8143353: update for x86 sin and cos in the math lib
Summary: Optimize Math.sin() and cos() for 64 and 32 bit X86 architecture using Intel LIBM implementation.
Reviewed-by: kvn
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "gc/shared/cardTableModRefBS.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
// Implementation of AddressLiteral
// A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
// -----------------Table 4.5 -------------------- //
16, 32, 64, // EVEX_FV(0)
4, 4, 4, // EVEX_FV(1) - with Evex.b
16, 32, 64, // EVEX_FV(2) - with Evex.w
8, 8, 8, // EVEX_FV(3) - with Evex.w and Evex.b
8, 16, 32, // EVEX_HV(0)
4, 4, 4, // EVEX_HV(1) - with Evex.b
// -----------------Table 4.6 -------------------- //
16, 32, 64, // EVEX_FVM(0)
1, 1, 1, // EVEX_T1S(0)
2, 2, 2, // EVEX_T1S(1)
4, 4, 4, // EVEX_T1S(2)
8, 8, 8, // EVEX_T1S(3)
4, 4, 4, // EVEX_T1F(0)
8, 8, 8, // EVEX_T1F(1)
8, 8, 8, // EVEX_T2(0)
0, 16, 16, // EVEX_T2(1)
0, 16, 16, // EVEX_T4(0)
0, 0, 32, // EVEX_T4(1)
0, 0, 32, // EVEX_T8(0)
8, 16, 32, // EVEX_HVM(0)
4, 8, 16, // EVEX_QVM(0)
2, 4, 8, // EVEX_OVM(0)
16, 16, 16, // EVEX_M128(0)
8, 32, 64, // EVEX_DUP(0)
0, 0, 0 // EVEX_NTUP
};
AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
_is_lval = false;
_target = target;
switch (rtype) {
case relocInfo::oop_type:
case relocInfo::metadata_type:
// Oops are a special case. Normally they would be their own section
// but in cases like icBuffer they are literals in the code stream that
// we don't have a section for. We use none so that we get a literal address
// which is always patchable.
break;
case relocInfo::external_word_type:
_rspec = external_word_Relocation::spec(target);
break;
case relocInfo::internal_word_type:
_rspec = internal_word_Relocation::spec(target);
break;
case relocInfo::opt_virtual_call_type:
_rspec = opt_virtual_call_Relocation::spec();
break;
case relocInfo::static_call_type:
_rspec = static_call_Relocation::spec();
break;
case relocInfo::runtime_call_type:
_rspec = runtime_call_Relocation::spec();
break;
case relocInfo::poll_type:
case relocInfo::poll_return_type:
_rspec = Relocation::spec_simple(rtype);
break;
case relocInfo::none:
break;
default:
ShouldNotReachHere();
break;
}
}
// Implementation of Address
#ifdef _LP64
Address Address::make_array(ArrayAddress adr) {
// Not implementable on 64bit machines
// Should have been handled higher up the call chain.
ShouldNotReachHere();
return Address();
}
// exceedingly dangerous constructor
Address::Address(int disp, address loc, relocInfo::relocType rtype) {
_base = noreg;
_index = noreg;
_scale = no_scale;
_disp = disp;
switch (rtype) {
case relocInfo::external_word_type:
_rspec = external_word_Relocation::spec(loc);
break;
case relocInfo::internal_word_type:
_rspec = internal_word_Relocation::spec(loc);
break;
case relocInfo::runtime_call_type:
// HMM
_rspec = runtime_call_Relocation::spec();
break;
case relocInfo::poll_type:
case relocInfo::poll_return_type:
_rspec = Relocation::spec_simple(rtype);
break;
case relocInfo::none:
break;
default:
ShouldNotReachHere();
}
}
#else // LP64
Address Address::make_array(ArrayAddress adr) {
AddressLiteral base = adr.base();
Address index = adr.index();
assert(index._disp == 0, "must not have disp"); // maybe it can?
Address array(index._base, index._index, index._scale, (intptr_t) base.target());
array._rspec = base._rspec;
return array;
}
// exceedingly dangerous constructor
Address::Address(address loc, RelocationHolder spec) {
_base = noreg;
_index = noreg;
_scale = no_scale;
_disp = (intptr_t) loc;
_rspec = spec;
}
#endif // _LP64
// Convert the raw encoding form into the form expected by the constructor for
// Address. An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
RelocationHolder rspec;
if (disp_reloc != relocInfo::none) {
rspec = Relocation::spec_simple(disp_reloc);
}
bool valid_index = index != rsp->encoding();
if (valid_index) {
Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
madr._rspec = rspec;
return madr;
} else {
Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
madr._rspec = rspec;
return madr;
}
}
// Implementation of Assembler
int AbstractAssembler::code_fill_byte() {
return (u_char)'\xF4'; // hlt
}
// make this go away someday
void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
if (rtype == relocInfo::none)
emit_int32(data);
else
emit_data(data, Relocation::spec_simple(rtype), format);
}
void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
assert(imm_operand == 0, "default format must be immediate in this file");
assert(inst_mark() != NULL, "must be inside InstructionMark");
if (rspec.type() != relocInfo::none) {
#ifdef ASSERT
check_relocation(rspec, format);
#endif
// Do not use AbstractAssembler::relocate, which is not intended for
// embedded words. Instead, relocate to the enclosing instruction.
// hack. call32 is too wide for mask so use disp32
if (format == call32_operand)
code_section()->relocate(inst_mark(), rspec, disp32_operand);
else
code_section()->relocate(inst_mark(), rspec, format);
}
emit_int32(data);
}
static int encode(Register r) {
int enc = r->encoding();
if (enc >= 8) {
enc -= 8;
}
return enc;
}
void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
assert(dst->has_byte_register(), "must have byte register");
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert(isByte(imm8), "not a byte");
assert((op1 & 0x01) == 0, "should be 8bit operation");
emit_int8(op1);
emit_int8(op2 | encode(dst));
emit_int8(imm8);
}
void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
if (is8bit(imm32)) {
emit_int8(op1 | 0x02); // set sign bit
emit_int8(op2 | encode(dst));
emit_int8(imm32 & 0xFF);
} else {
emit_int8(op1);
emit_int8(op2 | encode(dst));
emit_int32(imm32);
}
}
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
emit_int8(op1);
emit_int8(op2 | encode(dst));
emit_int32(imm32);
}
// immediate-to-memory forms
void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
if (is8bit(imm32)) {
emit_int8(op1 | 0x02); // set sign bit
emit_operand(rm, adr, 1);
emit_int8(imm32 & 0xFF);
} else {
emit_int8(op1);
emit_operand(rm, adr, 4);
emit_int32(imm32);
}
}
void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
assert(isByte(op1) && isByte(op2), "wrong opcode");
emit_int8(op1);
emit_int8(op2 | encode(dst) << 3 | encode(src));
}
bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
int mod_idx = 0;
// We will test if the displacement fits the compressed format and if so
// apply the compression to the displacment iff the result is8bit.
if (VM_Version::supports_evex() && is_evex_inst) {
switch (cur_tuple_type) {
case EVEX_FV:
if ((cur_encoding & VEX_W) == VEX_W) {
mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
} else {
mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
}
break;
case EVEX_HV:
mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
break;
case EVEX_FVM:
break;
case EVEX_T1S:
switch (in_size_in_bits) {
case EVEX_8bit:
break;
case EVEX_16bit:
mod_idx = 1;
break;
case EVEX_32bit:
mod_idx = 2;
break;
case EVEX_64bit:
mod_idx = 3;
break;
}
break;
case EVEX_T1F:
case EVEX_T2:
case EVEX_T4:
mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
break;
case EVEX_T8:
break;
case EVEX_HVM:
break;
case EVEX_QVM:
break;
case EVEX_OVM:
break;
case EVEX_M128:
break;
case EVEX_DUP:
break;
default:
assert(0, "no valid evex tuple_table entry");
break;
}
if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
if ((disp % disp_factor) == 0) {
int new_disp = disp / disp_factor;
if ((-0x80 <= new_disp && new_disp < 0x80)) {
disp = new_disp;
}
} else {
return false;
}
}
}
return (-0x80 <= disp && disp < 0x80);
}
bool Assembler::emit_compressed_disp_byte(int &disp) {
int mod_idx = 0;
// We will test if the displacement fits the compressed format and if so
// apply the compression to the displacment iff the result is8bit.
if (VM_Version::supports_evex() && (_attributes != NULL) && _attributes->is_evex_instruction()) {
int evex_encoding = _attributes->get_evex_encoding();
int tuple_type = _attributes->get_tuple_type();
switch (tuple_type) {
case EVEX_FV:
if ((evex_encoding & VEX_W) == VEX_W) {
mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
} else {
mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
}
break;
case EVEX_HV:
mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
break;
case EVEX_FVM:
break;
case EVEX_T1S:
switch (_attributes->get_input_size()) {
case EVEX_8bit:
break;
case EVEX_16bit:
mod_idx = 1;
break;
case EVEX_32bit:
mod_idx = 2;
break;
case EVEX_64bit:
mod_idx = 3;
break;
}
break;
case EVEX_T1F:
case EVEX_T2:
case EVEX_T4:
mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
break;
case EVEX_T8:
break;
case EVEX_HVM:
break;
case EVEX_QVM:
break;
case EVEX_OVM:
break;
case EVEX_M128:
break;
case EVEX_DUP:
break;
default:
assert(0, "no valid evex tuple_table entry");
break;
}
int vector_len = _attributes->get_vector_len();
if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
if ((disp % disp_factor) == 0) {
int new_disp = disp / disp_factor;
if (is8bit(new_disp)) {
disp = new_disp;
}
} else {
return false;
}
}
}
return is8bit(disp);
}
void Assembler::emit_operand(Register reg, Register base, Register index,
Address::ScaleFactor scale, int disp,
RelocationHolder const& rspec,
int rip_relative_correction) {
relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
// Encode the registers as needed in the fields they are used in
int regenc = encode(reg) << 3;
int indexenc = index->is_valid() ? encode(index) << 3 : 0;
int baseenc = base->is_valid() ? encode(base) : 0;
if (base->is_valid()) {
if (index->is_valid()) {
assert(scale != Address::no_scale, "inconsistent address");
// [base + index*scale + disp]
if (disp == 0 && rtype == relocInfo::none &&
base != rbp LP64_ONLY(&& base != r13)) {
// [base + index*scale]
// [00 reg 100][ss index base]
assert(index != rsp, "illegal addressing mode");
emit_int8(0x04 | regenc);
emit_int8(scale << 6 | indexenc | baseenc);
} else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
// [base + index*scale + imm8]
// [01 reg 100][ss index base] imm8
assert(index != rsp, "illegal addressing mode");
emit_int8(0x44 | regenc);
emit_int8(scale << 6 | indexenc | baseenc);
emit_int8(disp & 0xFF);
} else {
// [base + index*scale + disp32]
// [10 reg 100][ss index base] disp32
assert(index != rsp, "illegal addressing mode");
emit_int8(0x84 | regenc);
emit_int8(scale << 6 | indexenc | baseenc);
emit_data(disp, rspec, disp32_operand);
}
} else if (base == rsp LP64_ONLY(|| base == r12)) {
// [rsp + disp]
if (disp == 0 && rtype == relocInfo::none) {
// [rsp]
// [00 reg 100][00 100 100]
emit_int8(0x04 | regenc);
emit_int8(0x24);
} else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
// [rsp + imm8]
// [01 reg 100][00 100 100] disp8
emit_int8(0x44 | regenc);
emit_int8(0x24);
emit_int8(disp & 0xFF);
} else {
// [rsp + imm32]
// [10 reg 100][00 100 100] disp32
emit_int8(0x84 | regenc);
emit_int8(0x24);
emit_data(disp, rspec, disp32_operand);
}
} else {
// [base + disp]
assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
if (disp == 0 && rtype == relocInfo::none &&
base != rbp LP64_ONLY(&& base != r13)) {
// [base]
// [00 reg base]
emit_int8(0x00 | regenc | baseenc);
} else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
// [base + disp8]
// [01 reg base] disp8
emit_int8(0x40 | regenc | baseenc);
emit_int8(disp & 0xFF);
} else {
// [base + disp32]
// [10 reg base] disp32
emit_int8(0x80 | regenc | baseenc);
emit_data(disp, rspec, disp32_operand);
}
}
} else {
if (index->is_valid()) {
assert(scale != Address::no_scale, "inconsistent address");
// [index*scale + disp]
// [00 reg 100][ss index 101] disp32
assert(index != rsp, "illegal addressing mode");
emit_int8(0x04 | regenc);
emit_int8(scale << 6 | indexenc | 0x05);
emit_data(disp, rspec, disp32_operand);
} else if (rtype != relocInfo::none ) {
// [disp] (64bit) RIP-RELATIVE (32bit) abs
// [00 000 101] disp32
emit_int8(0x05 | regenc);
// Note that the RIP-rel. correction applies to the generated
// disp field, but _not_ to the target address in the rspec.
// disp was created by converting the target address minus the pc
// at the start of the instruction. That needs more correction here.
// intptr_t disp = target - next_ip;
assert(inst_mark() != NULL, "must be inside InstructionMark");
address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
int64_t adjusted = disp;
// Do rip-rel adjustment for 64bit
LP64_ONLY(adjusted -= (next_ip - inst_mark()));
assert(is_simm32(adjusted),
"must be 32bit offset (RIP relative address)");
emit_data((int32_t) adjusted, rspec, disp32_operand);
} else {
// 32bit never did this, did everything as the rip-rel/disp code above
// [disp] ABSOLUTE
// [00 reg 100][00 100 101] disp32
emit_int8(0x04 | regenc);
emit_int8(0x25);
emit_data(disp, rspec, disp32_operand);
}
}
}
void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
Address::ScaleFactor scale, int disp,
RelocationHolder const& rspec) {
if (UseAVX > 2) {
int xreg_enc = reg->encoding();
if (xreg_enc > 15) {
XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
emit_operand((Register)new_reg, base, index, scale, disp, rspec);
return;
}
}
emit_operand((Register)reg, base, index, scale, disp, rspec);
}
// Secret local extension to Assembler::WhichOperand:
#define end_pc_operand (_WhichOperand_limit)
address Assembler::locate_operand(address inst, WhichOperand which) {
// Decode the given instruction, and return the address of
// an embedded 32-bit operand word.
// If "which" is disp32_operand, selects the displacement portion
// of an effective address specifier.
// If "which" is imm64_operand, selects the trailing immediate constant.
// If "which" is call32_operand, selects the displacement of a call or jump.
// Caller is responsible for ensuring that there is such an operand,
// and that it is 32/64 bits wide.
// If "which" is end_pc_operand, find the end of the instruction.
address ip = inst;
bool is_64bit = false;
debug_only(bool has_disp32 = false);
int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
again_after_prefix:
switch (0xFF & *ip++) {
// These convenience macros generate groups of "case" labels for the switch.
#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
case (x)+4: case (x)+5: case (x)+6: case (x)+7
#define REP16(x) REP8((x)+0): \
case REP8((x)+8)
case CS_segment:
case SS_segment:
case DS_segment:
case ES_segment:
case FS_segment:
case GS_segment:
// Seems dubious
LP64_ONLY(assert(false, "shouldn't have that prefix"));
assert(ip == inst+1, "only one prefix allowed");
goto again_after_prefix;
case 0x67:
case REX:
case REX_B:
case REX_X:
case REX_XB:
case REX_R:
case REX_RB:
case REX_RX:
case REX_RXB:
NOT_LP64(assert(false, "64bit prefixes"));
goto again_after_prefix;
case REX_W:
case REX_WB:
case REX_WX:
case REX_WXB:
case REX_WR:
case REX_WRB:
case REX_WRX:
case REX_WRXB:
NOT_LP64(assert(false, "64bit prefixes"));
is_64bit = true;
goto again_after_prefix;
case 0xFF: // pushq a; decl a; incl a; call a; jmp a
case 0x88: // movb a, r
case 0x89: // movl a, r
case 0x8A: // movb r, a
case 0x8B: // movl r, a
case 0x8F: // popl a
debug_only(has_disp32 = true);
break;
case 0x68: // pushq #32
if (which == end_pc_operand) {
return ip + 4;
}
assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
return ip; // not produced by emit_operand
case 0x66: // movw ... (size prefix)
again_after_size_prefix2:
switch (0xFF & *ip++) {
case REX:
case REX_B:
case REX_X:
case REX_XB:
case REX_R:
case REX_RB:
case REX_RX:
case REX_RXB:
case REX_W:
case REX_WB:
case REX_WX:
case REX_WXB:
case REX_WR:
case REX_WRB:
case REX_WRX:
case REX_WRXB:
NOT_LP64(assert(false, "64bit prefix found"));
goto again_after_size_prefix2;
case 0x8B: // movw r, a
case 0x89: // movw a, r
debug_only(has_disp32 = true);
break;
case 0xC7: // movw a, #16
debug_only(has_disp32 = true);
tail_size = 2; // the imm16
break;
case 0x0F: // several SSE/SSE2 variants
ip--; // reparse the 0x0F
goto again_after_prefix;
default:
ShouldNotReachHere();
}
break;
case REP8(0xB8): // movl/q r, #32/#64(oop?)
if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4);
// these asserts are somewhat nonsensical
#ifndef _LP64
assert(which == imm_operand || which == disp32_operand,
"which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
#else
assert((which == call32_operand || which == imm_operand) && is_64bit ||
which == narrow_oop_operand && !is_64bit,
"which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
#endif // _LP64
return ip;
case 0x69: // imul r, a, #32
case 0xC7: // movl a, #32(oop?)
tail_size = 4;
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0x0F: // movx..., etc.
switch (0xFF & *ip++) {
case 0x3A: // pcmpestri
tail_size = 1;
case 0x38: // ptest, pmovzxbw
ip++; // skip opcode
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0x70: // pshufd r, r/a, #8
debug_only(has_disp32 = true); // has both kinds of operands!
case 0x73: // psrldq r, #8
tail_size = 1;
break;
case 0x12: // movlps
case 0x28: // movaps
case 0x2E: // ucomiss
case 0x2F: // comiss
case 0x54: // andps
case 0x55: // andnps
case 0x56: // orps
case 0x57: // xorps
case 0x58: // addpd
case 0x59: // mulpd
case 0x6E: // movd
case 0x7E: // movd
case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
debug_only(has_disp32 = true);
break;
case 0xAD: // shrd r, a, %cl
case 0xAF: // imul r, a
case 0xBE: // movsbl r, a (movsxb)
case 0xBF: // movswl r, a (movsxw)
case 0xB6: // movzbl r, a (movzxb)
case 0xB7: // movzwl r, a (movzxw)
case REP16(0x40): // cmovl cc, r, a
case 0xB0: // cmpxchgb
case 0xB1: // cmpxchg
case 0xC1: // xaddl
case 0xC7: // cmpxchg8
case REP16(0x90): // setcc a
debug_only(has_disp32 = true);
// fall out of the switch to decode the address
break;
case 0xC4: // pinsrw r, a, #8
debug_only(has_disp32 = true);
case 0xC5: // pextrw r, r, #8
tail_size = 1; // the imm8
break;
case 0xAC: // shrd r, a, #8
debug_only(has_disp32 = true);
tail_size = 1; // the imm8
break;
case REP16(0x80): // jcc rdisp32
if (which == end_pc_operand) return ip + 4;
assert(which == call32_operand, "jcc has no disp32 or imm");
return ip;
default:
ShouldNotReachHere();
}
break;
case 0x81: // addl a, #32; addl r, #32
// also: orl, adcl, sbbl, andl, subl, xorl, cmpl
// on 32bit in the case of cmpl, the imm might be an oop
tail_size = 4;
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0x83: // addl a, #8; addl r, #8
// also: orl, adcl, sbbl, andl, subl, xorl, cmpl
debug_only(has_disp32 = true); // has both kinds of operands!
tail_size = 1;
break;
case 0x9B:
switch (0xFF & *ip++) {
case 0xD9: // fnstcw a
debug_only(has_disp32 = true);
break;
default:
ShouldNotReachHere();
}
break;
case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
case REP4(0x10): // adc...
case REP4(0x20): // and...
case REP4(0x30): // xor...
case REP4(0x08): // or...
case REP4(0x18): // sbb...
case REP4(0x28): // sub...
case 0xF7: // mull a
case 0x8D: // lea r, a
case 0x87: // xchg r, a
case REP4(0x38): // cmp...
case 0x85: // test r, a
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
case 0xC6: // movb a, #8
case 0x80: // cmpb a, #8
case 0x6B: // imul r, a, #8
debug_only(has_disp32 = true); // has both kinds of operands!
tail_size = 1; // the imm8
break;
case 0xC4: // VEX_3bytes
case 0xC5: // VEX_2bytes
assert((UseAVX > 0), "shouldn't have VEX prefix");
assert(ip == inst+1, "no prefixes allowed");
// C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
// but they have prefix 0x0F and processed when 0x0F processed above.
//
// In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
// instructions (these instructions are not supported in 64-bit mode).
// To distinguish them bits [7:6] are set in the VEX second byte since
// ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
// those VEX bits REX and vvvv bits are inverted.
//
// Fortunately C2 doesn't generate these instructions so we don't need
// to check for them in product version.
// Check second byte
NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
int vex_opcode;
// First byte
if ((0xFF & *inst) == VEX_3bytes) {
vex_opcode = VEX_OPCODE_MASK & *ip;
ip++; // third byte
is_64bit = ((VEX_W & *ip) == VEX_W);
} else {
vex_opcode = VEX_OPCODE_0F;
}
ip++; // opcode
// To find the end of instruction (which == end_pc_operand).
switch (vex_opcode) {
case VEX_OPCODE_0F:
switch (0xFF & *ip) {
case 0x70: // pshufd r, r/a, #8
case 0x71: // ps[rl|ra|ll]w r, #8
case 0x72: // ps[rl|ra|ll]d r, #8
case 0x73: // ps[rl|ra|ll]q r, #8
case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
case 0xC4: // pinsrw r, r, r/a, #8
case 0xC5: // pextrw r/a, r, #8
case 0xC6: // shufp[s|d] r, r, r/a, #8
tail_size = 1; // the imm8
break;
}
break;
case VEX_OPCODE_0F_3A:
tail_size = 1;
break;
}
ip++; // skip opcode
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0x62: // EVEX_4bytes
assert((UseAVX > 0), "shouldn't have EVEX prefix");
assert(ip == inst+1, "no prefixes allowed");
// no EVEX collisions, all instructions that have 0x62 opcodes
// have EVEX versions and are subopcodes of 0x66
ip++; // skip P0 and exmaine W in P1
is_64bit = ((VEX_W & *ip) == VEX_W);
ip++; // move to P2
ip++; // skip P2, move to opcode
// To find the end of instruction (which == end_pc_operand).
switch (0xFF & *ip) {
case 0x61: // pcmpestri r, r/a, #8
case 0x70: // pshufd r, r/a, #8
case 0x73: // psrldq r, #8
tail_size = 1; // the imm8
break;
default:
break;
}
ip++; // skip opcode
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
case 0xDD: // fld_d a; fst_d a; fstp_d a
case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
case 0xDF: // fild_d a; fistp_d a
case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
debug_only(has_disp32 = true);
break;
case 0xE8: // call rdisp32
case 0xE9: // jmp rdisp32
if (which == end_pc_operand) return ip + 4;
assert(which == call32_operand, "call has no disp32 or imm");
return ip;
case 0xF0: // Lock
assert(os::is_MP(), "only on MP");
goto again_after_prefix;
case 0xF3: // For SSE
case 0xF2: // For SSE2
switch (0xFF & *ip++) {
case REX:
case REX_B:
case REX_X:
case REX_XB:
case REX_R:
case REX_RB:
case REX_RX:
case REX_RXB:
case REX_W:
case REX_WB:
case REX_WX:
case REX_WXB:
case REX_WR:
case REX_WRB:
case REX_WRX:
case REX_WRXB:
NOT_LP64(assert(false, "found 64bit prefix"));
ip++;
default:
ip++;
}
debug_only(has_disp32 = true); // has both kinds of operands!
break;
default:
ShouldNotReachHere();
#undef REP8
#undef REP16
}
assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
#ifdef _LP64
assert(which != imm_operand, "instruction is not a movq reg, imm64");
#else
// assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
#endif // LP64
assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
// parse the output of emit_operand
int op2 = 0xFF & *ip++;
int base = op2 & 0x07;
int op3 = -1;
const int b100 = 4;
const int b101 = 5;
if (base == b100 && (op2 >> 6) != 3) {
op3 = 0xFF & *ip++;
base = op3 & 0x07; // refetch the base
}
// now ip points at the disp (if any)
switch (op2 >> 6) {
case 0:
// [00 reg 100][ss index base]
// [00 reg 100][00 100 esp]
// [00 reg base]
// [00 reg 100][ss index 101][disp32]
// [00 reg 101] [disp32]
if (base == b101) {
if (which == disp32_operand)
return ip; // caller wants the disp32
ip += 4; // skip the disp32
}
break;
case 1:
// [01 reg 100][ss index base][disp8]
// [01 reg 100][00 100 esp][disp8]
// [01 reg base] [disp8]
ip += 1; // skip the disp8
break;
case 2:
// [10 reg 100][ss index base][disp32]
// [10 reg 100][00 100 esp][disp32]
// [10 reg base] [disp32]
if (which == disp32_operand)
return ip; // caller wants the disp32
ip += 4; // skip the disp32
break;
case 3:
// [11 reg base] (not a memory addressing mode)
break;
}
if (which == end_pc_operand) {
return ip + tail_size;
}
#ifdef _LP64
assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
#else
assert(which == imm_operand, "instruction has only an imm field");
#endif // LP64
return ip;
}
address Assembler::locate_next_instruction(address inst) {
// Secretly share code with locate_operand:
return locate_operand(inst, end_pc_operand);
}
#ifdef ASSERT
void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
address inst = inst_mark();
assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
address opnd;
Relocation* r = rspec.reloc();
if (r->type() == relocInfo::none) {
return;
} else if (r->is_call() || format == call32_operand) {
// assert(format == imm32_operand, "cannot specify a nonzero format");
opnd = locate_operand(inst, call32_operand);
} else if (r->is_data()) {
assert(format == imm_operand || format == disp32_operand
LP64_ONLY(|| format == narrow_oop_operand), "format ok");
opnd = locate_operand(inst, (WhichOperand)format);
} else {
assert(format == imm_operand, "cannot specify a format");
return;
}
assert(opnd == pc(), "must put operand where relocs can find it");
}
#endif // ASSERT
void Assembler::emit_operand32(Register reg, Address adr) {
assert(reg->encoding() < 8, "no extended registers");
assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
adr._rspec);
}
void Assembler::emit_operand(Register reg, Address adr,
int rip_relative_correction) {
emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
adr._rspec,
rip_relative_correction);
}
void Assembler::emit_operand(XMMRegister reg, Address adr) {
emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
adr._rspec);
}
// MMX operations
void Assembler::emit_operand(MMXRegister reg, Address adr) {
assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}
// work around gcc (3.2.1-7a) bug
void Assembler::emit_operand(Address adr, MMXRegister reg) {
assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}
void Assembler::emit_farith(int b1, int b2, int i) {
assert(isByte(b1) && isByte(b2), "wrong opcode");
assert(0 <= i && i < 8, "illegal stack offset");
emit_int8(b1);
emit_int8(b2 + i);
}
// Now the Assembler instructions (identical for 32/64 bits)
void Assembler::adcl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rdx, dst, imm32);
}
void Assembler::adcl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_int8(0x11);
emit_operand(src, dst);
}
void Assembler::adcl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xD0, dst, imm32);
}
void Assembler::adcl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x13);
emit_operand(dst, src);
}
void Assembler::adcl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x13, 0xC0, dst, src);
}
void Assembler::addl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rax, dst, imm32);
}
void Assembler::addl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_int8(0x01);
emit_operand(src, dst);
}
void Assembler::addl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xC0, dst, imm32);
}
void Assembler::addl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x03);
emit_operand(dst, src);
}
void Assembler::addl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x03, 0xC0, dst, src);
}
void Assembler::addr_nop_4() {
assert(UseAddressNop, "no CPU support");
// 4 bytes: NOP DWORD PTR [EAX+0]
emit_int8(0x0F);
emit_int8(0x1F);
emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
emit_int8(0); // 8-bits offset (1 byte)
}
void Assembler::addr_nop_5() {
assert(UseAddressNop, "no CPU support");
// 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
emit_int8(0x0F);
emit_int8(0x1F);
emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
emit_int8(0); // 8-bits offset (1 byte)
}
void Assembler::addr_nop_7() {
assert(UseAddressNop, "no CPU support");
// 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
emit_int8(0x0F);
emit_int8(0x1F);
emit_int8((unsigned char)0x80);
// emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
emit_int32(0); // 32-bits offset (4 bytes)
}
void Assembler::addr_nop_8() {
assert(UseAddressNop, "no CPU support");
// 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
emit_int8(0x0F);
emit_int8(0x1F);
emit_int8((unsigned char)0x84);
// emit_rm(cbuf, 0x2, EAX_enc, 0x4);
emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
emit_int32(0); // 32-bits offset (4 bytes)
}
void Assembler::addsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::addsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_operand(dst, src);
}
void Assembler::addss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::addss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_operand(dst, src);
}
void Assembler::aesdec(XMMRegister dst, Address src) {
assert(VM_Version::supports_aes(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xDE);
emit_operand(dst, src);
}
void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_aes(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xDE);
emit_int8(0xC0 | encode);
}
void Assembler::aesdeclast(XMMRegister dst, Address src) {
assert(VM_Version::supports_aes(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xDF);
emit_operand(dst, src);
}
void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_aes(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xDF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::aesenc(XMMRegister dst, Address src) {
assert(VM_Version::supports_aes(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xDC);
emit_operand(dst, src);
}
void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_aes(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xDC);
emit_int8(0xC0 | encode);
}
void Assembler::aesenclast(XMMRegister dst, Address src) {
assert(VM_Version::supports_aes(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xDD);
emit_operand(dst, src);
}
void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_aes(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xDD);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::andl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0x81);
emit_operand(rsp, dst, 4);
emit_int32(imm32);
}
void Assembler::andl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xE0, dst, imm32);
}
void Assembler::andl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x23);
emit_operand(dst, src);
}
void Assembler::andl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x23, 0xC0, dst, src);
}
void Assembler::andnl(Register dst, Register src1, Register src2) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF2);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::andnl(Register dst, Register src1, Address src2) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF2);
emit_operand(dst, src2);
}
void Assembler::bsfl(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBC);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::bsrl(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBD);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::bswapl(Register reg) { // bswap
int encode = prefix_and_encode(reg->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)(0xC8 | encode));
}
void Assembler::blsil(Register dst, Register src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::blsil(Register dst, Address src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_operand(rbx, src);
}
void Assembler::blsmskl(Register dst, Register src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::blsmskl(Register dst, Address src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_operand(rdx, src);
}
void Assembler::blsrl(Register dst, Register src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::blsrl(Register dst, Address src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_operand(rcx, src);
}
void Assembler::call(Label& L, relocInfo::relocType rtype) {
// suspect disp32 is always good
int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
if (L.is_bound()) {
const int long_size = 5;
int offs = (int)( target(L) - pc() );
assert(offs <= 0, "assembler error");
InstructionMark im(this);
// 1110 1000 #32-bit disp
emit_int8((unsigned char)0xE8);
emit_data(offs - long_size, rtype, operand);
} else {
InstructionMark im(this);
// 1110 1000 #32-bit disp
L.add_patch_at(code(), locator());
emit_int8((unsigned char)0xE8);
emit_data(int(0), rtype, operand);
}
}
void Assembler::call(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xFF);
emit_int8((unsigned char)(0xD0 | encode));
}
void Assembler::call(Address adr) {
InstructionMark im(this);
prefix(adr);
emit_int8((unsigned char)0xFF);
emit_operand(rdx, adr);
}
void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
assert(entry != NULL, "call most probably wrong");
InstructionMark im(this);
emit_int8((unsigned char)0xE8);
intptr_t disp = entry - (pc() + sizeof(int32_t));
assert(is_simm32(disp), "must be 32bit offset (call2)");
// Technically, should use call32_operand, but this format is
// implied by the fact that we're emitting a call instruction.
int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
emit_data((int) disp, rspec, operand);
}
void Assembler::cdql() {
emit_int8((unsigned char)0x99);
}
void Assembler::cld() {
emit_int8((unsigned char)0xFC);
}
void Assembler::cmovl(Condition cc, Register dst, Register src) {
NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8(0x40 | cc);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cmovl(Condition cc, Register dst, Address src) {
NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
prefix(src, dst);
emit_int8(0x0F);
emit_int8(0x40 | cc);
emit_operand(dst, src);
}
void Assembler::cmpb(Address dst, int imm8) {
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0x80);
emit_operand(rdi, dst, 1);
emit_int8(imm8);
}
void Assembler::cmpl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0x81);
emit_operand(rdi, dst, 4);
emit_int32(imm32);
}
void Assembler::cmpl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xF8, dst, imm32);
}
void Assembler::cmpl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x3B, 0xC0, dst, src);
}
void Assembler::cmpl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8((unsigned char)0x3B);
emit_operand(dst, src);
}
void Assembler::cmpw(Address dst, int imm16) {
InstructionMark im(this);
assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
emit_int8(0x66);
emit_int8((unsigned char)0x81);
emit_operand(rdi, dst, 2);
emit_int16(imm16);
}
// The 32-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
InstructionMark im(this);
prefix(adr, reg);
emit_int8(0x0F);
emit_int8((unsigned char)0xB1);
emit_operand(reg, adr);
}
// The 8-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
InstructionMark im(this);
prefix(adr, reg, true);
emit_int8(0x0F);
emit_int8((unsigned char)0xB0);
emit_operand(reg, adr);
}
void Assembler::comisd(XMMRegister dst, Address src) {
// NOTE: dbx seems to decode this as comiss even though the
// 0x66 is there. Strangly ucomisd comes out correct
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x2F);
emit_operand(dst, src);
}
void Assembler::comisd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x2F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::comiss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x2F);
emit_operand(dst, src);
}
void Assembler::comiss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x2F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cpuid() {
emit_int8(0x0F);
emit_int8((unsigned char)0xA2);
}
// Opcode / Instruction Op / En 64 - Bit Mode Compat / Leg Mode Description Implemented
// F2 0F 38 F0 / r CRC32 r32, r / m8 RM Valid Valid Accumulate CRC32 on r / m8. v
// F2 REX 0F 38 F0 / r CRC32 r32, r / m8* RM Valid N.E. Accumulate CRC32 on r / m8. -
// F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8 RM Valid N.E. Accumulate CRC32 on r / m8. -
//
// F2 0F 38 F1 / r CRC32 r32, r / m16 RM Valid Valid Accumulate CRC32 on r / m16. v
//
// F2 0F 38 F1 / r CRC32 r32, r / m32 RM Valid Valid Accumulate CRC32 on r / m32. v
//
// F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64 RM Valid N.E. Accumulate CRC32 on r / m64. v
void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
assert(VM_Version::supports_sse4_2(), "");
int8_t w = 0x01;
Prefix p = Prefix_EMPTY;
emit_int8((int8_t)0xF2);
switch (sizeInBytes) {
case 1:
w = 0;
break;
case 2:
case 4:
break;
LP64_ONLY(case 8:)
// This instruction is not valid in 32 bits
// Note:
// http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
//
// Page B - 72 Vol. 2C says
// qwreg2 to qwreg 1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
// mem64 to qwreg 1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
// F0!!!
// while 3 - 208 Vol. 2A
// F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64 RM Valid N.E.Accumulate CRC32 on r / m64.
//
// the 0 on a last bit is reserved for a different flavor of this instruction :
// F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8 RM Valid N.E.Accumulate CRC32 on r / m8.
p = REX_W;
break;
default:
assert(0, "Unsupported value for a sizeInBytes argument");
break;
}
LP64_ONLY(prefix(crc, v, p);)
emit_int8((int8_t)0x0F);
emit_int8(0x38);
emit_int8((int8_t)(0xF0 | w));
emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
}
void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
assert(VM_Version::supports_sse4_2(), "");
InstructionMark im(this);
int8_t w = 0x01;
Prefix p = Prefix_EMPTY;
emit_int8((int8_t)0xF2);
switch (sizeInBytes) {
case 1:
w = 0;
break;
case 2:
case 4:
break;
LP64_ONLY(case 8:)
// This instruction is not valid in 32 bits
p = REX_W;
break;
default:
assert(0, "Unsupported value for a sizeInBytes argument");
break;
}
LP64_ONLY(prefix(crc, adr, p);)
emit_int8((int8_t)0x0F);
emit_int8(0x38);
emit_int8((int8_t)(0xF0 | w));
emit_operand(crc, adr);
}
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xE6);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x5B);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5A);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5A);
emit_operand(dst, src);
}
void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x2A);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x2A);
emit_operand(dst, src);
}
void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x2A);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x2A);
emit_operand(dst, src);
}
void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x2A);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5A);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvtss2sd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5A);
emit_operand(dst, src);
}
void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x2C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvttss2sil(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x2C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::decl(Address dst) {
// Don't use it directly. Use MacroAssembler::decrement() instead.
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0xFF);
emit_operand(rcx, dst);
}
void Assembler::divsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_operand(dst, src);
}
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::divss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_operand(dst, src);
}
void Assembler::divss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::emms() {
NOT_LP64(assert(VM_Version::supports_mmx(), ""));
emit_int8(0x0F);
emit_int8(0x77);
}
void Assembler::hlt() {
emit_int8((unsigned char)0xF4);
}
void Assembler::idivl(Register src) {
int encode = prefix_and_encode(src->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xF8 | encode));
}
void Assembler::divl(Register src) { // Unsigned
int encode = prefix_and_encode(src->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xF0 | encode));
}
void Assembler::imull(Register src) {
int encode = prefix_and_encode(src->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xE8 | encode));
}
void Assembler::imull(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xAF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::imull(Register dst, Register src, int value) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
if (is8bit(value)) {
emit_int8(0x6B);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(value & 0xFF);
} else {
emit_int8(0x69);
emit_int8((unsigned char)(0xC0 | encode));
emit_int32(value);
}
}
void Assembler::imull(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char) 0xAF);
emit_operand(dst, src);
}
void Assembler::incl(Address dst) {
// Don't use it directly. Use MacroAssembler::increment() instead.
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0xFF);
emit_operand(rax, dst);
}
void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
InstructionMark im(this);
assert((0 <= cc) && (cc < 16), "illegal cc");
if (L.is_bound()) {
address dst = target(L);
assert(dst != NULL, "jcc most probably wrong");
const int short_size = 2;
const int long_size = 6;
intptr_t offs = (intptr_t)dst - (intptr_t)pc();
if (maybe_short && is8bit(offs - short_size)) {
// 0111 tttn #8-bit disp
emit_int8(0x70 | cc);
emit_int8((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
assert(is_simm32(offs - long_size),
"must be 32bit offset (call4)");
emit_int8(0x0F);
emit_int8((unsigned char)(0x80 | cc));
emit_int32(offs - long_size);
}
} else {
// Note: could eliminate cond. jumps to this jump if condition
// is the same however, seems to be rather unlikely case.
// Note: use jccb() if label to be bound is very close to get
// an 8-bit displacement
L.add_patch_at(code(), locator());
emit_int8(0x0F);
emit_int8((unsigned char)(0x80 | cc));
emit_int32(0);
}
}
void Assembler::jccb(Condition cc, Label& L) {
if (L.is_bound()) {
const int short_size = 2;
address entry = target(L);
#ifdef ASSERT
intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
intptr_t delta = short_branch_delta();
if (delta != 0) {
dist += (dist < 0 ? (-delta) :delta);
}
assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
intptr_t offs = (intptr_t)entry - (intptr_t)pc();
// 0111 tttn #8-bit disp
emit_int8(0x70 | cc);
emit_int8((offs - short_size) & 0xFF);
} else {
InstructionMark im(this);
L.add_patch_at(code(), locator());
emit_int8(0x70 | cc);
emit_int8(0);
}
}
void Assembler::jmp(Address adr) {
InstructionMark im(this);
prefix(adr);
emit_int8((unsigned char)0xFF);
emit_operand(rsp, adr);
}
void Assembler::jmp(Label& L, bool maybe_short) {
if (L.is_bound()) {
address entry = target(L);
assert(entry != NULL, "jmp most probably wrong");
InstructionMark im(this);
const int short_size = 2;
const int long_size = 5;
intptr_t offs = entry - pc();
if (maybe_short && is8bit(offs - short_size)) {
emit_int8((unsigned char)0xEB);
emit_int8((offs - short_size) & 0xFF);
} else {
emit_int8((unsigned char)0xE9);
emit_int32(offs - long_size);
}
} else {
// By default, forward jumps are always 32-bit displacements, since
// we can't yet know where the label will be bound. If you're sure that
// the forward jump will not run beyond 256 bytes, use jmpb to
// force an 8-bit displacement.
InstructionMark im(this);
L.add_patch_at(code(), locator());
emit_int8((unsigned char)0xE9);
emit_int32(0);
}
}
void Assembler::jmp(Register entry) {
int encode = prefix_and_encode(entry->encoding());
emit_int8((unsigned char)0xFF);
emit_int8((unsigned char)(0xE0 | encode));
}
void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_int8((unsigned char)0xE9);
assert(dest != NULL, "must have a target");
intptr_t disp = dest - (pc() + sizeof(int32_t));
assert(is_simm32(disp), "must be 32bit offset (jmp)");
emit_data(disp, rspec.reloc(), call32_operand);
}
void Assembler::jmpb(Label& L) {
if (L.is_bound()) {
const int short_size = 2;
address entry = target(L);
assert(entry != NULL, "jmp most probably wrong");
#ifdef ASSERT
intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
intptr_t delta = short_branch_delta();
if (delta != 0) {
dist += (dist < 0 ? (-delta) :delta);
}
assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
intptr_t offs = entry - pc();
emit_int8((unsigned char)0xEB);
emit_int8((offs - short_size) & 0xFF);
} else {
InstructionMark im(this);
L.add_patch_at(code(), locator());
emit_int8((unsigned char)0xEB);
emit_int8(0);
}
}
void Assembler::ldmxcsr( Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
prefix(src);
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_operand(as_Register(2), src);
}
void Assembler::leal(Register dst, Address src) {
InstructionMark im(this);
#ifdef _LP64
emit_int8(0x67); // addr32
prefix(src, dst);
#endif // LP64
emit_int8((unsigned char)0x8D);
emit_operand(dst, src);
}
void Assembler::lfence() {
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_int8((unsigned char)0xE8);
}
void Assembler::lock() {
emit_int8((unsigned char)0xF0);
}
void Assembler::lzcntl(Register dst, Register src) {
assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
emit_int8((unsigned char)0xF3);
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBD);
emit_int8((unsigned char)(0xC0 | encode));
}
// Emit mfence instruction
void Assembler::mfence() {
NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_int8((unsigned char)0xF0);
}
void Assembler::mov(Register dst, Register src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x28);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x28);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x16);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movb(Register dst, Address src) {
NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
InstructionMark im(this);
prefix(src, dst, true);
emit_int8((unsigned char)0x8A);
emit_operand(dst, src);
}
void Assembler::movddup(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse3(), ""));
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x12);
emit_int8(0xC0 | encode);
}
void Assembler::kmovbl(KRegister dst, Register src) {
assert(VM_Version::supports_avx512dq(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x92);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::kmovbl(Register dst, KRegister src) {
assert(VM_Version::supports_avx512dq(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x93);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::kmovwl(KRegister dst, Register src) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x92);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::kmovwl(Register dst, KRegister src) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x93);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::kmovdl(KRegister dst, Register src) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x92);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::kmovdl(Register dst, KRegister src) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x93);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::kmovql(KRegister dst, KRegister src) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x90);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::kmovql(KRegister dst, Address src) {
assert(VM_Version::supports_avx512bw(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x90);
emit_operand((Register)dst, src);
}
void Assembler::kmovql(Address dst, KRegister src) {
assert(VM_Version::supports_avx512bw(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x90);
emit_operand((Register)src, dst);
}
void Assembler::kmovql(KRegister dst, Register src) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x92);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::kmovql(Register dst, KRegister src) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x93);
emit_int8((unsigned char)(0xC0 | encode));
}
// This instruction produces ZF or CF flags
void Assembler::kortestbl(KRegister src1, KRegister src2) {
assert(VM_Version::supports_avx512dq(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x98);
emit_int8((unsigned char)(0xC0 | encode));
}
// This instruction produces ZF or CF flags
void Assembler::kortestwl(KRegister src1, KRegister src2) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x98);
emit_int8((unsigned char)(0xC0 | encode));
}
// This instruction produces ZF or CF flags
void Assembler::kortestdl(KRegister src1, KRegister src2) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x98);
emit_int8((unsigned char)(0xC0 | encode));
}
// This instruction produces ZF or CF flags
void Assembler::kortestql(KRegister src1, KRegister src2) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0x98);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movb(Address dst, int imm8) {
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0xC6);
emit_operand(rax, dst, 1);
emit_int8(imm8);
}
void Assembler::movb(Address dst, Register src) {
assert(src->has_byte_register(), "must have byte register");
InstructionMark im(this);
prefix(dst, src, true);
emit_int8((unsigned char)0x88);
emit_operand(src, dst);
}
void Assembler::movdl(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x6E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movdl(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
// swap src/dst to get correct prefix
int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x7E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movdl(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x6E);
emit_operand(dst, src);
}
void Assembler::movdl(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x7E);
emit_operand(src, dst);
}
void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movdqa(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_operand(dst, src);
}
void Assembler::movdqu(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_operand(dst, src);
}
void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movdqu(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x7F);
emit_operand(src, dst);
}
// Move Unaligned 256bit Vector
void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
assert(UseAVX > 0, "");
InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vmovdqu(XMMRegister dst, Address src) {
assert(UseAVX > 0, "");
InstructionMark im(this);
InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_operand(dst, src);
}
void Assembler::vmovdqu(Address dst, XMMRegister src) {
assert(UseAVX > 0, "");
InstructionMark im(this);
InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
// swap src<->dst for encoding
assert(src != xnoreg, "sanity");
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x7F);
emit_operand(src, dst);
}
// Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_operand(dst, src);
}
void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(src != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x7F);
emit_operand(src, dst);
}
void Assembler::evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_operand(dst, src);
}
void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(src != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x7F);
emit_operand(src, dst);
}
void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_operand(dst, src);
}
void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(src != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x7F);
emit_operand(src, dst);
}
void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x6F);
emit_operand(dst, src);
}
void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(src != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x7F);
emit_operand(src, dst);
}
// Uses zero extension on 64bit
void Assembler::movl(Register dst, int32_t imm32) {
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)(0xB8 | encode));
emit_int32(imm32);
}
void Assembler::movl(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8((unsigned char)0x8B);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8((unsigned char)0x8B);
emit_operand(dst, src);
}
void Assembler::movl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0xC7);
emit_operand(rax, dst, 4);
emit_int32(imm32);
}
void Assembler::movl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_int8((unsigned char)0x89);
emit_operand(src, dst);
}
// New cpus require to use movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void Assembler::movlpd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x12);
emit_operand(dst, src);
}
void Assembler::movq( MMXRegister dst, Address src ) {
assert( VM_Version::supports_mmx(), "" );
emit_int8(0x0F);
emit_int8(0x6F);
emit_operand(dst, src);
}
void Assembler::movq( Address dst, MMXRegister src ) {
assert( VM_Version::supports_mmx(), "" );
emit_int8(0x0F);
emit_int8(0x7F);
// workaround gcc (3.2.1-7a) bug
// In that version of gcc with only an emit_operand(MMX, Address)
// gcc will tail jump and try and reverse the parameters completely
// obliterating dst in the process. By having a version available
// that doesn't need to swap the args at the tail jump the bug is
// avoided.
emit_operand(dst, src);
}
void Assembler::movq(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x7E);
emit_operand(dst, src);
}
void Assembler::movq(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD6);
emit_operand(src, dst);
}
void Assembler::movsbl(Register dst, Address src) { // movsxb
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xBE);
emit_operand(dst, src);
}
void Assembler::movsbl(Register dst, Register src) { // movsxb
NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
emit_int8(0x0F);
emit_int8((unsigned char)0xBE);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x10);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x10);
emit_operand(dst, src);
}
void Assembler::movsd(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x11);
emit_operand(src, dst);
}
void Assembler::movss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x10);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x10);
emit_operand(dst, src);
}
void Assembler::movss(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x11);
emit_operand(src, dst);
}
void Assembler::movswl(Register dst, Address src) { // movsxw
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xBF);
emit_operand(dst, src);
}
void Assembler::movswl(Register dst, Register src) { // movsxw
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movw(Address dst, int imm16) {
InstructionMark im(this);
emit_int8(0x66); // switch to 16-bit mode
prefix(dst);
emit_int8((unsigned char)0xC7);
emit_operand(rax, dst, 2);
emit_int16(imm16);
}
void Assembler::movw(Register dst, Address src) {
InstructionMark im(this);
emit_int8(0x66);
prefix(src, dst);
emit_int8((unsigned char)0x8B);
emit_operand(dst, src);
}
void Assembler::movw(Address dst, Register src) {
InstructionMark im(this);
emit_int8(0x66);
prefix(dst, src);
emit_int8((unsigned char)0x89);
emit_operand(src, dst);
}
void Assembler::movzbl(Register dst, Address src) { // movzxb
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xB6);
emit_operand(dst, src);
}
void Assembler::movzbl(Register dst, Register src) { // movzxb
NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
emit_int8(0x0F);
emit_int8((unsigned char)0xB6);
emit_int8(0xC0 | encode);
}
void Assembler::movzwl(Register dst, Address src) { // movzxw
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xB7);
emit_operand(dst, src);
}
void Assembler::movzwl(Register dst, Register src) { // movzxw
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xB7);
emit_int8(0xC0 | encode);
}
void Assembler::mull(Address src) {
InstructionMark im(this);
prefix(src);
emit_int8((unsigned char)0xF7);
emit_operand(rsp, src);
}
void Assembler::mull(Register src) {
int encode = prefix_and_encode(src->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xE0 | encode));
}
void Assembler::mulsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_operand(dst, src);
}
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::mulss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_operand(dst, src);
}
void Assembler::mulss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::negl(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xD8 | encode));
}
void Assembler::nop(int i) {
#ifdef ASSERT
assert(i > 0, " ");
// The fancy nops aren't currently recognized by debuggers making it a
// pain to disassemble code while debugging. If asserts are on clearly
// speed is not an issue so simply use the single byte traditional nop
// to do alignment.
for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
return;
#endif // ASSERT
if (UseAddressNop && VM_Version::is_intel()) {
//
// Using multi-bytes nops "0x0F 0x1F [address]" for Intel
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
// 4: 0x0F 0x1F 0x40 0x00
// 5: 0x0F 0x1F 0x44 0x00 0x00
// 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
// 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// The rest coding is Intel specific - don't use consecutive address nops
// 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
while(i >= 15) {
// For Intel don't generate consecutive addess nops (mix with regular nops)
i -= 15;
emit_int8(0x66); // size prefix
emit_int8(0x66); // size prefix
emit_int8(0x66); // size prefix
addr_nop_8();
emit_int8(0x66); // size prefix
emit_int8(0x66); // size prefix
emit_int8(0x66); // size prefix
emit_int8((unsigned char)0x90);
// nop
}
switch (i) {
case 14:
emit_int8(0x66); // size prefix
case 13:
emit_int8(0x66); // size prefix
case 12:
addr_nop_8();
emit_int8(0x66); // size prefix
emit_int8(0x66); // size prefix
emit_int8(0x66); // size prefix
emit_int8((unsigned char)0x90);
// nop
break;
case 11:
emit_int8(0x66); // size prefix
case 10:
emit_int8(0x66); // size prefix
case 9:
emit_int8(0x66); // size prefix
case 8:
addr_nop_8();
break;
case 7:
addr_nop_7();
break;
case 6:
emit_int8(0x66); // size prefix
case 5:
addr_nop_5();
break;
case 4:
addr_nop_4();
break;
case 3:
// Don't use "0x0F 0x1F 0x00" - need patching safe padding
emit_int8(0x66); // size prefix
case 2:
emit_int8(0x66); // size prefix
case 1:
emit_int8((unsigned char)0x90);
// nop
break;
default:
assert(i == 0, " ");
}
return;
}
if (UseAddressNop && VM_Version::is_amd()) {
//
// Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
// 4: 0x0F 0x1F 0x40 0x00
// 5: 0x0F 0x1F 0x44 0x00 0x00
// 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
// 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// The rest coding is AMD specific - use consecutive address nops
// 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
// 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
// 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// Size prefixes (0x66) are added for larger sizes
while(i >= 22) {
i -= 11;
emit_int8(0x66); // size prefix
emit_int8(0x66); // size prefix
emit_int8(0x66); // size prefix
addr_nop_8();
}
// Generate first nop for size between 21-12
switch (i) {
case 21:
i -= 1;
emit_int8(0x66); // size prefix
case 20:
case 19:
i -= 1;
emit_int8(0x66); // size prefix
case 18:
case 17:
i -= 1;
emit_int8(0x66); // size prefix
case 16:
case 15:
i -= 8;
addr_nop_8();
break;
case 14:
case 13:
i -= 7;
addr_nop_7();
break;
case 12:
i -= 6;
emit_int8(0x66); // size prefix
addr_nop_5();
break;
default:
assert(i < 12, " ");
}
// Generate second nop for size between 11-1
switch (i) {
case 11:
emit_int8(0x66); // size prefix
case 10:
emit_int8(0x66); // size prefix
case 9:
emit_int8(0x66); // size prefix
case 8:
addr_nop_8();
break;
case 7:
addr_nop_7();
break;
case 6:
emit_int8(0x66); // size prefix
case 5:
addr_nop_5();
break;
case 4:
addr_nop_4();
break;
case 3:
// Don't use "0x0F 0x1F 0x00" - need patching safe padding
emit_int8(0x66); // size prefix
case 2:
emit_int8(0x66); // size prefix
case 1:
emit_int8((unsigned char)0x90);
// nop
break;
default:
assert(i == 0, " ");
}
return;
}
// Using nops with size prefixes "0x66 0x90".
// From AMD Optimization Guide:
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90
// 4: 0x66 0x66 0x66 0x90
// 5: 0x66 0x66 0x90 0x66 0x90
// 6: 0x66 0x66 0x90 0x66 0x66 0x90
// 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
// 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
// 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
// 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
//
while(i > 12) {
i -= 4;
emit_int8(0x66); // size prefix
emit_int8(0x66);
emit_int8(0x66);
emit_int8((unsigned char)0x90);
// nop
}
// 1 - 12 nops
if(i > 8) {
if(i > 9) {
i -= 1;
emit_int8(0x66);
}
i -= 3;
emit_int8(0x66);
emit_int8(0x66);
emit_int8((unsigned char)0x90);
}
// 1 - 8 nops
if(i > 4) {
if(i > 6) {
i -= 1;
emit_int8(0x66);
}
i -= 3;
emit_int8(0x66);
emit_int8(0x66);
emit_int8((unsigned char)0x90);
}
switch (i) {
case 4:
emit_int8(0x66);
case 3:
emit_int8(0x66);
case 2:
emit_int8(0x66);
case 1:
emit_int8((unsigned char)0x90);
break;
default:
assert(i == 0, " ");
}
}
void Assembler::notl(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xD0 | encode));
}
void Assembler::orl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rcx, dst, imm32);
}
void Assembler::orl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xC8, dst, imm32);
}
void Assembler::orl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x0B);
emit_operand(dst, src);
}
void Assembler::orl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x0B, 0xC0, dst, src);
}
void Assembler::orl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_int8(0x09);
emit_operand(src, dst);
}
void Assembler::packuswb(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x67);
emit_operand(dst, src);
}
void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x67);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "some form of AVX must be enabled");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x67);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
assert(VM_Version::supports_avx2(), "");
InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x00);
emit_int8(0xC0 | encode);
emit_int8(imm8);
}
void Assembler::pause() {
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)0x90);
}
void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
assert(VM_Version::supports_sse4_2(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x61);
emit_operand(dst, src);
emit_int8(imm8);
}
void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse4_2(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x61);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
// In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x74);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x74);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, kdst is written the mask used to process the equal components
void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x74);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx512bw(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int dst_enc = kdst->encoding();
vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x74);
emit_operand(as_Register(dst_enc), src);
}
// In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x75);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x75);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, kdst is written the mask used to process the equal components
void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx512bw(), "");
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x75);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx512bw(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int dst_enc = kdst->encoding();
vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x75);
emit_operand(as_Register(dst_enc), src);
}
// In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x76);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x76);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, kdst is written the mask used to process the equal components
void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x76);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int dst_enc = kdst->encoding();
vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x76);
emit_operand(as_Register(dst_enc), src);
}
// In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x29);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x29);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, kdst is written the mask used to process the equal components
void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x29);
emit_int8((unsigned char)(0xC0 | encode));
}
// In this context, kdst is written the mask used to process the equal components
void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int dst_enc = kdst->encoding();
vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x29);
emit_operand(as_Register(dst_enc), src);
}
void Assembler::pmovmskb(Register dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD7);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpmovmskb(Register dst, XMMRegister src) {
assert(VM_Version::supports_avx2(), "");
InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD7);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x16);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x16);
emit_operand(src, dst);
emit_int8(imm8);
}
void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x16);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x16);
emit_operand(src, dst);
emit_int8(imm8);
}
void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse2(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xC5);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8((unsigned char)0x15);
emit_operand(src, dst);
emit_int8(imm8);
}
void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x14);
emit_operand(src, dst);
emit_int8(imm8);
}
void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x22);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x22);
emit_operand(dst,src);
emit_int8(imm8);
}
void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x22);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x22);
emit_operand(dst, src);
emit_int8(imm8);
}
void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
assert(VM_Version::supports_sse2(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xC4);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
assert(VM_Version::supports_sse2(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xC4);
emit_operand(dst, src);
emit_int8(imm8);
}
void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x20);
emit_operand(dst, src);
emit_int8(imm8);
}
void Assembler::pmovzxbw(XMMRegister dst, Address src) {
assert(VM_Version::supports_sse4_1(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x30);
emit_operand(dst, src);
}
void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x30);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
assert(dst != xnoreg, "sanity");
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x30);
emit_operand(dst, src);
}
// generic
void Assembler::pop(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_int8(0x58 | encode);
}
void Assembler::popcntl(Register dst, Address src) {
assert(VM_Version::supports_popcnt(), "must support");
InstructionMark im(this);
emit_int8((unsigned char)0xF3);
prefix(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xB8);
emit_operand(dst, src);
}
void Assembler::popcntl(Register dst, Register src) {
assert(VM_Version::supports_popcnt(), "must support");
emit_int8((unsigned char)0xF3);
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xB8);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::popf() {
emit_int8((unsigned char)0x9D);
}
#ifndef _LP64 // no 32bit push/pop on amd64
void Assembler::popl(Address dst) {
// NOTE: this will adjust stack by 8byte on 64bits
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0x8F);
emit_operand(rax, dst);
}
#endif
void Assembler::prefetch_prefix(Address src) {
prefix(src);
emit_int8(0x0F);
}
void Assembler::prefetchnta(Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
InstructionMark im(this);
prefetch_prefix(src);
emit_int8(0x18);
emit_operand(rax, src); // 0, src
}
void Assembler::prefetchr(Address src) {
assert(VM_Version::supports_3dnow_prefetch(), "must support");
InstructionMark im(this);
prefetch_prefix(src);
emit_int8(0x0D);
emit_operand(rax, src); // 0, src
}
void Assembler::prefetcht0(Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
InstructionMark im(this);
prefetch_prefix(src);
emit_int8(0x18);
emit_operand(rcx, src); // 1, src
}
void Assembler::prefetcht1(Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
InstructionMark im(this);
prefetch_prefix(src);
emit_int8(0x18);
emit_operand(rdx, src); // 2, src
}
void Assembler::prefetcht2(Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
InstructionMark im(this);
prefetch_prefix(src);
emit_int8(0x18);
emit_operand(rbx, src); // 3, src
}
void Assembler::prefetchw(Address src) {
assert(VM_Version::supports_3dnow_prefetch(), "must support");
InstructionMark im(this);
prefetch_prefix(src);
emit_int8(0x0D);
emit_operand(rcx, src); // 1, src
}
void Assembler::prefix(Prefix p) {
emit_int8(p);
}
void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_ssse3(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x00);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::pshufb(XMMRegister dst, Address src) {
assert(VM_Version::supports_ssse3(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x00);
emit_operand(dst, src);
}
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
assert(isByte(mode), "invalid value");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x70);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(mode & 0xFF);
}
void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
assert(isByte(mode), "invalid value");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x70);
emit_operand(dst, src);
emit_int8(mode & 0xFF);
}
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
assert(isByte(mode), "invalid value");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x70);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(mode & 0xFF);
}
void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
assert(isByte(mode), "invalid value");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x70);
emit_operand(dst, src);
emit_int8(mode & 0xFF);
}
void Assembler::psrldq(XMMRegister dst, int shift) {
// Shift left 128 bit value in dst XMMRegister by shift number of bytes.
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
// XMM3 is for /3 encoding: 66 0F 73 /3 ib
int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x73);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift);
}
void Assembler::pslldq(XMMRegister dst, int shift) {
// Shift left 128 bit value in dst XMMRegister by shift number of bytes.
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
// XMM7 is for /7 encoding: 66 0F 73 /7 ib
int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x73);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift);
}
void Assembler::ptest(XMMRegister dst, Address src) {
assert(VM_Version::supports_sse4_1(), "");
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x17);
emit_operand(dst, src);
}
void Assembler::ptest(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x17);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vptest(XMMRegister dst, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
assert(dst != xnoreg, "sanity");
// swap src<->dst for encoding
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x17);
emit_operand(dst, src);
}
void Assembler::vptest(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x17);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::punpcklbw(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x60);
emit_operand(dst, src);
}
void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x60);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::punpckldq(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x62);
emit_operand(dst, src);
}
void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x62);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x6C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::push(int32_t imm32) {
// in 64bits we push 64bits onto the stack but only
// take a 32bit immediate
emit_int8(0x68);
emit_int32(imm32);
}
void Assembler::push(Register src) {
int encode = prefix_and_encode(src->encoding());
emit_int8(0x50 | encode);
}
void Assembler::pushf() {
emit_int8((unsigned char)0x9C);
}
#ifndef _LP64 // no 32bit push/pop on amd64
void Assembler::pushl(Address src) {
// Note this will push 64bit on 64bit
InstructionMark im(this);
prefix(src);
emit_int8((unsigned char)0xFF);
emit_operand(rsi, src);
}
#endif
void Assembler::rcll(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
int encode = prefix_and_encode(dst->encoding());
if (imm8 == 1) {
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xD0 | encode));
} else {
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)0xD0 | encode);
emit_int8(imm8);
}
}
void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x53);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x53);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::rdtsc() {
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0x31);
}
// copies data from [esi] to [edi] using rcx pointer sized words
// generic
void Assembler::rep_mov() {
emit_int8((unsigned char)0xF3);
// MOVSQ
LP64_ONLY(prefix(REX_W));
emit_int8((unsigned char)0xA5);
}
// sets rcx bytes with rax, value at [edi]
void Assembler::rep_stosb() {
emit_int8((unsigned char)0xF3); // REP
LP64_ONLY(prefix(REX_W));
emit_int8((unsigned char)0xAA); // STOSB
}
// sets rcx pointer sized words with rax, value at [edi]
// generic
void Assembler::rep_stos() {
emit_int8((unsigned char)0xF3); // REP
LP64_ONLY(prefix(REX_W)); // LP64:STOSQ, LP32:STOSD
emit_int8((unsigned char)0xAB);
}
// scans rcx pointer sized words at [edi] for occurance of rax,
// generic
void Assembler::repne_scan() { // repne_scan
emit_int8((unsigned char)0xF2);
// SCASQ
LP64_ONLY(prefix(REX_W));
emit_int8((unsigned char)0xAF);
}
#ifdef _LP64
// scans rcx 4 byte words at [edi] for occurance of rax,
// generic
void Assembler::repne_scanl() { // repne_scan
emit_int8((unsigned char)0xF2);
// SCASL
emit_int8((unsigned char)0xAF);
}
#endif
void Assembler::ret(int imm16) {
if (imm16 == 0) {
emit_int8((unsigned char)0xC3);
} else {
emit_int8((unsigned char)0xC2);
emit_int16(imm16);
}
}
void Assembler::sahf() {
#ifdef _LP64
// Not supported in 64bit mode
ShouldNotReachHere();
#endif
emit_int8((unsigned char)0x9E);
}
void Assembler::sarl(Register dst, int imm8) {
int encode = prefix_and_encode(dst->encoding());
assert(isShiftCount(imm8), "illegal shift count");
if (imm8 == 1) {
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xF8 | encode));
} else {
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xF8 | encode));
emit_int8(imm8);
}
}
void Assembler::sarl(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xD3);
emit_int8((unsigned char)(0xF8 | encode));
}
void Assembler::sbbl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rbx, dst, imm32);
}
void Assembler::sbbl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xD8, dst, imm32);
}
void Assembler::sbbl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x1B);
emit_operand(dst, src);
}
void Assembler::sbbl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x1B, 0xC0, dst, src);
}
void Assembler::setb(Condition cc, Register dst) {
assert(0 <= cc && cc < 16, "illegal cc");
int encode = prefix_and_encode(dst->encoding(), true);
emit_int8(0x0F);
emit_int8((unsigned char)0x90 | cc);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::shll(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
int encode = prefix_and_encode(dst->encoding());
if (imm8 == 1 ) {
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xE0 | encode));
} else {
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xE0 | encode));
emit_int8(imm8);
}
}
void Assembler::shll(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xD3);
emit_int8((unsigned char)(0xE0 | encode));
}
void Assembler::shrl(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xE8 | encode));
emit_int8(imm8);
}
void Assembler::shrl(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xD3);
emit_int8((unsigned char)(0xE8 | encode));
}
// copies a single word from [esi] to [edi]
void Assembler::smovl() {
emit_int8((unsigned char)0xA5);
}
void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x51);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::sqrtsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x51);
emit_operand(dst, src);
}
void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x51);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::std() {
emit_int8((unsigned char)0xFD);
}
void Assembler::sqrtss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x51);
emit_operand(dst, src);
}
void Assembler::stmxcsr( Address dst) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
prefix(dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_operand(as_Register(3), dst);
}
void Assembler::subl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rbp, dst, imm32);
}
void Assembler::subl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_int8(0x29);
emit_operand(src, dst);
}
void Assembler::subl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xE8, dst, imm32);
}
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::subl_imm32(Register dst, int32_t imm32) {
prefix(dst);
emit_arith_imm32(0x81, 0xE8, dst, imm32);
}
void Assembler::subl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x2B);
emit_operand(dst, src);
}
void Assembler::subl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x2B, 0xC0, dst, src);
}
void Assembler::subsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::subsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_operand(dst, src);
}
void Assembler::subss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::subss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_operand(dst, src);
}
void Assembler::testb(Register dst, int imm8) {
NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
(void) prefix_and_encode(dst->encoding(), true);
emit_arith_b(0xF6, 0xC0, dst, imm8);
}
void Assembler::testb(Address dst, int imm8) {
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0xF6);
emit_operand(rax, dst, 1);
emit_int8(imm8);
}
void Assembler::testl(Register dst, int32_t imm32) {
// not using emit_arith because test
// doesn't support sign-extension of
// 8bit operands
int encode = dst->encoding();
if (encode == 0) {
emit_int8((unsigned char)0xA9);
} else {
encode = prefix_and_encode(encode);
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xC0 | encode));
}
emit_int32(imm32);
}
void Assembler::testl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x85, 0xC0, dst, src);
}
void Assembler::testl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8((unsigned char)0x85);
emit_operand(dst, src);
}
void Assembler::tzcntl(Register dst, Register src) {
assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
emit_int8((unsigned char)0xF3);
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBC);
emit_int8((unsigned char)0xC0 | encode);
}
void Assembler::tzcntq(Register dst, Register src) {
assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
emit_int8((unsigned char)0xF3);
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBC);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::ucomisd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x2E);
emit_operand(dst, src);
}
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x2E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::ucomiss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x2E);
emit_operand(dst, src);
}
void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x2E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::xabort(int8_t imm8) {
emit_int8((unsigned char)0xC6);
emit_int8((unsigned char)0xF8);
emit_int8((unsigned char)(imm8 & 0xFF));
}
void Assembler::xaddl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_int8(0x0F);
emit_int8((unsigned char)0xC1);
emit_operand(src, dst);
}
void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
InstructionMark im(this);
relocate(rtype);
if (abort.is_bound()) {
address entry = target(abort);
assert(entry != NULL, "abort entry NULL");
intptr_t offset = entry - pc();
emit_int8((unsigned char)0xC7);
emit_int8((unsigned char)0xF8);
emit_int32(offset - 6); // 2 opcode + 4 address
} else {
abort.add_patch_at(code(), locator());
emit_int8((unsigned char)0xC7);
emit_int8((unsigned char)0xF8);
emit_int32(0);
}
}
void Assembler::xchgl(Register dst, Address src) { // xchg
InstructionMark im(this);
prefix(src, dst);
emit_int8((unsigned char)0x87);
emit_operand(dst, src);
}
void Assembler::xchgl(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8((unsigned char)0x87);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::xend() {
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0x01);
emit_int8((unsigned char)0xD5);
}
void Assembler::xgetbv() {
emit_int8(0x0F);
emit_int8(0x01);
emit_int8((unsigned char)0xD0);
}
void Assembler::xorl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xF0, dst, imm32);
}
void Assembler::xorl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x33);
emit_operand(dst, src);
}
void Assembler::xorl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x33, 0xC0, dst, src);
}
void Assembler::xorb(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_int8(0x32);
emit_operand(dst, src);
}
// AVX 3-operands scalar float-point arithmetic instructions
void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_operand(dst, src);
}
void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_operand(dst, src);
}
void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_operand(dst, src);
}
void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_operand(dst, src);
}
void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_operand(dst, src);
}
void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_operand(dst, src);
}
void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_operand(dst, src);
}
void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_operand(dst, src);
}
void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_int8((unsigned char)(0xC0 | encode));
}
//====================VECTOR ARITHMETIC=====================================
// Float-point vector arithmetic
void Assembler::addpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::addpd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_operand(dst, src);
}
void Assembler::addps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_operand(dst, src);
}
void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x58);
emit_operand(dst, src);
}
void Assembler::subpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::subps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_operand(dst, src);
}
void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x5C);
emit_operand(dst, src);
}
void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::mulpd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_operand(dst, src);
}
void Assembler::mulps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_operand(dst, src);
}
void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x59);
emit_operand(dst, src);
}
void Assembler::divpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::divps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_operand(dst, src);
}
void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x5E);
emit_operand(dst, src);
}
void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x51);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x51);
emit_operand(dst, src);
}
void Assembler::andpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x54);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::andps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x54);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::andps(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x54);
emit_operand(dst, src);
}
void Assembler::andpd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x54);
emit_operand(dst, src);
}
void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x54);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x54);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x54);
emit_operand(dst, src);
}
void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x54);
emit_operand(dst, src);
}
void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x15);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x14);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x57);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::xorps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x57);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::xorpd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x57);
emit_operand(dst, src);
}
void Assembler::xorps(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x57);
emit_operand(dst, src);
}
void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x57);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x57);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x57);
emit_operand(dst, src);
}
void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x57);
emit_operand(dst, src);
}
// Integer vector arithmetic
void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx() && (vector_len == 0) ||
VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x01);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(VM_Version::supports_avx() && (vector_len == 0) ||
VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x02);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::paddb(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFC);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::paddw(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFD);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::paddd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFE);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::paddq(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD4);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse3(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x01);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse3(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x02);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFC);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFD);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFE);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD4);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFC);
emit_operand(dst, src);
}
void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFD);
emit_operand(dst, src);
}
void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFE);
emit_operand(dst, src);
}
void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD4);
emit_operand(dst, src);
}
void Assembler::psubb(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF8);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::psubw(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF9);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::psubd(XMMRegister dst, XMMRegister src) {
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFA);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::psubq(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFB);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF8);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF9);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFA);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFB);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF8);
emit_operand(dst, src);
}
void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF9);
emit_operand(dst, src);
}
void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFA);
emit_operand(dst, src);
}
void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xFB);
emit_operand(dst, src);
}
void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD5);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse4_1(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x40);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD5);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x40);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 2, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x40);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD5);
emit_operand(dst, src);
}
void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x40);
emit_operand(dst, src);
}
void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x40);
emit_operand(dst, src);
}
// Shift packed integers left by specified number of bits.
void Assembler::psllw(XMMRegister dst, int shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
// XMM6 is for /6 encoding: 66 0F 71 /6 ib
int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x71);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::pslld(XMMRegister dst, int shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM6 is for /6 encoding: 66 0F 72 /6 ib
int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x72);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::psllq(XMMRegister dst, int shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM6 is for /6 encoding: 66 0F 73 /6 ib
int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x73);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF1);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF2);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
// XMM6 is for /6 encoding: 66 0F 71 /6 ib
int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x71);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM6 is for /6 encoding: 66 0F 72 /6 ib
int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x72);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM6 is for /6 encoding: 66 0F 73 /6 ib
int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x73);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF1);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF2);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)(0xC0 | encode));
}
// Shift packed integers logically right by specified number of bits.
void Assembler::psrlw(XMMRegister dst, int shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
// XMM2 is for /2 encoding: 66 0F 71 /2 ib
int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x71);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::psrld(XMMRegister dst, int shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM2 is for /2 encoding: 66 0F 72 /2 ib
int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x72);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::psrlq(XMMRegister dst, int shift) {
// Do not confuse it with psrldq SSE2 instruction which
// shifts 128 bit value in xmm register by number of bytes.
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM2 is for /2 encoding: 66 0F 73 /2 ib
int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x73);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD2);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD3);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
// XMM2 is for /2 encoding: 66 0F 71 /2 ib
int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x71);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM2 is for /2 encoding: 66 0F 72 /2 ib
int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x72);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM2 is for /2 encoding: 66 0F 73 /2 ib
int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x73);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD2);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xD3);
emit_int8((unsigned char)(0xC0 | encode));
}
// Shift packed integers arithmetically right by specified number of bits.
void Assembler::psraw(XMMRegister dst, int shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
// XMM4 is for /4 encoding: 66 0F 71 /4 ib
int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x71);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::psrad(XMMRegister dst, int shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM4 is for /4 encoding: 66 0F 72 /4 ib
int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x72);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xE1);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xE2);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
// XMM4 is for /4 encoding: 66 0F 71 /4 ib
int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x71);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
// XMM4 is for /4 encoding: 66 0F 71 /4 ib
int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x72);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift & 0xFF);
}
void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xE1);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xE2);
emit_int8((unsigned char)(0xC0 | encode));
}
// logical operations packed integers
void Assembler::pand(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xDB);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xDB);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xDB);
emit_operand(dst, src);
}
void Assembler::pandn(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xDF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::por(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xEB);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xEB);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xEB);
emit_operand(dst, src);
}
void Assembler::pxor(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xEF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xEF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(UseAVX > 0, "requires some form of AVX");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xEF);
emit_operand(dst, src);
}
void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x18);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - insert into lower 128 bits
// 0x01 - insert into upper 128 bits
emit_int8(0x01);
}
void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x1A);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - insert into lower 256 bits
// 0x01 - insert into upper 256 bits
emit_int8(value & 0x01);
}
void Assembler::vinsertf64x4h(XMMRegister dst, Address src, int value) {
assert(VM_Version::supports_evex(), "");
assert(dst != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
// swap src<->dst for encoding
vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x1A);
emit_operand(dst, src);
// 0x00 - insert into lower 256 bits
// 0x01 - insert into upper 128 bits
emit_int8(value & 0x01);
}
void Assembler::vinsertf32x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x18);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - insert into q0 128 bits (0..127)
// 0x01 - insert into q1 128 bits (128..255)
// 0x02 - insert into q2 128 bits (256..383)
// 0x03 - insert into q3 128 bits (384..511)
emit_int8(value & 0x3);
}
void Assembler::vinsertf32x4h(XMMRegister dst, Address src, int value) {
assert(VM_Version::supports_avx(), "");
assert(dst != xnoreg, "sanity");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
// swap src<->dst for encoding
vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x18);
emit_operand(dst, src);
// 0x00 - insert into q0 128 bits (0..127)
// 0x01 - insert into q1 128 bits (128..255)
// 0x02 - insert into q2 128 bits (256..383)
// 0x03 - insert into q3 128 bits (384..511)
emit_int8(value & 0x3);
}
void Assembler::vinsertf128h(XMMRegister dst, Address src) {
assert(VM_Version::supports_avx(), "");
assert(dst != xnoreg, "sanity");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
// swap src<->dst for encoding
vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x18);
emit_operand(dst, src);
// 0x01 - insert into upper 128 bits
emit_int8(0x01);
}
void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x19);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - insert into lower 128 bits
// 0x01 - insert into upper 128 bits
emit_int8(0x01);
}
void Assembler::vextractf128h(Address dst, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
assert(src != xnoreg, "sanity");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x19);
emit_operand(src, dst);
// 0x01 - extract from upper 128 bits
emit_int8(0x01);
}
void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx2(), "");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x38);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - insert into lower 128 bits
// 0x01 - insert into upper 128 bits
emit_int8(0x01);
}
void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x38);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - insert into lower 256 bits
// 0x01 - insert into upper 256 bits
emit_int8(value & 0x01);
}
void Assembler::vinserti128h(XMMRegister dst, Address src) {
assert(VM_Version::supports_avx2(), "");
assert(dst != xnoreg, "sanity");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
// swap src<->dst for encoding
vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x38);
emit_operand(dst, src);
// 0x01 - insert into upper 128 bits
emit_int8(0x01);
}
void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x39);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - insert into lower 128 bits
// 0x01 - insert into upper 128 bits
emit_int8(0x01);
}
void Assembler::vextracti128h(Address dst, XMMRegister src) {
assert(VM_Version::supports_avx2(), "");
assert(src != xnoreg, "sanity");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x39);
emit_operand(src, dst);
// 0x01 - extract from upper 128 bits
emit_int8(0x01);
}
void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x3B);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - extract from lower 256 bits
// 0x01 - extract from upper 256 bits
emit_int8(value & 0x01);
}
void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x39);
emit_int8((unsigned char)(0xC0 | encode));
// 0x01 - extract from bits 255:128
// 0x02 - extract from bits 383:256
// 0x03 - extract from bits 511:384
emit_int8(value & 0x3);
}
void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x1B);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - extract from lower 256 bits
// 0x01 - extract from upper 256 bits
emit_int8(value & 0x1);
}
void Assembler::vextractf64x4h(Address dst, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
assert(src != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */ EVEX_64bit);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x1B);
emit_operand(src, dst);
// 0x00 - extract from lower 256 bits
// 0x01 - extract from upper 256 bits
emit_int8(value & 0x01);
}
void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
assert(VM_Version::supports_avx(), "");
int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x19);
emit_int8((unsigned char)(0xC0 | encode));
// 0x00 - extract from bits 127:0
// 0x01 - extract from bits 255:128
// 0x02 - extract from bits 383:256
// 0x03 - extract from bits 511:384
emit_int8(value & 0x3);
}
void Assembler::vextractf32x4h(Address dst, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
assert(src != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x19);
emit_operand(src, dst);
// 0x00 - extract from bits 127:0
// 0x01 - extract from bits 255:128
// 0x02 - extract from bits 383:256
// 0x03 - extract from bits 511:384
emit_int8(value & 0x3);
}
void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x19);
emit_int8((unsigned char)(0xC0 | encode));
// 0x01 - extract from bits 255:128
// 0x02 - extract from bits 383:256
// 0x03 - extract from bits 511:384
emit_int8(value & 0x3);
}
// duplicate 4-bytes integer data from src into 8 locations in dest
void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_avx2(), "");
InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
// duplicate 2-bytes integer data from src into 16 locations in dest
void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_avx2(), "");
InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x79);
emit_int8((unsigned char)(0xC0 | encode));
}
// duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x78);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(dst != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
// swap src<->dst for encoding
vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x78);
emit_operand(dst, src);
}
// duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x79);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(dst != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
// swap src<->dst for encoding
vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x79);
emit_operand(dst, src);
}
// duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x58);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(dst != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
// swap src<->dst for encoding
vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x58);
emit_operand(dst, src);
}
// duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x59);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(dst != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
// swap src<->dst for encoding
vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x59);
emit_operand(dst, src);
}
// duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x18);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(dst != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
// swap src<->dst for encoding
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x18);
emit_operand(dst, src);
}
// duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x19);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
assert(VM_Version::supports_evex(), "");
assert(dst != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
// swap src<->dst for encoding
vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x19);
emit_operand(dst, src);
}
// duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x7A);
emit_int8((unsigned char)(0xC0 | encode));
}
// duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x7B);
emit_int8((unsigned char)(0xC0 | encode));
}
// duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x7C);
emit_int8((unsigned char)(0xC0 | encode));
}
// duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
assert(VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
emit_int8(0x7C);
emit_int8((unsigned char)(0xC0 | encode));
}
// Carry-Less Multiplication Quadword
void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
assert(VM_Version::supports_clmul(), "");
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x44);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8((unsigned char)mask);
}
// Carry-Less Multiplication Quadword
void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x44);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8((unsigned char)mask);
}
void Assembler::vzeroupper() {
assert(VM_Version::supports_avx(), "");
InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
(void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
emit_int8(0x77);
}
#ifndef _LP64
// 32bit only pieces of the assembler
void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
// NO PREFIX AS NEVER 64BIT
InstructionMark im(this);
emit_int8((unsigned char)0x81);
emit_int8((unsigned char)(0xF8 | src1->encoding()));
emit_data(imm32, rspec, 0);
}
void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
// NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
InstructionMark im(this);
emit_int8((unsigned char)0x81);
emit_operand(rdi, src1);
emit_data(imm32, rspec, 0);
}
// The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
// into rdx:rax. The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg8(Address adr) {
InstructionMark im(this);
emit_int8(0x0F);
emit_int8((unsigned char)0xC7);
emit_operand(rcx, adr);
}
void Assembler::decl(Register dst) {
// Don't use it directly. Use MacroAssembler::decrementl() instead.
emit_int8(0x48 | dst->encoding());
}
#endif // _LP64
// 64bit typically doesn't use the x87 but needs to for the trig funcs
void Assembler::fabs() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xE1);
}
void Assembler::fadd(int i) {
emit_farith(0xD8, 0xC0, i);
}
void Assembler::fadd_d(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xDC);
emit_operand32(rax, src);
}
void Assembler::fadd_s(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD8);
emit_operand32(rax, src);
}
void Assembler::fadda(int i) {
emit_farith(0xDC, 0xC0, i);
}
void Assembler::faddp(int i) {
emit_farith(0xDE, 0xC0, i);
}
void Assembler::fchs() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xE0);
}
void Assembler::fcom(int i) {
emit_farith(0xD8, 0xD0, i);
}
void Assembler::fcomp(int i) {
emit_farith(0xD8, 0xD8, i);
}
void Assembler::fcomp_d(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xDC);
emit_operand32(rbx, src);
}
void Assembler::fcomp_s(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD8);
emit_operand32(rbx, src);
}
void Assembler::fcompp() {
emit_int8((unsigned char)0xDE);
emit_int8((unsigned char)0xD9);
}
void Assembler::fcos() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xFF);
}
void Assembler::fdecstp() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xF6);
}
void Assembler::fdiv(int i) {
emit_farith(0xD8, 0xF0, i);
}
void Assembler::fdiv_d(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xDC);
emit_operand32(rsi, src);
}
void Assembler::fdiv_s(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD8);
emit_operand32(rsi, src);
}
void Assembler::fdiva(int i) {
emit_farith(0xDC, 0xF8, i);
}
// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
// is erroneous for some of the floating-point instructions below.
void Assembler::fdivp(int i) {
emit_farith(0xDE, 0xF8, i); // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
}
void Assembler::fdivr(int i) {
emit_farith(0xD8, 0xF8, i);
}
void Assembler::fdivr_d(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xDC);
emit_operand32(rdi, src);
}
void Assembler::fdivr_s(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD8);
emit_operand32(rdi, src);
}
void Assembler::fdivra(int i) {
emit_farith(0xDC, 0xF0, i);
}
void Assembler::fdivrp(int i) {
emit_farith(0xDE, 0xF0, i); // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
}
void Assembler::ffree(int i) {
emit_farith(0xDD, 0xC0, i);
}
void Assembler::fild_d(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDF);
emit_operand32(rbp, adr);
}
void Assembler::fild_s(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDB);
emit_operand32(rax, adr);
}
void Assembler::fincstp() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xF7);
}
void Assembler::finit() {
emit_int8((unsigned char)0x9B);
emit_int8((unsigned char)0xDB);
emit_int8((unsigned char)0xE3);
}
void Assembler::fist_s(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDB);
emit_operand32(rdx, adr);
}
void Assembler::fistp_d(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDF);
emit_operand32(rdi, adr);
}
void Assembler::fistp_s(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDB);
emit_operand32(rbx, adr);
}
void Assembler::fld1() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xE8);
}
void Assembler::fld_d(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDD);
emit_operand32(rax, adr);
}
void Assembler::fld_s(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xD9);
emit_operand32(rax, adr);
}
void Assembler::fld_s(int index) {
emit_farith(0xD9, 0xC0, index);
}
void Assembler::fld_x(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDB);
emit_operand32(rbp, adr);
}
void Assembler::fldcw(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD9);
emit_operand32(rbp, src);
}
void Assembler::fldenv(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD9);
emit_operand32(rsp, src);
}
void Assembler::fldlg2() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xEC);
}
void Assembler::fldln2() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xED);
}
void Assembler::fldz() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xEE);
}
void Assembler::flog() {
fldln2();
fxch();
fyl2x();
}
void Assembler::flog10() {
fldlg2();
fxch();
fyl2x();
}
void Assembler::fmul(int i) {
emit_farith(0xD8, 0xC8, i);
}
void Assembler::fmul_d(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xDC);
emit_operand32(rcx, src);
}
void Assembler::fmul_s(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD8);
emit_operand32(rcx, src);
}
void Assembler::fmula(int i) {
emit_farith(0xDC, 0xC8, i);
}
void Assembler::fmulp(int i) {
emit_farith(0xDE, 0xC8, i);
}
void Assembler::fnsave(Address dst) {
InstructionMark im(this);
emit_int8((unsigned char)0xDD);
emit_operand32(rsi, dst);
}
void Assembler::fnstcw(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0x9B);
emit_int8((unsigned char)0xD9);
emit_operand32(rdi, src);
}
void Assembler::fnstsw_ax() {
emit_int8((unsigned char)0xDF);
emit_int8((unsigned char)0xE0);
}
void Assembler::fprem() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xF8);
}
void Assembler::fprem1() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xF5);
}
void Assembler::frstor(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xDD);
emit_operand32(rsp, src);
}
void Assembler::fsin() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xFE);
}
void Assembler::fsqrt() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xFA);
}
void Assembler::fst_d(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDD);
emit_operand32(rdx, adr);
}
void Assembler::fst_s(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xD9);
emit_operand32(rdx, adr);
}
void Assembler::fstp_d(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDD);
emit_operand32(rbx, adr);
}
void Assembler::fstp_d(int index) {
emit_farith(0xDD, 0xD8, index);
}
void Assembler::fstp_s(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xD9);
emit_operand32(rbx, adr);
}
void Assembler::fstp_x(Address adr) {
InstructionMark im(this);
emit_int8((unsigned char)0xDB);
emit_operand32(rdi, adr);
}
void Assembler::fsub(int i) {
emit_farith(0xD8, 0xE0, i);
}
void Assembler::fsub_d(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xDC);
emit_operand32(rsp, src);
}
void Assembler::fsub_s(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD8);
emit_operand32(rsp, src);
}
void Assembler::fsuba(int i) {
emit_farith(0xDC, 0xE8, i);
}
void Assembler::fsubp(int i) {
emit_farith(0xDE, 0xE8, i); // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
}
void Assembler::fsubr(int i) {
emit_farith(0xD8, 0xE8, i);
}
void Assembler::fsubr_d(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xDC);
emit_operand32(rbp, src);
}
void Assembler::fsubr_s(Address src) {
InstructionMark im(this);
emit_int8((unsigned char)0xD8);
emit_operand32(rbp, src);
}
void Assembler::fsubra(int i) {
emit_farith(0xDC, 0xE0, i);
}
void Assembler::fsubrp(int i) {
emit_farith(0xDE, 0xE0, i); // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
}
void Assembler::ftan() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xF2);
emit_int8((unsigned char)0xDD);
emit_int8((unsigned char)0xD8);
}
void Assembler::ftst() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xE4);
}
void Assembler::fucomi(int i) {
// make sure the instruction is supported (introduced for P6, together with cmov)
guarantee(VM_Version::supports_cmov(), "illegal instruction");
emit_farith(0xDB, 0xE8, i);
}
void Assembler::fucomip(int i) {
// make sure the instruction is supported (introduced for P6, together with cmov)
guarantee(VM_Version::supports_cmov(), "illegal instruction");
emit_farith(0xDF, 0xE8, i);
}
void Assembler::fwait() {
emit_int8((unsigned char)0x9B);
}
void Assembler::fxch(int i) {
emit_farith(0xD9, 0xC8, i);
}
void Assembler::fyl2x() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xF1);
}
void Assembler::frndint() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xFC);
}
void Assembler::f2xm1() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xF0);
}
void Assembler::fldl2e() {
emit_int8((unsigned char)0xD9);
emit_int8((unsigned char)0xEA);
}
// SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
// SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
static int simd_opc[4] = { 0, 0, 0x38, 0x3A };
// Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
if (pre > 0) {
emit_int8(simd_pre[pre]);
}
if (rex_w) {
prefixq(adr, xreg);
} else {
prefix(adr, xreg);
}
if (opc > 0) {
emit_int8(0x0F);
int opc2 = simd_opc[opc];
if (opc2 > 0) {
emit_int8(opc2);
}
}
}
int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
if (pre > 0) {
emit_int8(simd_pre[pre]);
}
int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
if (opc > 0) {
emit_int8(0x0F);
int opc2 = simd_opc[opc];
if (opc2 > 0) {
emit_int8(opc2);
}
}
return encode;
}
void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
int vector_len = _attributes->get_vector_len();
bool vex_w = _attributes->is_rex_vex_w();
if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
prefix(VEX_3bytes);
int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
byte1 = (~byte1) & 0xE0;
byte1 |= opc;
emit_int8(byte1);
int byte2 = ((~nds_enc) & 0xf) << 3;
byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
emit_int8(byte2);
} else {
prefix(VEX_2bytes);
int byte1 = vex_r ? VEX_R : 0;
byte1 = (~byte1) & 0x80;
byte1 |= ((~nds_enc) & 0xf) << 3;
byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
emit_int8(byte1);
}
}
// This is a 4 byte encoding
void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
// EVEX 0x62 prefix
prefix(EVEX_4bytes);
bool vex_w = _attributes->is_rex_vex_w();
int evex_encoding = (vex_w ? VEX_W : 0);
// EVEX.b is not currently used for broadcast of single element or data rounding modes
_attributes->set_evex_encoding(evex_encoding);
// P0: byte 2, initialized to RXBR`00mm
// instead of not'd
int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
byte2 = (~byte2) & 0xF0;
// confine opc opcode extensions in mm bits to lower two bits
// of form {0F, 0F_38, 0F_3A}
byte2 |= opc;
emit_int8(byte2);
// P1: byte 3 as Wvvvv1pp
int byte3 = ((~nds_enc) & 0xf) << 3;
// p[10] is always 1
byte3 |= EVEX_F;
byte3 |= (vex_w & 1) << 7;
// confine pre opcode extensions in pp bits to lower two bits
// of form {66, F3, F2}
byte3 |= pre;
emit_int8(byte3);
// P2: byte 4 as zL'Lbv'aaa
int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
// EVEX.v` for extending EVEX.vvvv or VIDX
byte4 |= (evex_v ? 0: EVEX_V);
// third EXEC.b for broadcast actions
byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
// fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
// last is EVEX.z for zero/merge actions
byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
emit_int8(byte4);
}
void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
bool vex_b = adr.base_needs_rex();
bool vex_x = adr.index_needs_rex();
set_attributes(attributes);
attributes->set_current_assembler(this);
// if vector length is turned off, revert to AVX for vectors smaller than 512-bit
if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
switch (attributes->get_vector_len()) {
case AVX_128bit:
case AVX_256bit:
attributes->set_is_legacy_mode();
break;
}
}
if ((UseAVX > 2) && !attributes->is_legacy_mode())
{
bool evex_r = (xreg_enc >= 16);
bool evex_v = (nds_enc >= 16);
attributes->set_is_evex_instruction();
evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
} else {
vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
}
}
int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
bool vex_x = false;
set_attributes(attributes);
attributes->set_current_assembler(this);
// if vector length is turned off, revert to AVX for vectors smaller than 512-bit
if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
switch (attributes->get_vector_len()) {
case AVX_128bit:
case AVX_256bit:
if ((dst_enc >= 16) | (nds_enc >= 16) | (src_enc >= 16)) {
// up propagate arithmetic instructions to meet RA requirements
attributes->set_vector_len(AVX_512bit);
} else {
attributes->set_is_legacy_mode();
}
break;
}
}
if ((UseAVX > 2) && !attributes->is_legacy_mode())
{
bool evex_r = (dst_enc >= 16);
bool evex_v = (nds_enc >= 16);
// can use vex_x as bank extender on rm encoding
vex_x = (src_enc >= 16);
attributes->set_is_evex_instruction();
evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
} else {
vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
}
// return modrm byte components for operands
return (((dst_enc & 7) << 3) | (src_enc & 7));
}
void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
VexOpcode opc, InstructionAttr *attributes) {
if (UseAVX > 0) {
int xreg_enc = xreg->encoding();
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
} else {
assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
}
}
int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
VexOpcode opc, InstructionAttr *attributes) {
int dst_enc = dst->encoding();
int src_enc = src->encoding();
if (UseAVX > 0) {
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
} else {
assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
}
}
void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
assert(VM_Version::supports_avx(), "");
assert(!VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8((unsigned char)0xC2);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8((unsigned char)(0xF & cop));
}
void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
assert(VM_Version::supports_avx(), "");
assert(!VM_Version::supports_evex(), "");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8((unsigned char)0x4B);
emit_int8((unsigned char)(0xC0 | encode));
int src2_enc = src2->encoding();
emit_int8((unsigned char)(0xF0 & src2_enc<<4));
}
#ifndef _LP64
void Assembler::incl(Register dst) {
// Don't use it directly. Use MacroAssembler::incrementl() instead.
emit_int8(0x40 | dst->encoding());
}
void Assembler::lea(Register dst, Address src) {
leal(dst, src);
}
void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_int8((unsigned char)0xC7);
emit_operand(rax, dst);
emit_data((int)imm32, rspec, 0);
}
void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)(0xB8 | encode));
emit_data((int)imm32, rspec, 0);
}
void Assembler::popa() { // 32bit
emit_int8(0x61);
}
void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_int8(0x68);
emit_data(imm32, rspec, 0);
}
void Assembler::pusha() { // 32bit
emit_int8(0x60);
}
void Assembler::set_byte_if_not_zero(Register dst) {
emit_int8(0x0F);
emit_int8((unsigned char)0x95);
emit_int8((unsigned char)(0xE0 | dst->encoding()));
}
void Assembler::shldl(Register dst, Register src) {
emit_int8(0x0F);
emit_int8((unsigned char)0xA5);
emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
}
// 0F A4 / r ib
void Assembler::shldl(Register dst, Register src, int8_t imm8) {
emit_int8(0x0F);
emit_int8((unsigned char)0xA4);
emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
emit_int8(imm8);
}
void Assembler::shrdl(Register dst, Register src) {
emit_int8(0x0F);
emit_int8((unsigned char)0xAD);
emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
}
#else // LP64
void Assembler::set_byte_if_not_zero(Register dst) {
int enc = prefix_and_encode(dst->encoding(), true);
emit_int8(0x0F);
emit_int8((unsigned char)0x95);
emit_int8((unsigned char)(0xE0 | enc));
}
// 64bit only pieces of the assembler
// This should only be used by 64bit instructions that can use rip-relative
// it cannot be used by instructions that want an immediate value.
bool Assembler::reachable(AddressLiteral adr) {
int64_t disp;
// None will force a 64bit literal to the code stream. Likely a placeholder
// for something that will be patched later and we need to certain it will
// always be reachable.
if (adr.reloc() == relocInfo::none) {
return false;
}
if (adr.reloc() == relocInfo::internal_word_type) {
// This should be rip relative and easily reachable.
return true;
}
if (adr.reloc() == relocInfo::virtual_call_type ||
adr.reloc() == relocInfo::opt_virtual_call_type ||
adr.reloc() == relocInfo::static_call_type ||
adr.reloc() == relocInfo::static_stub_type ) {
// This should be rip relative within the code cache and easily
// reachable until we get huge code caches. (At which point
// ic code is going to have issues).
return true;
}
if (adr.reloc() != relocInfo::external_word_type &&
adr.reloc() != relocInfo::poll_return_type && // these are really external_word but need special
adr.reloc() != relocInfo::poll_type && // relocs to identify them
adr.reloc() != relocInfo::runtime_call_type ) {
return false;
}
// Stress the correction code
if (ForceUnreachable) {
// Must be runtimecall reloc, see if it is in the codecache
// Flipping stuff in the codecache to be unreachable causes issues
// with things like inline caches where the additional instructions
// are not handled.
if (CodeCache::find_blob(adr._target) == NULL) {
return false;
}
}
// For external_word_type/runtime_call_type if it is reachable from where we
// are now (possibly a temp buffer) and where we might end up
// anywhere in the codeCache then we are always reachable.
// This would have to change if we ever save/restore shared code
// to be more pessimistic.
disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
if (!is_simm32(disp)) return false;
disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
if (!is_simm32(disp)) return false;
disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
// Because rip relative is a disp + address_of_next_instruction and we
// don't know the value of address_of_next_instruction we apply a fudge factor
// to make sure we will be ok no matter the size of the instruction we get placed into.
// We don't have to fudge the checks above here because they are already worst case.
// 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
// + 4 because better safe than sorry.
const int fudge = 12 + 4;
if (disp < 0) {
disp -= fudge;
} else {
disp += fudge;
}
return is_simm32(disp);
}
// Check if the polling page is not reachable from the code cache using rip-relative
// addressing.
bool Assembler::is_polling_page_far() {
intptr_t addr = (intptr_t)os::get_polling_page();
return ForceUnreachable ||
!is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
!is_simm32(addr - (intptr_t)CodeCache::high_bound());
}
void Assembler::emit_data64(jlong data,
relocInfo::relocType rtype,
int format) {
if (rtype == relocInfo::none) {
emit_int64(data);
} else {
emit_data64(data, Relocation::spec_simple(rtype), format);
}
}
void Assembler::emit_data64(jlong data,
RelocationHolder const& rspec,
int format) {
assert(imm_operand == 0, "default format must be immediate in this file");
assert(imm_operand == format, "must be immediate");
assert(inst_mark() != NULL, "must be inside InstructionMark");
// Do not use AbstractAssembler::relocate, which is not intended for
// embedded words. Instead, relocate to the enclosing instruction.
code_section()->relocate(inst_mark(), rspec, format);
#ifdef ASSERT
check_relocation(rspec, format);
#endif
emit_int64(data);
}
int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
if (reg_enc >= 8) {
prefix(REX_B);
reg_enc -= 8;
} else if (byteinst && reg_enc >= 4) {
prefix(REX);
}
return reg_enc;
}
int Assembler::prefixq_and_encode(int reg_enc) {
if (reg_enc < 8) {
prefix(REX_W);
} else {
prefix(REX_WB);
reg_enc -= 8;
}
return reg_enc;
}
int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
if (dst_enc < 8) {
if (src_enc >= 8) {
prefix(REX_B);
src_enc -= 8;
} else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
prefix(REX);
}
} else {
if (src_enc < 8) {
prefix(REX_R);
} else {
prefix(REX_RB);
src_enc -= 8;
}
dst_enc -= 8;
}
return dst_enc << 3 | src_enc;
}
int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
if (dst_enc < 8) {
if (src_enc < 8) {
prefix(REX_W);
} else {
prefix(REX_WB);
src_enc -= 8;
}
} else {
if (src_enc < 8) {
prefix(REX_WR);
} else {
prefix(REX_WRB);
src_enc -= 8;
}
dst_enc -= 8;
}
return dst_enc << 3 | src_enc;
}
void Assembler::prefix(Register reg) {
if (reg->encoding() >= 8) {
prefix(REX_B);
}
}
void Assembler::prefix(Register dst, Register src, Prefix p) {
if (src->encoding() >= 8) {
p = (Prefix)(p | REX_B);
}
if (dst->encoding() >= 8) {
p = (Prefix)( p | REX_R);
}
if (p != Prefix_EMPTY) {
// do not generate an empty prefix
prefix(p);
}
}
void Assembler::prefix(Register dst, Address adr, Prefix p) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
} else {
prefix(REX_B);
}
} else {
if (adr.index_needs_rex()) {
assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
}
}
if (dst->encoding() >= 8) {
p = (Prefix)(p | REX_R);
}
if (p != Prefix_EMPTY) {
// do not generate an empty prefix
prefix(p);
}
}
void Assembler::prefix(Address adr) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_XB);
} else {
prefix(REX_B);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_X);
}
}
}
void Assembler::prefixq(Address adr) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WXB);
} else {
prefix(REX_WB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WX);
} else {
prefix(REX_W);
}
}
}
void Assembler::prefix(Address adr, Register reg, bool byteinst) {
if (reg->encoding() < 8) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_XB);
} else {
prefix(REX_B);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_X);
} else if (byteinst && reg->encoding() >= 4 ) {
prefix(REX);
}
}
} else {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_RXB);
} else {
prefix(REX_RB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_RX);
} else {
prefix(REX_R);
}
}
}
}
void Assembler::prefixq(Address adr, Register src) {
if (src->encoding() < 8) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WXB);
} else {
prefix(REX_WB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WX);
} else {
prefix(REX_W);
}
}
} else {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WRXB);
} else {
prefix(REX_WRB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WRX);
} else {
prefix(REX_WR);
}
}
}
}
void Assembler::prefix(Address adr, XMMRegister reg) {
if (reg->encoding() < 8) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_XB);
} else {
prefix(REX_B);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_X);
}
}
} else {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_RXB);
} else {
prefix(REX_RB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_RX);
} else {
prefix(REX_R);
}
}
}
}
void Assembler::prefixq(Address adr, XMMRegister src) {
if (src->encoding() < 8) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WXB);
} else {
prefix(REX_WB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WX);
} else {
prefix(REX_W);
}
}
} else {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WRXB);
} else {
prefix(REX_WRB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WRX);
} else {
prefix(REX_WR);
}
}
}
}
void Assembler::adcq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xD0, dst, imm32);
}
void Assembler::adcq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x13);
emit_operand(dst, src);
}
void Assembler::adcq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x13, 0xC0, dst, src);
}
void Assembler::addq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_arith_operand(0x81, rax, dst,imm32);
}
void Assembler::addq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_int8(0x01);
emit_operand(src, dst);
}
void Assembler::addq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xC0, dst, imm32);
}
void Assembler::addq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x03);
emit_operand(dst, src);
}
void Assembler::addq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x03, 0xC0, dst, src);
}
void Assembler::adcxq(Register dst, Register src) {
//assert(VM_Version::supports_adx(), "adx instructions not supported");
emit_int8((unsigned char)0x66);
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8(0x38);
emit_int8((unsigned char)0xF6);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::adoxq(Register dst, Register src) {
//assert(VM_Version::supports_adx(), "adx instructions not supported");
emit_int8((unsigned char)0xF3);
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8(0x38);
emit_int8((unsigned char)0xF6);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::andq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_int8((unsigned char)0x81);
emit_operand(rsp, dst, 4);
emit_int32(imm32);
}
void Assembler::andq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xE0, dst, imm32);
}
void Assembler::andq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x23);
emit_operand(dst, src);
}
void Assembler::andq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x23, 0xC0, dst, src);
}
void Assembler::andnq(Register dst, Register src1, Register src2) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF2);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::andnq(Register dst, Register src1, Address src2) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF2);
emit_operand(dst, src2);
}
void Assembler::bsfq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBC);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::bsrq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBD);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::bswapq(Register reg) {
int encode = prefixq_and_encode(reg->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)(0xC8 | encode));
}
void Assembler::blsiq(Register dst, Register src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::blsiq(Register dst, Address src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_operand(rbx, src);
}
void Assembler::blsmskq(Register dst, Register src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::blsmskq(Register dst, Address src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_operand(rdx, src);
}
void Assembler::blsrq(Register dst, Register src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::blsrq(Register dst, Address src) {
assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF3);
emit_operand(rcx, src);
}
void Assembler::cdqq() {
prefix(REX_W);
emit_int8((unsigned char)0x99);
}
void Assembler::clflush(Address adr) {
prefix(adr);
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_operand(rdi, adr);
}
void Assembler::cmovq(Condition cc, Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8(0x40 | cc);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cmovq(Condition cc, Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x0F);
emit_int8(0x40 | cc);
emit_operand(dst, src);
}
void Assembler::cmpq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_int8((unsigned char)0x81);
emit_operand(rdi, dst, 4);
emit_int32(imm32);
}
void Assembler::cmpq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xF8, dst, imm32);
}
void Assembler::cmpq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_int8(0x3B);
emit_operand(src, dst);
}
void Assembler::cmpq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x3B, 0xC0, dst, src);
}
void Assembler::cmpq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x3B);
emit_operand(dst, src);
}
void Assembler::cmpxchgq(Register reg, Address adr) {
InstructionMark im(this);
prefixq(adr, reg);
emit_int8(0x0F);
emit_int8((unsigned char)0xB1);
emit_operand(reg, adr);
}
void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x2A);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x2A);
emit_operand(dst, src);
}
void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x2A);
emit_operand(dst, src);
}
void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
emit_int8(0x2C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::cvttss2siq(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
emit_int8(0x2C);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::decl(Register dst) {
// Don't use it directly. Use MacroAssembler::decrementl() instead.
// Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xFF);
emit_int8((unsigned char)(0xC8 | encode));
}
void Assembler::decq(Register dst) {
// Don't use it directly. Use MacroAssembler::decrementq() instead.
// Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)0xFF);
emit_int8(0xC8 | encode);
}
void Assembler::decq(Address dst) {
// Don't use it directly. Use MacroAssembler::decrementq() instead.
InstructionMark im(this);
prefixq(dst);
emit_int8((unsigned char)0xFF);
emit_operand(rcx, dst);
}
void Assembler::fxrstor(Address src) {
prefixq(src);
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_operand(as_Register(1), src);
}
void Assembler::xrstor(Address src) {
prefixq(src);
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_operand(as_Register(5), src);
}
void Assembler::fxsave(Address dst) {
prefixq(dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_operand(as_Register(0), dst);
}
void Assembler::xsave(Address dst) {
prefixq(dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xAE);
emit_operand(as_Register(4), dst);
}
void Assembler::idivq(Register src) {
int encode = prefixq_and_encode(src->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xF8 | encode));
}
void Assembler::imulq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xAF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::imulq(Register dst, Register src, int value) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
if (is8bit(value)) {
emit_int8(0x6B);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(value & 0xFF);
} else {
emit_int8(0x69);
emit_int8((unsigned char)(0xC0 | encode));
emit_int32(value);
}
}
void Assembler::imulq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char) 0xAF);
emit_operand(dst, src);
}
void Assembler::incl(Register dst) {
// Don't use it directly. Use MacroAssembler::incrementl() instead.
// Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)0xFF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::incq(Register dst) {
// Don't use it directly. Use MacroAssembler::incrementq() instead.
// Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)0xFF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::incq(Address dst) {
// Don't use it directly. Use MacroAssembler::incrementq() instead.
InstructionMark im(this);
prefixq(dst);
emit_int8((unsigned char)0xFF);
emit_operand(rax, dst);
}
void Assembler::lea(Register dst, Address src) {
leaq(dst, src);
}
void Assembler::leaq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8((unsigned char)0x8D);
emit_operand(dst, src);
}
void Assembler::mov64(Register dst, int64_t imm64) {
InstructionMark im(this);
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)(0xB8 | encode));
emit_int64(imm64);
}
void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
InstructionMark im(this);
int encode = prefixq_and_encode(dst->encoding());
emit_int8(0xB8 | encode);
emit_data64(imm64, rspec);
}
void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
int encode = prefix_and_encode(dst->encoding());
emit_int8((unsigned char)(0xB8 | encode));
emit_data((int)imm32, rspec, narrow_oop_operand);
}
void Assembler::mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
prefix(dst);
emit_int8((unsigned char)0xC7);
emit_operand(rax, dst, 4);
emit_data((int)imm32, rspec, narrow_oop_operand);
}
void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
int encode = prefix_and_encode(src1->encoding());
emit_int8((unsigned char)0x81);
emit_int8((unsigned char)(0xF8 | encode));
emit_data((int)imm32, rspec, narrow_oop_operand);
}
void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
prefix(src1);
emit_int8((unsigned char)0x81);
emit_operand(rax, src1, 4);
emit_data((int)imm32, rspec, narrow_oop_operand);
}
void Assembler::lzcntq(Register dst, Register src) {
assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
emit_int8((unsigned char)0xF3);
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBD);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movdq(XMMRegister dst, Register src) {
// table D-1 says MMX/SSE2
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x6E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movdq(Register dst, XMMRegister src) {
// table D-1 says MMX/SSE2
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
// swap src/dst to get correct prefix
int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
emit_int8(0x7E);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8((unsigned char)0x8B);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8((unsigned char)0x8B);
emit_operand(dst, src);
}
void Assembler::movq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_int8((unsigned char)0x89);
emit_operand(src, dst);
}
void Assembler::movsbq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xBE);
emit_operand(dst, src);
}
void Assembler::movsbq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBE);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movslq(Register dst, int32_t imm32) {
// dbx shows movslq(rcx, 3) as movq $0x0000000049000000,(%rbx)
// and movslq(r8, 3); as movl $0x0000000048000000,(%rbx)
// as a result we shouldn't use until tested at runtime...
ShouldNotReachHere();
InstructionMark im(this);
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)(0xC7 | encode));
emit_int32(imm32);
}
void Assembler::movslq(Address dst, int32_t imm32) {
assert(is_simm32(imm32), "lost bits");
InstructionMark im(this);
prefixq(dst);
emit_int8((unsigned char)0xC7);
emit_operand(rax, dst, 4);
emit_int32(imm32);
}
void Assembler::movslq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x63);
emit_operand(dst, src);
}
void Assembler::movslq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x63);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movswq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x0F);
emit_int8((unsigned char)0xBF);
emit_operand(dst, src);
}
void Assembler::movswq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0xBF);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::movzbq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0xB6);
emit_operand(dst, src);
}
void Assembler::movzbq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xB6);
emit_int8(0xC0 | encode);
}
void Assembler::movzwq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0xB7);
emit_operand(dst, src);
}
void Assembler::movzwq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0xB7);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::mulq(Address src) {
InstructionMark im(this);
prefixq(src);
emit_int8((unsigned char)0xF7);
emit_operand(rsp, src);
}
void Assembler::mulq(Register src) {
int encode = prefixq_and_encode(src->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xE0 | encode));
}
void Assembler::mulxq(Register dst1, Register dst2, Register src) {
assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
emit_int8((unsigned char)0xF6);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::negq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xD8 | encode));
}
void Assembler::notq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xD0 | encode));
}
void Assembler::orq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_int8((unsigned char)0x81);
emit_operand(rcx, dst, 4);
emit_int32(imm32);
}
void Assembler::orq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xC8, dst, imm32);
}
void Assembler::orq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x0B);
emit_operand(dst, src);
}
void Assembler::orq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x0B, 0xC0, dst, src);
}
void Assembler::popa() { // 64bit
movq(r15, Address(rsp, 0));
movq(r14, Address(rsp, wordSize));
movq(r13, Address(rsp, 2 * wordSize));
movq(r12, Address(rsp, 3 * wordSize));
movq(r11, Address(rsp, 4 * wordSize));
movq(r10, Address(rsp, 5 * wordSize));
movq(r9, Address(rsp, 6 * wordSize));
movq(r8, Address(rsp, 7 * wordSize));
movq(rdi, Address(rsp, 8 * wordSize));
movq(rsi, Address(rsp, 9 * wordSize));
movq(rbp, Address(rsp, 10 * wordSize));
// skip rsp
movq(rbx, Address(rsp, 12 * wordSize));
movq(rdx, Address(rsp, 13 * wordSize));
movq(rcx, Address(rsp, 14 * wordSize));
movq(rax, Address(rsp, 15 * wordSize));
addq(rsp, 16 * wordSize);
}
void Assembler::popcntq(Register dst, Address src) {
assert(VM_Version::supports_popcnt(), "must support");
InstructionMark im(this);
emit_int8((unsigned char)0xF3);
prefixq(src, dst);
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0xB8);
emit_operand(dst, src);
}
void Assembler::popcntq(Register dst, Register src) {
assert(VM_Version::supports_popcnt(), "must support");
emit_int8((unsigned char)0xF3);
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0xB8);
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::popq(Address dst) {
InstructionMark im(this);
prefixq(dst);
emit_int8((unsigned char)0x8F);
emit_operand(rax, dst);
}
void Assembler::pusha() { // 64bit
// we have to store original rsp. ABI says that 128 bytes
// below rsp are local scratch.
movq(Address(rsp, -5 * wordSize), rsp);
subq(rsp, 16 * wordSize);
movq(Address(rsp, 15 * wordSize), rax);
movq(Address(rsp, 14 * wordSize), rcx);
movq(Address(rsp, 13 * wordSize), rdx);
movq(Address(rsp, 12 * wordSize), rbx);
// skip rsp
movq(Address(rsp, 10 * wordSize), rbp);
movq(Address(rsp, 9 * wordSize), rsi);
movq(Address(rsp, 8 * wordSize), rdi);
movq(Address(rsp, 7 * wordSize), r8);
movq(Address(rsp, 6 * wordSize), r9);
movq(Address(rsp, 5 * wordSize), r10);
movq(Address(rsp, 4 * wordSize), r11);
movq(Address(rsp, 3 * wordSize), r12);
movq(Address(rsp, 2 * wordSize), r13);
movq(Address(rsp, wordSize), r14);
movq(Address(rsp, 0), r15);
}
void Assembler::pushq(Address src) {
InstructionMark im(this);
prefixq(src);
emit_int8((unsigned char)0xFF);
emit_operand(rsi, src);
}
void Assembler::rclq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
if (imm8 == 1) {
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xD0 | encode));
} else {
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xD0 | encode));
emit_int8(imm8);
}
}
void Assembler::rcrq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
if (imm8 == 1) {
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xD8 | encode));
} else {
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xD8 | encode));
emit_int8(imm8);
}
}
void Assembler::rorq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
if (imm8 == 1) {
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xC8 | encode));
} else {
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xc8 | encode));
emit_int8(imm8);
}
}
void Assembler::rorxq(Register dst, Register src, int imm8) {
assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
emit_int8((unsigned char)0xF0);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
void Assembler::sarq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
if (imm8 == 1) {
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xF8 | encode));
} else {
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xF8 | encode));
emit_int8(imm8);
}
}
void Assembler::sarq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)0xD3);
emit_int8((unsigned char)(0xF8 | encode));
}
void Assembler::sbbq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_arith_operand(0x81, rbx, dst, imm32);
}
void Assembler::sbbq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xD8, dst, imm32);
}
void Assembler::sbbq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x1B);
emit_operand(dst, src);
}
void Assembler::sbbq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x1B, 0xC0, dst, src);
}
void Assembler::shlq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
if (imm8 == 1) {
emit_int8((unsigned char)0xD1);
emit_int8((unsigned char)(0xE0 | encode));
} else {
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xE0 | encode));
emit_int8(imm8);
}
}
void Assembler::shlq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)0xD3);
emit_int8((unsigned char)(0xE0 | encode));
}
void Assembler::shrq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)0xC1);
emit_int8((unsigned char)(0xE8 | encode));
emit_int8(imm8);
}
void Assembler::shrq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_int8((unsigned char)0xD3);
emit_int8(0xE8 | encode);
}
void Assembler::subq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_arith_operand(0x81, rbp, dst, imm32);
}
void Assembler::subq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_int8(0x29);
emit_operand(src, dst);
}
void Assembler::subq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xE8, dst, imm32);
}
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::subq_imm32(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith_imm32(0x81, 0xE8, dst, imm32);
}
void Assembler::subq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x2B);
emit_operand(dst, src);
}
void Assembler::subq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x2B, 0xC0, dst, src);
}
void Assembler::testq(Register dst, int32_t imm32) {
// not using emit_arith because test
// doesn't support sign-extension of
// 8bit operands
int encode = dst->encoding();
if (encode == 0) {
prefix(REX_W);
emit_int8((unsigned char)0xA9);
} else {
encode = prefixq_and_encode(encode);
emit_int8((unsigned char)0xF7);
emit_int8((unsigned char)(0xC0 | encode));
}
emit_int32(imm32);
}
void Assembler::testq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x85, 0xC0, dst, src);
}
void Assembler::xaddq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_int8(0x0F);
emit_int8((unsigned char)0xC1);
emit_operand(src, dst);
}
void Assembler::xchgq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8((unsigned char)0x87);
emit_operand(dst, src);
}
void Assembler::xchgq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8((unsigned char)0x87);
emit_int8((unsigned char)(0xc0 | encode));
}
void Assembler::xorq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x33, 0xC0, dst, src);
}
void Assembler::xorq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_int8(0x33);
emit_operand(dst, src);
}
#endif // !LP64