8190891: Clean up G1 barrier code in compiler interface (ci)
Summary: consolidate gc barrier code in ci
Reviewed-by: eosterlund, kbarrett
/*
* Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "ci/ciMetadata.hpp"
#include "ci/ciMethodData.hpp"
#include "ci/ciReplay.hpp"
#include "ci/ciUtilities.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/deoptimization.hpp"
#include "utilities/copy.hpp"
// ciMethodData
// ------------------------------------------------------------------
// ciMethodData::ciMethodData
//
ciMethodData::ciMethodData(MethodData* md) : ciMetadata(md) {
assert(md != NULL, "no null method data");
Copy::zero_to_words((HeapWord*) &_orig, sizeof(_orig) / sizeof(HeapWord));
_data = NULL;
_data_size = 0;
_extra_data_size = 0;
_current_mileage = 0;
_invocation_counter = 0;
_backedge_counter = 0;
_state = empty_state;
_saw_free_extra_data = false;
// Set an initial hint. Don't use set_hint_di() because
// first_di() may be out of bounds if data_size is 0.
_hint_di = first_di();
// Initialize the escape information (to "don't know.");
_eflags = _arg_local = _arg_stack = _arg_returned = 0;
_parameters = NULL;
}
// ------------------------------------------------------------------
// ciMethodData::ciMethodData
//
// No MethodData*.
ciMethodData::ciMethodData() : ciMetadata(NULL) {
Copy::zero_to_words((HeapWord*) &_orig, sizeof(_orig) / sizeof(HeapWord));
_data = NULL;
_data_size = 0;
_extra_data_size = 0;
_current_mileage = 0;
_invocation_counter = 0;
_backedge_counter = 0;
_state = empty_state;
_saw_free_extra_data = false;
// Set an initial hint. Don't use set_hint_di() because
// first_di() may be out of bounds if data_size is 0.
_hint_di = first_di();
// Initialize the escape information (to "don't know.");
_eflags = _arg_local = _arg_stack = _arg_returned = 0;
_parameters = NULL;
}
void ciMethodData::load_extra_data() {
MethodData* mdo = get_MethodData();
MutexLocker ml(mdo->extra_data_lock());
// speculative trap entries also hold a pointer to a Method so need to be translated
DataLayout* dp_src = mdo->extra_data_base();
DataLayout* end_src = mdo->args_data_limit();
DataLayout* dp_dst = extra_data_base();
for (;; dp_src = MethodData::next_extra(dp_src), dp_dst = MethodData::next_extra(dp_dst)) {
assert(dp_src < end_src, "moved past end of extra data");
assert(((intptr_t)dp_dst) - ((intptr_t)extra_data_base()) == ((intptr_t)dp_src) - ((intptr_t)mdo->extra_data_base()), "source and destination don't match");
// New traps in the MDO may have been added since we copied the
// data (concurrent deoptimizations before we acquired
// extra_data_lock above) or can be removed (a safepoint may occur
// in the translate_from call below) as we translate the copy:
// update the copy as we go.
int tag = dp_src->tag();
if (tag != DataLayout::arg_info_data_tag) {
memcpy(dp_dst, dp_src, ((intptr_t)MethodData::next_extra(dp_src)) - ((intptr_t)dp_src));
}
switch(tag) {
case DataLayout::speculative_trap_data_tag: {
ciSpeculativeTrapData data_dst(dp_dst);
SpeculativeTrapData data_src(dp_src);
{ // During translation a safepoint can happen or VM lock can be taken (e.g., Compile_lock).
MutexUnlocker ml(mdo->extra_data_lock());
data_dst.translate_from(&data_src);
}
break;
}
case DataLayout::bit_data_tag:
break;
case DataLayout::no_tag:
case DataLayout::arg_info_data_tag:
// An empty slot or ArgInfoData entry marks the end of the trap data
{
return; // Need a block to avoid SS compiler bug
}
default:
fatal("bad tag = %d", tag);
}
}
}
void ciMethodData::load_data() {
MethodData* mdo = get_MethodData();
if (mdo == NULL) {
return;
}
// To do: don't copy the data if it is not "ripe" -- require a minimum #
// of invocations.
// Snapshot the data -- actually, take an approximate snapshot of
// the data. Any concurrently executing threads may be changing the
// data as we copy it.
Copy::disjoint_words((HeapWord*) mdo,
(HeapWord*) &_orig,
sizeof(_orig) / HeapWordSize);
Arena* arena = CURRENT_ENV->arena();
_data_size = mdo->data_size();
_extra_data_size = mdo->extra_data_size();
int total_size = _data_size + _extra_data_size;
_data = (intptr_t *) arena->Amalloc(total_size);
Copy::disjoint_words((HeapWord*) mdo->data_base(), (HeapWord*) _data, total_size / HeapWordSize);
// Traverse the profile data, translating any oops into their
// ci equivalents.
ResourceMark rm;
ciProfileData* ci_data = first_data();
ProfileData* data = mdo->first_data();
while (is_valid(ci_data)) {
ci_data->translate_from(data);
ci_data = next_data(ci_data);
data = mdo->next_data(data);
}
if (mdo->parameters_type_data() != NULL) {
_parameters = data_layout_at(mdo->parameters_type_data_di());
ciParametersTypeData* parameters = new ciParametersTypeData(_parameters);
parameters->translate_from(mdo->parameters_type_data());
}
load_extra_data();
// Note: Extra data are all BitData, and do not need translation.
_current_mileage = MethodData::mileage_of(mdo->method());
_invocation_counter = mdo->invocation_count();
_backedge_counter = mdo->backedge_count();
_state = mdo->is_mature()? mature_state: immature_state;
_eflags = mdo->eflags();
_arg_local = mdo->arg_local();
_arg_stack = mdo->arg_stack();
_arg_returned = mdo->arg_returned();
#ifndef PRODUCT
if (ReplayCompiles) {
ciReplay::initialize(this);
}
#endif
}
void ciReceiverTypeData::translate_receiver_data_from(const ProfileData* data) {
for (uint row = 0; row < row_limit(); row++) {
Klass* k = data->as_ReceiverTypeData()->receiver(row);
if (k != NULL) {
ciKlass* klass = CURRENT_ENV->get_klass(k);
set_receiver(row, klass);
}
}
}
void ciTypeStackSlotEntries::translate_type_data_from(const TypeStackSlotEntries* entries) {
for (int i = 0; i < number_of_entries(); i++) {
intptr_t k = entries->type(i);
TypeStackSlotEntries::set_type(i, translate_klass(k));
}
}
void ciReturnTypeEntry::translate_type_data_from(const ReturnTypeEntry* ret) {
intptr_t k = ret->type();
set_type(translate_klass(k));
}
void ciSpeculativeTrapData::translate_from(const ProfileData* data) {
Method* m = data->as_SpeculativeTrapData()->method();
ciMethod* ci_m = CURRENT_ENV->get_method(m);
set_method(ci_m);
}
// Get the data at an arbitrary (sort of) data index.
ciProfileData* ciMethodData::data_at(int data_index) {
if (out_of_bounds(data_index)) {
return NULL;
}
DataLayout* data_layout = data_layout_at(data_index);
switch (data_layout->tag()) {
case DataLayout::no_tag:
default:
ShouldNotReachHere();
return NULL;
case DataLayout::bit_data_tag:
return new ciBitData(data_layout);
case DataLayout::counter_data_tag:
return new ciCounterData(data_layout);
case DataLayout::jump_data_tag:
return new ciJumpData(data_layout);
case DataLayout::receiver_type_data_tag:
return new ciReceiverTypeData(data_layout);
case DataLayout::virtual_call_data_tag:
return new ciVirtualCallData(data_layout);
case DataLayout::ret_data_tag:
return new ciRetData(data_layout);
case DataLayout::branch_data_tag:
return new ciBranchData(data_layout);
case DataLayout::multi_branch_data_tag:
return new ciMultiBranchData(data_layout);
case DataLayout::arg_info_data_tag:
return new ciArgInfoData(data_layout);
case DataLayout::call_type_data_tag:
return new ciCallTypeData(data_layout);
case DataLayout::virtual_call_type_data_tag:
return new ciVirtualCallTypeData(data_layout);
case DataLayout::parameters_type_data_tag:
return new ciParametersTypeData(data_layout);
};
}
// Iteration over data.
ciProfileData* ciMethodData::next_data(ciProfileData* current) {
int current_index = dp_to_di(current->dp());
int next_index = current_index + current->size_in_bytes();
ciProfileData* next = data_at(next_index);
return next;
}
ciProfileData* ciMethodData::bci_to_extra_data(int bci, ciMethod* m, bool& two_free_slots) {
DataLayout* dp = extra_data_base();
DataLayout* end = args_data_limit();
two_free_slots = false;
for (;dp < end; dp = MethodData::next_extra(dp)) {
switch(dp->tag()) {
case DataLayout::no_tag:
_saw_free_extra_data = true; // observed an empty slot (common case)
two_free_slots = (MethodData::next_extra(dp)->tag() == DataLayout::no_tag);
return NULL;
case DataLayout::arg_info_data_tag:
return NULL; // ArgInfoData is at the end of extra data section.
case DataLayout::bit_data_tag:
if (m == NULL && dp->bci() == bci) {
return new ciBitData(dp);
}
break;
case DataLayout::speculative_trap_data_tag: {
ciSpeculativeTrapData* data = new ciSpeculativeTrapData(dp);
// data->method() might be null if the MDO is snapshotted
// concurrently with a trap
if (m != NULL && data->method() == m && dp->bci() == bci) {
return data;
}
break;
}
default:
fatal("bad tag = %d", dp->tag());
}
}
return NULL;
}
// Translate a bci to its corresponding data, or NULL.
ciProfileData* ciMethodData::bci_to_data(int bci, ciMethod* m) {
// If m is not NULL we look for a SpeculativeTrapData entry
if (m == NULL) {
ciProfileData* data = data_before(bci);
for ( ; is_valid(data); data = next_data(data)) {
if (data->bci() == bci) {
set_hint_di(dp_to_di(data->dp()));
return data;
} else if (data->bci() > bci) {
break;
}
}
}
bool two_free_slots = false;
ciProfileData* result = bci_to_extra_data(bci, m, two_free_slots);
if (result != NULL) {
return result;
}
if (m != NULL && !two_free_slots) {
// We were looking for a SpeculativeTrapData entry we didn't
// find. Room is not available for more SpeculativeTrapData
// entries, look in the non SpeculativeTrapData entries.
return bci_to_data(bci, NULL);
}
return NULL;
}
// Conservatively decode the trap_state of a ciProfileData.
int ciMethodData::has_trap_at(ciProfileData* data, int reason) {
typedef Deoptimization::DeoptReason DR_t;
int per_bc_reason
= Deoptimization::reason_recorded_per_bytecode_if_any((DR_t) reason);
if (trap_count(reason) == 0) {
// Impossible for this trap to have occurred, regardless of trap_state.
// Note: This happens if the MDO is empty.
return 0;
} else if (per_bc_reason == Deoptimization::Reason_none) {
// We cannot conclude anything; a trap happened somewhere, maybe here.
return -1;
} else if (data == NULL) {
// No profile here, not even an extra_data record allocated on the fly.
// If there are empty extra_data records, and there had been a trap,
// there would have been a non-null data pointer. If there are no
// free extra_data records, we must return a conservative -1.
if (_saw_free_extra_data)
return 0; // Q.E.D.
else
return -1; // bail with a conservative answer
} else {
return Deoptimization::trap_state_has_reason(data->trap_state(), per_bc_reason);
}
}
int ciMethodData::trap_recompiled_at(ciProfileData* data) {
if (data == NULL) {
return (_saw_free_extra_data? 0: -1); // (see previous method)
} else {
return Deoptimization::trap_state_is_recompiled(data->trap_state())? 1: 0;
}
}
void ciMethodData::clear_escape_info() {
VM_ENTRY_MARK;
MethodData* mdo = get_MethodData();
if (mdo != NULL) {
mdo->clear_escape_info();
ArgInfoData *aid = arg_info();
int arg_count = (aid == NULL) ? 0 : aid->number_of_args();
for (int i = 0; i < arg_count; i++) {
set_arg_modified(i, 0);
}
}
_eflags = _arg_local = _arg_stack = _arg_returned = 0;
}
// copy our escape info to the MethodData* if it exists
void ciMethodData::update_escape_info() {
VM_ENTRY_MARK;
MethodData* mdo = get_MethodData();
if ( mdo != NULL) {
mdo->set_eflags(_eflags);
mdo->set_arg_local(_arg_local);
mdo->set_arg_stack(_arg_stack);
mdo->set_arg_returned(_arg_returned);
int arg_count = mdo->method()->size_of_parameters();
for (int i = 0; i < arg_count; i++) {
mdo->set_arg_modified(i, arg_modified(i));
}
}
}
void ciMethodData::set_compilation_stats(short loops, short blocks) {
VM_ENTRY_MARK;
MethodData* mdo = get_MethodData();
if (mdo != NULL) {
mdo->set_num_loops(loops);
mdo->set_num_blocks(blocks);
}
}
void ciMethodData::set_would_profile(bool p) {
VM_ENTRY_MARK;
MethodData* mdo = get_MethodData();
if (mdo != NULL) {
mdo->set_would_profile(p);
}
}
void ciMethodData::set_argument_type(int bci, int i, ciKlass* k) {
VM_ENTRY_MARK;
MethodData* mdo = get_MethodData();
if (mdo != NULL) {
ProfileData* data = mdo->bci_to_data(bci);
if (data != NULL) {
if (data->is_CallTypeData()) {
data->as_CallTypeData()->set_argument_type(i, k->get_Klass());
} else {
assert(data->is_VirtualCallTypeData(), "no arguments!");
data->as_VirtualCallTypeData()->set_argument_type(i, k->get_Klass());
}
}
}
}
void ciMethodData::set_parameter_type(int i, ciKlass* k) {
VM_ENTRY_MARK;
MethodData* mdo = get_MethodData();
if (mdo != NULL) {
mdo->parameters_type_data()->set_type(i, k->get_Klass());
}
}
void ciMethodData::set_return_type(int bci, ciKlass* k) {
VM_ENTRY_MARK;
MethodData* mdo = get_MethodData();
if (mdo != NULL) {
ProfileData* data = mdo->bci_to_data(bci);
if (data != NULL) {
if (data->is_CallTypeData()) {
data->as_CallTypeData()->set_return_type(k->get_Klass());
} else {
assert(data->is_VirtualCallTypeData(), "no arguments!");
data->as_VirtualCallTypeData()->set_return_type(k->get_Klass());
}
}
}
}
bool ciMethodData::has_escape_info() {
return eflag_set(MethodData::estimated);
}
void ciMethodData::set_eflag(MethodData::EscapeFlag f) {
set_bits(_eflags, f);
}
void ciMethodData::clear_eflag(MethodData::EscapeFlag f) {
clear_bits(_eflags, f);
}
bool ciMethodData::eflag_set(MethodData::EscapeFlag f) const {
return mask_bits(_eflags, f) != 0;
}
void ciMethodData::set_arg_local(int i) {
set_nth_bit(_arg_local, i);
}
void ciMethodData::set_arg_stack(int i) {
set_nth_bit(_arg_stack, i);
}
void ciMethodData::set_arg_returned(int i) {
set_nth_bit(_arg_returned, i);
}
void ciMethodData::set_arg_modified(int arg, uint val) {
ArgInfoData *aid = arg_info();
if (aid == NULL)
return;
assert(arg >= 0 && arg < aid->number_of_args(), "valid argument number");
aid->set_arg_modified(arg, val);
}
bool ciMethodData::is_arg_local(int i) const {
return is_set_nth_bit(_arg_local, i);
}
bool ciMethodData::is_arg_stack(int i) const {
return is_set_nth_bit(_arg_stack, i);
}
bool ciMethodData::is_arg_returned(int i) const {
return is_set_nth_bit(_arg_returned, i);
}
uint ciMethodData::arg_modified(int arg) const {
ArgInfoData *aid = arg_info();
if (aid == NULL)
return 0;
assert(arg >= 0 && arg < aid->number_of_args(), "valid argument number");
return aid->arg_modified(arg);
}
ByteSize ciMethodData::offset_of_slot(ciProfileData* data, ByteSize slot_offset_in_data) {
// Get offset within MethodData* of the data array
ByteSize data_offset = MethodData::data_offset();
// Get cell offset of the ProfileData within data array
int cell_offset = dp_to_di(data->dp());
// Add in counter_offset, the # of bytes into the ProfileData of counter or flag
int offset = in_bytes(data_offset) + cell_offset + in_bytes(slot_offset_in_data);
return in_ByteSize(offset);
}
ciArgInfoData *ciMethodData::arg_info() const {
// Should be last, have to skip all traps.
DataLayout* dp = extra_data_base();
DataLayout* end = args_data_limit();
for (; dp < end; dp = MethodData::next_extra(dp)) {
if (dp->tag() == DataLayout::arg_info_data_tag)
return new ciArgInfoData(dp);
}
return NULL;
}
// Implementation of the print method.
void ciMethodData::print_impl(outputStream* st) {
ciMetadata::print_impl(st);
}
void ciMethodData::dump_replay_data_type_helper(outputStream* out, int round, int& count, ProfileData* pdata, ByteSize offset, ciKlass* k) {
if (k != NULL) {
if (round == 0) {
count++;
} else {
out->print(" %d %s", (int)(dp_to_di(pdata->dp() + in_bytes(offset)) / sizeof(intptr_t)), k->name()->as_quoted_ascii());
}
}
}
template<class T> void ciMethodData::dump_replay_data_receiver_type_helper(outputStream* out, int round, int& count, T* vdata) {
for (uint i = 0; i < vdata->row_limit(); i++) {
dump_replay_data_type_helper(out, round, count, vdata, vdata->receiver_offset(i), vdata->receiver(i));
}
}
template<class T> void ciMethodData::dump_replay_data_call_type_helper(outputStream* out, int round, int& count, T* call_type_data) {
if (call_type_data->has_arguments()) {
for (int i = 0; i < call_type_data->number_of_arguments(); i++) {
dump_replay_data_type_helper(out, round, count, call_type_data, call_type_data->argument_type_offset(i), call_type_data->valid_argument_type(i));
}
}
if (call_type_data->has_return()) {
dump_replay_data_type_helper(out, round, count, call_type_data, call_type_data->return_type_offset(), call_type_data->valid_return_type());
}
}
void ciMethodData::dump_replay_data_extra_data_helper(outputStream* out, int round, int& count) {
DataLayout* dp = extra_data_base();
DataLayout* end = args_data_limit();
for (;dp < end; dp = MethodData::next_extra(dp)) {
switch(dp->tag()) {
case DataLayout::no_tag:
case DataLayout::arg_info_data_tag:
return;
case DataLayout::bit_data_tag:
break;
case DataLayout::speculative_trap_data_tag: {
ciSpeculativeTrapData* data = new ciSpeculativeTrapData(dp);
ciMethod* m = data->method();
if (m != NULL) {
if (round == 0) {
count++;
} else {
out->print(" %d ", (int)(dp_to_di(((address)dp) + in_bytes(ciSpeculativeTrapData::method_offset())) / sizeof(intptr_t)));
m->dump_name_as_ascii(out);
}
}
break;
}
default:
fatal("bad tag = %d", dp->tag());
}
}
}
void ciMethodData::dump_replay_data(outputStream* out) {
ResourceMark rm;
MethodData* mdo = get_MethodData();
Method* method = mdo->method();
Klass* holder = method->method_holder();
out->print("ciMethodData %s %s %s %d %d",
holder->name()->as_quoted_ascii(),
method->name()->as_quoted_ascii(),
method->signature()->as_quoted_ascii(),
_state,
current_mileage());
// dump the contents of the MDO header as raw data
unsigned char* orig = (unsigned char*)&_orig;
int length = sizeof(_orig);
out->print(" orig %d", length);
for (int i = 0; i < length; i++) {
out->print(" %d", orig[i]);
}
// dump the MDO data as raw data
int elements = (data_size() + extra_data_size()) / sizeof(intptr_t);
out->print(" data %d", elements);
for (int i = 0; i < elements; i++) {
// We could use INTPTR_FORMAT here but that's zero justified
// which makes comparing it with the SA version of this output
// harder. data()'s element type is intptr_t.
out->print(" " INTPTRNZ_FORMAT, data()[i]);
}
// The MDO contained oop references as ciObjects, so scan for those
// and emit pairs of offset and klass name so that they can be
// reconstructed at runtime. The first round counts the number of
// oop references and the second actually emits them.
ciParametersTypeData* parameters = parameters_type_data();
for (int count = 0, round = 0; round < 2; round++) {
if (round == 1) out->print(" oops %d", count);
ProfileData* pdata = first_data();
for ( ; is_valid(pdata); pdata = next_data(pdata)) {
if (pdata->is_VirtualCallData()) {
ciVirtualCallData* vdata = (ciVirtualCallData*)pdata;
dump_replay_data_receiver_type_helper<ciVirtualCallData>(out, round, count, vdata);
if (pdata->is_VirtualCallTypeData()) {
ciVirtualCallTypeData* call_type_data = (ciVirtualCallTypeData*)pdata;
dump_replay_data_call_type_helper<ciVirtualCallTypeData>(out, round, count, call_type_data);
}
} else if (pdata->is_ReceiverTypeData()) {
ciReceiverTypeData* vdata = (ciReceiverTypeData*)pdata;
dump_replay_data_receiver_type_helper<ciReceiverTypeData>(out, round, count, vdata);
} else if (pdata->is_CallTypeData()) {
ciCallTypeData* call_type_data = (ciCallTypeData*)pdata;
dump_replay_data_call_type_helper<ciCallTypeData>(out, round, count, call_type_data);
}
}
if (parameters != NULL) {
for (int i = 0; i < parameters->number_of_parameters(); i++) {
dump_replay_data_type_helper(out, round, count, parameters, ParametersTypeData::type_offset(i), parameters->valid_parameter_type(i));
}
}
}
for (int count = 0, round = 0; round < 2; round++) {
if (round == 1) out->print(" methods %d", count);
dump_replay_data_extra_data_helper(out, round, count);
}
out->cr();
}
#ifndef PRODUCT
void ciMethodData::print() {
print_data_on(tty);
}
void ciMethodData::print_data_on(outputStream* st) {
ResourceMark rm;
ciParametersTypeData* parameters = parameters_type_data();
if (parameters != NULL) {
parameters->print_data_on(st);
}
ciProfileData* data;
for (data = first_data(); is_valid(data); data = next_data(data)) {
st->print("%d", dp_to_di(data->dp()));
st->fill_to(6);
data->print_data_on(st);
}
st->print_cr("--- Extra data:");
DataLayout* dp = extra_data_base();
DataLayout* end = args_data_limit();
for (;; dp = MethodData::next_extra(dp)) {
assert(dp < end, "moved past end of extra data");
switch (dp->tag()) {
case DataLayout::no_tag:
continue;
case DataLayout::bit_data_tag:
data = new BitData(dp);
break;
case DataLayout::arg_info_data_tag:
data = new ciArgInfoData(dp);
dp = end; // ArgInfoData is at the end of extra data section.
break;
case DataLayout::speculative_trap_data_tag:
data = new ciSpeculativeTrapData(dp);
break;
default:
fatal("unexpected tag %d", dp->tag());
}
st->print("%d", dp_to_di(data->dp()));
st->fill_to(6);
data->print_data_on(st);
if (dp >= end) return;
}
}
void ciTypeEntries::print_ciklass(outputStream* st, intptr_t k) {
if (TypeEntries::is_type_none(k)) {
st->print("none");
} else if (TypeEntries::is_type_unknown(k)) {
st->print("unknown");
} else {
valid_ciklass(k)->print_name_on(st);
}
if (TypeEntries::was_null_seen(k)) {
st->print(" (null seen)");
}
}
void ciTypeStackSlotEntries::print_data_on(outputStream* st) const {
for (int i = 0; i < number_of_entries(); i++) {
_pd->tab(st);
st->print("%d: stack (%u) ", i, stack_slot(i));
print_ciklass(st, type(i));
st->cr();
}
}
void ciReturnTypeEntry::print_data_on(outputStream* st) const {
_pd->tab(st);
st->print("ret ");
print_ciklass(st, type());
st->cr();
}
void ciCallTypeData::print_data_on(outputStream* st, const char* extra) const {
print_shared(st, "ciCallTypeData", extra);
if (has_arguments()) {
tab(st, true);
st->print_cr("argument types");
args()->print_data_on(st);
}
if (has_return()) {
tab(st, true);
st->print_cr("return type");
ret()->print_data_on(st);
}
}
void ciReceiverTypeData::print_receiver_data_on(outputStream* st) const {
uint row;
int entries = 0;
for (row = 0; row < row_limit(); row++) {
if (receiver(row) != NULL) entries++;
}
st->print_cr("count(%u) entries(%u)", count(), entries);
for (row = 0; row < row_limit(); row++) {
if (receiver(row) != NULL) {
tab(st);
receiver(row)->print_name_on(st);
st->print_cr("(%u)", receiver_count(row));
}
}
}
void ciReceiverTypeData::print_data_on(outputStream* st, const char* extra) const {
print_shared(st, "ciReceiverTypeData", extra);
print_receiver_data_on(st);
}
void ciVirtualCallData::print_data_on(outputStream* st, const char* extra) const {
print_shared(st, "ciVirtualCallData", extra);
rtd_super()->print_receiver_data_on(st);
}
void ciVirtualCallTypeData::print_data_on(outputStream* st, const char* extra) const {
print_shared(st, "ciVirtualCallTypeData", extra);
rtd_super()->print_receiver_data_on(st);
if (has_arguments()) {
tab(st, true);
st->print("argument types");
args()->print_data_on(st);
}
if (has_return()) {
tab(st, true);
st->print("return type");
ret()->print_data_on(st);
}
}
void ciParametersTypeData::print_data_on(outputStream* st, const char* extra) const {
st->print_cr("ciParametersTypeData");
parameters()->print_data_on(st);
}
void ciSpeculativeTrapData::print_data_on(outputStream* st, const char* extra) const {
st->print_cr("ciSpeculativeTrapData");
tab(st);
method()->print_short_name(st);
st->cr();
}
#endif