/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/referenceProcessorPhaseTimes.hpp"
#include "gc/shared/referenceProcessor.inline.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
RefProcWorkerTimeTracker::RefProcWorkerTimeTracker(ReferenceProcessorPhaseTimes::RefProcPhaseNumbers number,
ReferenceProcessorPhaseTimes* phase_times,
uint worker_id) :
_worker_time(NULL), _start_time(os::elapsedTime()), _worker_id(worker_id) {
assert (phase_times != NULL, "Invariant");
_worker_time = phase_times->worker_time_sec(phase_times->par_phase(number));
}
RefProcWorkerTimeTracker::RefProcWorkerTimeTracker(ReferenceProcessorPhaseTimes::RefProcParPhases phase,
ReferenceProcessorPhaseTimes* phase_times,
uint worker_id) :
_worker_time(NULL), _start_time(os::elapsedTime()), _worker_id(worker_id) {
assert (phase_times != NULL, "Invariant");
_worker_time = phase_times->worker_time_sec(phase);
}
RefProcWorkerTimeTracker::~RefProcWorkerTimeTracker() {
_worker_time->set(_worker_id, os::elapsedTime() - _start_time);
}
RefProcPhaseTimeBaseTracker::RefProcPhaseTimeBaseTracker(const char* title,
ReferenceProcessorPhaseTimes* phase_times) :
_title(title), _phase_times(phase_times), _start_ticks(), _end_ticks() {
assert(_phase_times != NULL, "Invariant");
_start_ticks.stamp();
if (_phase_times->gc_timer() != NULL) {
_phase_times->gc_timer()->register_gc_phase_start(_title, _start_ticks);
}
}
static const char* phase_enum_2_phase_string(ReferenceProcessorPhaseTimes::RefProcParPhases phase) {
switch(phase) {
case ReferenceProcessorPhaseTimes::SoftRefPhase1:
return "Phase1";
case ReferenceProcessorPhaseTimes::SoftRefPhase2:
case ReferenceProcessorPhaseTimes::WeakRefPhase2:
case ReferenceProcessorPhaseTimes::FinalRefPhase2:
case ReferenceProcessorPhaseTimes::PhantomRefPhase2:
return "Phase2";
case ReferenceProcessorPhaseTimes::SoftRefPhase3:
case ReferenceProcessorPhaseTimes::WeakRefPhase3:
case ReferenceProcessorPhaseTimes::FinalRefPhase3:
case ReferenceProcessorPhaseTimes::PhantomRefPhase3:
return "Phase3";
case ReferenceProcessorPhaseTimes::RefEnqueue:
return "Reference Enqueuing";
default:
ShouldNotReachHere();
return NULL;
}
}
static const char* Indents[6] = {"", " ", " ", " ", " ", " "};
Ticks RefProcPhaseTimeBaseTracker::end_ticks() {
// If ASSERT is defined, the default value of Ticks will be -2.
if (_end_ticks.value() <= 0) {
_end_ticks.stamp();
}
return _end_ticks;
}
double RefProcPhaseTimeBaseTracker::elapsed_time() {
jlong end_value = end_ticks().value();
return TimeHelper::counter_to_millis(end_value - _start_ticks.value());
}
RefProcPhaseTimeBaseTracker::~RefProcPhaseTimeBaseTracker() {
if (_phase_times->gc_timer() != NULL) {
Ticks ticks = end_ticks();
_phase_times->gc_timer()->register_gc_phase_end(ticks);
}
}
RefProcBalanceQueuesTimeTracker::RefProcBalanceQueuesTimeTracker(ReferenceProcessorPhaseTimes* phase_times) :
RefProcPhaseTimeBaseTracker("Balance queues", phase_times) {}
RefProcBalanceQueuesTimeTracker::~RefProcBalanceQueuesTimeTracker() {
double elapsed = elapsed_time();
phase_times()->set_balance_queues_time_ms(phase_times()->processing_ref_type(), elapsed);
}
#define ASSERT_REF_TYPE(ref_type) assert(ref_type >= REF_SOFT && ref_type <= REF_PHANTOM, \
"Invariant (%d)", (int)ref_type)
#define ASSERT_PHASE_NUMBER(phase_number) assert(phase_number >= ReferenceProcessorPhaseTimes::RefPhase1 && \
phase_number <= ReferenceProcessorPhaseTimes::RefPhaseMax, \
"Invariant (%d)", phase_number);
static const char* phase_number_2_string(ReferenceProcessorPhaseTimes::RefProcPhaseNumbers phase_number) {
ASSERT_PHASE_NUMBER(phase_number);
switch(phase_number) {
case ReferenceProcessorPhaseTimes::RefPhase1:
return "Phase1";
case ReferenceProcessorPhaseTimes::RefPhase2:
return "Phase2";
case ReferenceProcessorPhaseTimes::RefPhase3:
return "Phase3";
default:
ShouldNotReachHere();
return NULL;
}
}
RefProcParPhaseTimeTracker::RefProcParPhaseTimeTracker(ReferenceProcessorPhaseTimes::RefProcPhaseNumbers phase_number,
ReferenceProcessorPhaseTimes* phase_times) :
_phase_number(phase_number),
RefProcPhaseTimeBaseTracker(phase_number_2_string(phase_number), phase_times) {}
RefProcParPhaseTimeTracker::~RefProcParPhaseTimeTracker() {
double elapsed = elapsed_time();
ReferenceProcessorPhaseTimes::RefProcParPhases phase = phase_times()->par_phase(_phase_number);
phase_times()->set_par_phase_time_ms(phase, elapsed);
}
static const char* ref_type_2_string(ReferenceType ref_type) {
ASSERT_REF_TYPE(ref_type);
switch(ref_type) {
case REF_SOFT:
return "SoftReference";
case REF_WEAK:
return "WeakReference";
case REF_FINAL:
return "FinalReference";
case REF_PHANTOM:
return "PhantomReference";
default:
ShouldNotReachHere();
return NULL;
}
}
RefProcPhaseTimesTracker::RefProcPhaseTimesTracker(ReferenceType ref_type,
ReferenceProcessorPhaseTimes* phase_times,
ReferenceProcessor* rp) :
_rp(rp), RefProcPhaseTimeBaseTracker(ref_type_2_string(ref_type), phase_times) {
phase_times->set_processing_ref_type(ref_type);
size_t discovered = rp->total_reference_count(ref_type);
phase_times->set_ref_discovered(ref_type, discovered);
}
RefProcPhaseTimesTracker::~RefProcPhaseTimesTracker() {
double elapsed = elapsed_time();
ReferenceProcessorPhaseTimes* times = phase_times();
ReferenceType ref_type = times->processing_ref_type();
times->set_ref_proc_time_ms(ref_type, elapsed);
size_t after_count = _rp->total_reference_count(ref_type);
size_t discovered = times->ref_discovered(ref_type);
times->set_ref_cleared(ref_type, discovered - after_count);
}
RefProcEnqueueTimeTracker::RefProcEnqueueTimeTracker(ReferenceProcessorPhaseTimes* phase_times,
ReferenceProcessorStats& stats) :
RefProcPhaseTimeBaseTracker("Reference Enqueuing", phase_times) {
phase_times->set_ref_enqueued(REF_SOFT, stats.soft_count());
phase_times->set_ref_enqueued(REF_WEAK, stats.weak_count());
phase_times->set_ref_enqueued(REF_FINAL, stats.final_count());
phase_times->set_ref_enqueued(REF_PHANTOM, stats.phantom_count());
}
RefProcEnqueueTimeTracker::~RefProcEnqueueTimeTracker() {
double elapsed = elapsed_time();
phase_times()->set_par_phase_time_ms(ReferenceProcessorPhaseTimes::RefEnqueue, elapsed);
}
ReferenceProcessorPhaseTimes::ReferenceProcessorPhaseTimes(GCTimer* gc_timer, uint max_gc_threads) :
_gc_timer(gc_timer), _processing_is_mt(false) {
for (int i = 0; i < RefParPhaseMax; i++) {
_worker_time_sec[i] = new WorkerDataArray<double>(max_gc_threads, "Process lists (ms)");
_par_phase_time_ms[i] = uninitialized();
}
for (int i = 0; i < number_of_subclasses_of_ref; i++) {
_ref_proc_time_ms[i] = uninitialized();
_balance_queues_time_ms[i] = uninitialized();
_ref_cleared[i] = 0;
_ref_discovered[i] = 0;
_ref_enqueued[i] = 0;
}
}
inline int ref_type_2_index(ReferenceType ref_type) {
return ref_type - REF_SOFT;
}
#define ASSERT_PAR_PHASE(phase) assert(phase >= ReferenceProcessorPhaseTimes::SoftRefPhase1 && \
phase < ReferenceProcessorPhaseTimes::RefParPhaseMax, \
"Invariant (%d)", (int)phase);
WorkerDataArray<double>* ReferenceProcessorPhaseTimes::worker_time_sec(RefProcParPhases par_phase) const {
ASSERT_PAR_PHASE(par_phase);
return _worker_time_sec[par_phase];
}
double ReferenceProcessorPhaseTimes::par_phase_time_ms(RefProcParPhases par_phase) const {
ASSERT_PAR_PHASE(par_phase);
return _par_phase_time_ms[par_phase];
}
void ReferenceProcessorPhaseTimes::set_par_phase_time_ms(RefProcParPhases par_phase,
double par_phase_time_ms) {
ASSERT_PAR_PHASE(par_phase);
_par_phase_time_ms[par_phase] = par_phase_time_ms;
}
void ReferenceProcessorPhaseTimes::reset() {
for (int i = 0; i < RefParPhaseMax; i++) {
_worker_time_sec[i]->reset();
_par_phase_time_ms[i] = uninitialized();
}
for (int i = 0; i < number_of_subclasses_of_ref; i++) {
_ref_proc_time_ms[i] = uninitialized();
_balance_queues_time_ms[i] = uninitialized();
_ref_cleared[i] = 0;
_ref_discovered[i] = 0;
_ref_enqueued[i] = 0;
}
_total_time_ms = uninitialized();
_processing_is_mt = false;
}
ReferenceProcessorPhaseTimes::~ReferenceProcessorPhaseTimes() {
for (int i = 0; i < RefParPhaseMax; i++) {
delete _worker_time_sec[i];
}
}
double ReferenceProcessorPhaseTimes::ref_proc_time_ms(ReferenceType ref_type) const {
ASSERT_REF_TYPE(ref_type);
return _ref_proc_time_ms[ref_type_2_index(ref_type)];
}
void ReferenceProcessorPhaseTimes::set_ref_proc_time_ms(ReferenceType ref_type,
double ref_proc_time_ms) {
ASSERT_REF_TYPE(ref_type);
_ref_proc_time_ms[ref_type_2_index(ref_type)] = ref_proc_time_ms;
}
size_t ReferenceProcessorPhaseTimes::ref_cleared(ReferenceType ref_type) const {
ASSERT_REF_TYPE(ref_type);
return _ref_cleared[ref_type_2_index(ref_type)];
}
void ReferenceProcessorPhaseTimes::set_ref_cleared(ReferenceType ref_type, size_t count) {
ASSERT_REF_TYPE(ref_type);
_ref_cleared[ref_type_2_index(ref_type)] = count;
}
size_t ReferenceProcessorPhaseTimes::ref_discovered(ReferenceType ref_type) const {
ASSERT_REF_TYPE(ref_type);
return _ref_discovered[ref_type_2_index(ref_type)];
}
void ReferenceProcessorPhaseTimes::set_ref_discovered(ReferenceType ref_type, size_t count) {
ASSERT_REF_TYPE(ref_type);
_ref_discovered[ref_type_2_index(ref_type)] = count;
}
size_t ReferenceProcessorPhaseTimes::ref_enqueued(ReferenceType ref_type) const {
ASSERT_REF_TYPE(ref_type);
return _ref_enqueued[ref_type_2_index(ref_type)];
}
void ReferenceProcessorPhaseTimes::set_ref_enqueued(ReferenceType ref_type, size_t count) {
ASSERT_REF_TYPE(ref_type);
_ref_enqueued[ref_type_2_index(ref_type)] = count;
}
double ReferenceProcessorPhaseTimes::balance_queues_time_ms(ReferenceType ref_type) const {
ASSERT_REF_TYPE(ref_type);
return _balance_queues_time_ms[ref_type_2_index(ref_type)];
}
void ReferenceProcessorPhaseTimes::set_balance_queues_time_ms(ReferenceType ref_type, double time_ms) {
ASSERT_REF_TYPE(ref_type);
_balance_queues_time_ms[ref_type_2_index(ref_type)] = time_ms;
}
ReferenceProcessorPhaseTimes::RefProcParPhases
ReferenceProcessorPhaseTimes::par_phase(RefProcPhaseNumbers phase_number) const {
ASSERT_PHASE_NUMBER(phase_number);
ASSERT_REF_TYPE(_processing_ref_type);
int result = SoftRefPhase1;
switch(_processing_ref_type) {
case REF_SOFT:
result = (int)SoftRefPhase1;
result += phase_number;
assert((RefProcParPhases)result >= SoftRefPhase1 &&
(RefProcParPhases)result <= SoftRefPhase3,
"Invariant (%d)", result);
break;
case REF_WEAK:
result = (int)WeakRefPhase2;
result += (phase_number - 1);
assert((RefProcParPhases)result >= WeakRefPhase2 &&
(RefProcParPhases)result <= WeakRefPhase3,
"Invariant (%d)", result);
break;
case REF_FINAL:
result = (int)FinalRefPhase2;
result += (phase_number - 1);
assert((RefProcParPhases)result >= FinalRefPhase2 &&
(RefProcParPhases)result <= FinalRefPhase3,
"Invariant (%d)", result);
break;
case REF_PHANTOM:
result = (int)PhantomRefPhase2;
result += (phase_number - 1);
assert((RefProcParPhases)result >= PhantomRefPhase2 &&
(RefProcParPhases)result <= PhantomRefPhase3,
"Invariant (%d)", result);
break;
default:
ShouldNotReachHere();
}
ASSERT_PAR_PHASE(result);
return (RefProcParPhases)result;
}
void ReferenceProcessorPhaseTimes::print_enqueue_phase(uint base_indent, bool print_total) const {
if (print_total) {
print_phase(RefEnqueue, base_indent);
}
log_debug(gc, phases, ref)("%sReference Counts: Soft: " SIZE_FORMAT " Weak: " SIZE_FORMAT
" Final: " SIZE_FORMAT " Phantom: " SIZE_FORMAT ,
Indents[base_indent + 1], ref_enqueued(REF_SOFT), ref_enqueued(REF_WEAK),
ref_enqueued(REF_FINAL), ref_enqueued(REF_PHANTOM));
}
#define TIME_FORMAT "%.1lfms"
void ReferenceProcessorPhaseTimes::print_all_references(uint base_indent, bool print_total) const {
if (print_total) {
LogTarget(Debug, gc, phases, ref) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
ls.print_cr("%s%s: " TIME_FORMAT,
Indents[base_indent], "Reference Processing", total_time_ms());
}
}
uint next_indent = base_indent + 1;
print_reference(REF_SOFT, next_indent);
print_reference(REF_WEAK, next_indent);
print_reference(REF_FINAL, next_indent);
print_reference(REF_PHANTOM, next_indent);
}
void ReferenceProcessorPhaseTimes::print_reference(ReferenceType ref_type, uint base_indent) const {
LogTarget(Debug, gc, phases, ref) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
uint next_indent = base_indent + 1;
ResourceMark rm;
ls.print_cr("%s%s: " TIME_FORMAT,
Indents[base_indent], ref_type_2_string(ref_type), ref_proc_time_ms(ref_type));
double balance_time = balance_queues_time_ms(ref_type);
if (balance_time != uninitialized()) {
ls.print_cr("%s%s " TIME_FORMAT, Indents[next_indent], "Balance queues:", balance_time);
}
switch(ref_type) {
case REF_SOFT:
print_phase(SoftRefPhase1, next_indent);
print_phase(SoftRefPhase2, next_indent);
print_phase(SoftRefPhase3, next_indent);
break;
case REF_WEAK:
print_phase(WeakRefPhase2, next_indent);
print_phase(WeakRefPhase3, next_indent);
break;
case REF_FINAL:
print_phase(FinalRefPhase2, next_indent);
print_phase(FinalRefPhase3, next_indent);
break;
case REF_PHANTOM:
print_phase(PhantomRefPhase2, next_indent);
print_phase(PhantomRefPhase3, next_indent);
break;
default:
ShouldNotReachHere();
}
ls.print_cr("%s%s " SIZE_FORMAT, Indents[next_indent], "Discovered:", ref_discovered(ref_type));
ls.print_cr("%s%s " SIZE_FORMAT, Indents[next_indent], "Cleared:", ref_cleared(ref_type));
}
}
void ReferenceProcessorPhaseTimes::print_phase(RefProcParPhases phase, uint indent) const {
double phase_time = par_phase_time_ms(phase);
if (phase_time != uninitialized()) {
LogTarget(Debug, gc, phases, ref) lt;
LogStream ls(lt);
ls.print_cr("%s%s%s " TIME_FORMAT,
Indents[indent],
phase_enum_2_phase_string(phase),
indent == 0 ? "" : ":", /* 0 indent logs don't need colon. */
phase_time);
LogTarget(Trace, gc, phases, ref) lt2;
if (_processing_is_mt && lt2.is_enabled()) {
LogStream ls(lt2);
ls.print("%s", Indents[indent + 1]);
// worker_time_sec is recorded in seconds but it will be printed in milliseconds.
worker_time_sec(phase)->print_summary_on(&ls, true);
}
}
}
#undef ASSERT_REF_TYPE
#undef ASSERT_PHASE_NUMBER
#undef ASSERT_PAR_PHASE
#undef TIME_FORMAT