,
"Sanity");
}
void PtrQueueSet::notify_if_necessary() {
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
assert(_process_completed_threshold >= 0, "_process_completed_threshold is negative");
if (_n_completed_buffers >= (size_t)_process_completed_threshold || _max_completed_queue == 0) {
_process_completed = true;
if (_notify_when_complete)
_cbl_mon->notify();
}
}