author | brutisso |
Thu, 31 May 2012 21:10:33 +0200 | |
changeset 12781 | dd6480eea079 |
parent 12158 | f24f2560da32 |
child 13195 | be27e1b6a4b9 |
permissions | -rw-r--r-- |
/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP #define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "utilities/debug.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/top.hpp" // A growable array. /*************************************************************************/ /* */ /* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */ /* */ /* Should you use GrowableArrays to contain handles you must be certain */ /* the the GrowableArray does not outlive the HandleMark that contains */ /* the handles. Since GrowableArrays are typically resource allocated */ /* the following is an example of INCORRECT CODE, */ /* */ /* ResourceMark rm; */ /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */ /* if (blah) { */ /* while (...) { */ /* HandleMark hm; */ /* ... */ /* Handle h(THREAD, some_oop); */ /* arr->append(h); */ /* } */ /* } */ /* if (arr->length() != 0 ) { */ /* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */ /* ... */ /* } */ /* */ /* If the GrowableArrays you are creating is C_Heap allocated then it */ /* hould not old handles since the handles could trivially try and */ /* outlive their HandleMark. In some situations you might need to do */ /* this and it would be legal but be very careful and see if you can do */ /* the code in some other manner. */ /* */ /*************************************************************************/ // To call default constructor the placement operator new() is used. // It should be empty (it only returns the passed void* pointer). // The definition of placement operator new(size_t, void*) in the <new>. #include <new> // Need the correct linkage to call qsort without warnings extern "C" { typedef int (*_sort_Fn)(const void *, const void *); } class GenericGrowableArray : public ResourceObj { friend class VMStructs; protected: int _len; // current length int _max; // maximum length Arena* _arena; // Indicates where allocation occurs: // 0 means default ResourceArea // 1 means on C heap // otherwise, allocate in _arena #ifdef ASSERT int _nesting; // resource area nesting at creation void set_nesting(); void check_nesting(); #else #define set_nesting(); #define check_nesting(); #endif // Where are we going to allocate memory? bool on_C_heap() { return _arena == (Arena*)1; } bool on_stack () { return _arena == NULL; } bool on_arena () { return _arena > (Arena*)1; } // This GA will use the resource stack for storage if c_heap==false, // Else it will use the C heap. Use clear_and_deallocate to avoid leaks. GenericGrowableArray(int initial_size, int initial_len, bool c_heap) { _len = initial_len; _max = initial_size; assert(_len >= 0 && _len <= _max, "initial_len too big"); _arena = (c_heap ? (Arena*)1 : NULL); set_nesting(); assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are"); assert(!on_stack() || (allocated_on_res_area() || allocated_on_stack()), "growable array must be on stack if elements are not on arena and not on C heap"); } // This GA will use the given arena for storage. // Consider using new(arena) GrowableArray<T> to allocate the header. GenericGrowableArray(Arena* arena, int initial_size, int initial_len) { _len = initial_len; _max = initial_size; assert(_len >= 0 && _len <= _max, "initial_len too big"); _arena = arena; assert(on_arena(), "arena has taken on reserved value 0 or 1"); // Relax next assert to allow object allocation on resource area, // on stack or embedded into an other object. assert(allocated_on_arena() || allocated_on_stack(), "growable array must be on arena or on stack if elements are on arena"); } void* raw_allocate(int elementSize); // some uses pass the Thread explicitly for speed (4990299 tuning) void* raw_allocate(Thread* thread, int elementSize) { assert(on_stack(), "fast ResourceObj path only"); return (void*)resource_allocate_bytes(thread, elementSize * _max); } }; template<class E> class GrowableArray : public GenericGrowableArray { friend class VMStructs; private: E* _data; // data array void grow(int j); void raw_at_put_grow(int i, const E& p, const E& fill); void clear_and_deallocate(); public: GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) { _data = (E*)raw_allocate(thread, sizeof(E)); for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E(); } GrowableArray(int initial_size, bool C_heap = false) : GenericGrowableArray(initial_size, 0, C_heap) { _data = (E*)raw_allocate(sizeof(E)); for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E(); } GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false) : GenericGrowableArray(initial_size, initial_len, C_heap) { _data = (E*)raw_allocate(sizeof(E)); int i = 0; for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler); for (; i < _max; i++) ::new ((void*)&_data[i]) E(); } GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) { _data = (E*)raw_allocate(sizeof(E)); int i = 0; for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler); for (; i < _max; i++) ::new ((void*)&_data[i]) E(); } GrowableArray() : GenericGrowableArray(2, 0, false) { _data = (E*)raw_allocate(sizeof(E)); ::new ((void*)&_data[0]) E(); ::new ((void*)&_data[1]) E(); } // Does nothing for resource and arena objects ~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); } void clear() { _len = 0; } int length() const { return _len; } void trunc_to(int l) { assert(l <= _len,"cannot increase length"); _len = l; } bool is_empty() const { return _len == 0; } bool is_nonempty() const { return _len != 0; } bool is_full() const { return _len == _max; } DEBUG_ONLY(E* data_addr() const { return _data; }) void print(); int append(const E& elem) { check_nesting(); if (_len == _max) grow(_len); int idx = _len++; _data[idx] = elem; return idx; } bool append_if_missing(const E& elem) { // Returns TRUE if elem is added. bool missed = !contains(elem); if (missed) append(elem); return missed; } E at(int i) const { assert(0 <= i && i < _len, "illegal index"); return _data[i]; } E* adr_at(int i) const { assert(0 <= i && i < _len, "illegal index"); return &_data[i]; } E first() const { assert(_len > 0, "empty list"); return _data[0]; } E top() const { assert(_len > 0, "empty list"); return _data[_len-1]; } void push(const E& elem) { append(elem); } E pop() { assert(_len > 0, "empty list"); return _data[--_len]; } void at_put(int i, const E& elem) { assert(0 <= i && i < _len, "illegal index"); _data[i] = elem; } E at_grow(int i, const E& fill = E()) { assert(0 <= i, "negative index"); check_nesting(); if (i >= _len) { if (i >= _max) grow(i); for (int j = _len; j <= i; j++) _data[j] = fill; _len = i+1; } return _data[i]; } void at_put_grow(int i, const E& elem, const E& fill = E()) { assert(0 <= i, "negative index"); check_nesting(); raw_at_put_grow(i, elem, fill); } bool contains(const E& elem) const { for (int i = 0; i < _len; i++) { if (_data[i] == elem) return true; } return false; } int find(const E& elem) const { for (int i = 0; i < _len; i++) { if (_data[i] == elem) return i; } return -1; } int find(void* token, bool f(void*, E)) const { for (int i = 0; i < _len; i++) { if (f(token, _data[i])) return i; } return -1; } int find_at_end(void* token, bool f(void*, E)) const { // start at the end of the array for (int i = _len-1; i >= 0; i--) { if (f(token, _data[i])) return i; } return -1; } void remove(const E& elem) { for (int i = 0; i < _len; i++) { if (_data[i] == elem) { for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j]; _len--; return; } } ShouldNotReachHere(); } // The order is preserved. void remove_at(int index) { assert(0 <= index && index < _len, "illegal index"); for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j]; _len--; } // The order is changed. void delete_at(int index) { assert(0 <= index && index < _len, "illegal index"); if (index < --_len) { // Replace removed element with last one. _data[index] = _data[_len]; } } // inserts the given element before the element at index i void insert_before(const int idx, const E& elem) { check_nesting(); if (_len == _max) grow(_len); for (int j = _len - 1; j >= idx; j--) { _data[j + 1] = _data[j]; } _len++; _data[idx] = elem; } void appendAll(const GrowableArray<E>* l) { for (int i = 0; i < l->_len; i++) { raw_at_put_grow(_len, l->_data[i], 0); } } void sort(int f(E*,E*)) { qsort(_data, length(), sizeof(E), (_sort_Fn)f); } // sort by fixed-stride sub arrays: void sort(int f(E*,E*), int stride) { qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f); } }; // Global GrowableArray methods (one instance in the library per each 'E' type). template<class E> void GrowableArray<E>::grow(int j) { // grow the array by doubling its size (amortized growth) int old_max = _max; if (_max == 0) _max = 1; // prevent endless loop while (j >= _max) _max = _max*2; // j < _max E* newData = (E*)raw_allocate(sizeof(E)); int i = 0; for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]); for ( ; i < _max; i++) ::new ((void*)&newData[i]) E(); for (i = 0; i < old_max; i++) _data[i].~E(); if (on_C_heap() && _data != NULL) { FreeHeap(_data); } _data = newData; } template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) { if (i >= _len) { if (i >= _max) grow(i); for (int j = _len; j < i; j++) _data[j] = fill; _len = i+1; } _data[i] = p; } // This function clears and deallocate the data in the growable array that // has been allocated on the C heap. It's not public - called by the // destructor. template<class E> void GrowableArray<E>::clear_and_deallocate() { assert(on_C_heap(), "clear_and_deallocate should only be called when on C heap"); clear(); if (_data != NULL) { for (int i = 0; i < _max; i++) _data[i].~E(); FreeHeap(_data); _data = NULL; } } template<class E> void GrowableArray<E>::print() { tty->print("Growable Array " INTPTR_FORMAT, this); tty->print(": length %ld (_max %ld) { ", _len, _max); for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i])); tty->print("}\n"); } #endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP