/*
* Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2015 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_PPC_VM_NATIVEINST_PPC_HPP
#define CPU_PPC_VM_NATIVEINST_PPC_HPP
#include "asm/assembler.hpp"
#include "asm/macroAssembler.hpp"
#include "memory/allocation.hpp"
#include "runtime/icache.hpp"
#include "runtime/os.hpp"
#include "utilities/top.hpp"
// We have interfaces for the following instructions:
//
// - NativeInstruction
// - NativeCall
// - NativeFarCall
// - NativeMovConstReg
// - NativeJump
// - NativeIllegalInstruction
// - NativeConditionalFarBranch
// - NativeCallTrampolineStub
// The base class for different kinds of native instruction abstractions.
// It provides the primitive operations to manipulate code relative to this.
class NativeInstruction VALUE_OBJ_CLASS_SPEC {
friend class Relocation;
public:
bool is_jump() { return Assembler::is_b(long_at(0)); } // See NativeGeneralJump.
bool is_sigtrap_ic_miss_check() {
assert(UseSIGTRAP, "precondition");
return MacroAssembler::is_trap_ic_miss_check(long_at(0));
}
bool is_sigtrap_null_check() {
assert(UseSIGTRAP && TrapBasedNullChecks, "precondition");
return MacroAssembler::is_trap_null_check(long_at(0));
}
// We use a special trap for marking a method as not_entrant or zombie
// iff UseSIGTRAP.
bool is_sigtrap_zombie_not_entrant() {
assert(UseSIGTRAP, "precondition");
return MacroAssembler::is_trap_zombie_not_entrant(long_at(0));
}
// We use an illtrap for marking a method as not_entrant or zombie
// iff !UseSIGTRAP.
bool is_sigill_zombie_not_entrant() {
assert(!UseSIGTRAP, "precondition");
// Work around a C++ compiler bug which changes 'this'.
return NativeInstruction::is_sigill_zombie_not_entrant_at(addr_at(0));
}
static bool is_sigill_zombie_not_entrant_at(address addr);
#ifdef COMPILER2
// SIGTRAP-based implicit range checks
bool is_sigtrap_range_check() {
assert(UseSIGTRAP && TrapBasedRangeChecks, "precondition");
return MacroAssembler::is_trap_range_check(long_at(0));
}
#endif
// 'should not reach here'.
bool is_sigtrap_should_not_reach_here() {
return MacroAssembler::is_trap_should_not_reach_here(long_at(0));
}
bool is_safepoint_poll() {
// Is the current instruction a POTENTIAL read access to the polling page?
// The current arguments of the instruction are not checked!
return MacroAssembler::is_load_from_polling_page(long_at(0), NULL);
}
bool is_memory_serialization(JavaThread *thread, void *ucontext) {
// Is the current instruction a write access of thread to the
// memory serialization page?
return MacroAssembler::is_memory_serialization(long_at(0), thread, ucontext);
}
address get_stack_bang_address(void *ucontext) {
// If long_at(0) is not a stack bang, return 0. Otherwise, return
// banged address.
return MacroAssembler::get_stack_bang_address(long_at(0), ucontext);
}
protected:
address addr_at(int offset) const { return address(this) + offset; }
int long_at(int offset) const { return *(int*)addr_at(offset); }
public:
void verify() NOT_DEBUG_RETURN;
};
inline NativeInstruction* nativeInstruction_at(address address) {
NativeInstruction* inst = (NativeInstruction*)address;
inst->verify();
return inst;
}
// The NativeCall is an abstraction for accessing/manipulating call
// instructions. It is used to manipulate inline caches, primitive &
// dll calls, etc.
//
// Sparc distinguishes `NativeCall' and `NativeFarCall'. On PPC64,
// at present, we provide a single class `NativeCall' representing the
// sequence `load_const, mtctr, bctrl' or the sequence 'ld_from_toc,
// mtctr, bctrl'.
class NativeCall: public NativeInstruction {
public:
enum ppc_specific_constants {
load_const_instruction_size = 28,
load_const_from_method_toc_instruction_size = 16,
instruction_size = 16 // Used in shared code for calls with reloc_info.
};
static bool is_call_at(address a) {
return Assembler::is_bl(*(int*)(a));
}
static bool is_call_before(address return_address) {
return NativeCall::is_call_at(return_address - 4);
}
address instruction_address() const {
return addr_at(0);
}
address next_instruction_address() const {
// We have only bl.
assert(MacroAssembler::is_bl(*(int*)instruction_address()), "Should be bl instruction!");
return addr_at(4);
}
address return_address() const {
return next_instruction_address();
}
address destination() const;
// The parameter assert_lock disables the assertion during code generation.
void set_destination_mt_safe(address dest, bool assert_lock = true);
address get_trampoline();
void verify_alignment() {} // do nothing on ppc
void verify() NOT_DEBUG_RETURN;
};
inline NativeCall* nativeCall_at(address instr) {
NativeCall* call = (NativeCall*)instr;
call->verify();
return call;
}
inline NativeCall* nativeCall_before(address return_address) {
NativeCall* call = NULL;
if (MacroAssembler::is_bl(*(int*)(return_address - 4)))
call = (NativeCall*)(return_address - 4);
call->verify();
return call;
}
// The NativeFarCall is an abstraction for accessing/manipulating native
// call-anywhere instructions.
// Used to call native methods which may be loaded anywhere in the address
// space, possibly out of reach of a call instruction.
class NativeFarCall: public NativeInstruction {
public:
// We use MacroAssembler::bl64_patchable() for implementing a
// call-anywhere instruction.
// Checks whether instr points at a NativeFarCall instruction.
static bool is_far_call_at(address instr) {
return MacroAssembler::is_bl64_patchable_at(instr);
}
// Does the NativeFarCall implementation use a pc-relative encoding
// of the call destination?
// Used when relocating code.
bool is_pcrelative() {
assert(MacroAssembler::is_bl64_patchable_at((address)this),
"unexpected call type");
return MacroAssembler::is_bl64_patchable_pcrelative_at((address)this);
}
// Returns the NativeFarCall's destination.
address destination() const {
assert(MacroAssembler::is_bl64_patchable_at((address)this),
"unexpected call type");
return MacroAssembler::get_dest_of_bl64_patchable_at((address)this);
}
// Sets the NativeCall's destination, not necessarily mt-safe.
// Used when relocating code.
void set_destination(address dest) {
// Set new destination (implementation of call may change here).
assert(MacroAssembler::is_bl64_patchable_at((address)this),
"unexpected call type");
MacroAssembler::set_dest_of_bl64_patchable_at((address)this, dest);
}
void verify() NOT_DEBUG_RETURN;
};
// Instantiates a NativeFarCall object starting at the given instruction
// address and returns the NativeFarCall object.
inline NativeFarCall* nativeFarCall_at(address instr) {
NativeFarCall* call = (NativeFarCall*)instr;
call->verify();
return call;
}
// An interface for accessing/manipulating native set_oop imm, reg instructions
// (used to manipulate inlined data references, etc.).
class NativeMovConstReg: public NativeInstruction {
public:
enum ppc_specific_constants {
load_const_instruction_size = 20,
load_const_from_method_toc_instruction_size = 8,
instruction_size = 8 // Used in shared code for calls with reloc_info.
};
address instruction_address() const {
return addr_at(0);
}
address next_instruction_address() const;
// (The [set_]data accessor respects oop_type relocs also.)
intptr_t data() const;
// Patch the code stream.
address set_data_plain(intptr_t x, CodeBlob *code);
// Patch the code stream and oop pool.
void set_data(intptr_t x);
// Patch narrow oop constants. Use this also for narrow klass.
void set_narrow_oop(narrowOop data, CodeBlob *code = NULL);
void verify() NOT_DEBUG_RETURN;
};
inline NativeMovConstReg* nativeMovConstReg_at(address address) {
NativeMovConstReg* test = (NativeMovConstReg*)address;
test->verify();
return test;
}
// The NativeJump is an abstraction for accessing/manipulating native
// jump-anywhere instructions.
class NativeJump: public NativeInstruction {
public:
// We use MacroAssembler::b64_patchable() for implementing a
// jump-anywhere instruction.
enum ppc_specific_constants {
instruction_size = MacroAssembler::b64_patchable_size
};
// Checks whether instr points at a NativeJump instruction.
static bool is_jump_at(address instr) {
return MacroAssembler::is_b64_patchable_at(instr)
|| ( MacroAssembler::is_load_const_from_method_toc_at(instr)
&& Assembler::is_mtctr(*(int*)(instr + 2 * 4))
&& Assembler::is_bctr(*(int*)(instr + 3 * 4)));
}
// Does the NativeJump implementation use a pc-relative encoding
// of the call destination?
// Used when relocating code or patching jumps.
bool is_pcrelative() {
return MacroAssembler::is_b64_patchable_pcrelative_at((address)this);
}
// Returns the NativeJump's destination.
address jump_destination() const {
if (MacroAssembler::is_b64_patchable_at((address)this)) {
return MacroAssembler::get_dest_of_b64_patchable_at((address)this);
} else if (MacroAssembler::is_load_const_from_method_toc_at((address)this)
&& Assembler::is_mtctr(*(int*)((address)this + 2 * 4))
&& Assembler::is_bctr(*(int*)((address)this + 3 * 4))) {
return (address)((NativeMovConstReg *)this)->data();
} else {
ShouldNotReachHere();
return NULL;
}
}
// Sets the NativeJump's destination, not necessarily mt-safe.
// Used when relocating code or patching jumps.
void set_jump_destination(address dest) {
// Set new destination (implementation of call may change here).
if (MacroAssembler::is_b64_patchable_at((address)this)) {
MacroAssembler::set_dest_of_b64_patchable_at((address)this, dest);
} else if (MacroAssembler::is_load_const_from_method_toc_at((address)this)
&& Assembler::is_mtctr(*(int*)((address)this + 2 * 4))
&& Assembler::is_bctr(*(int*)((address)this + 3 * 4))) {
((NativeMovConstReg *)this)->set_data((intptr_t)dest);
} else {
ShouldNotReachHere();
}
}
// MT-safe insertion of native jump at verified method entry
static void patch_verified_entry(address entry, address verified_entry, address dest);
void verify() NOT_DEBUG_RETURN;
static void check_verified_entry_alignment(address entry, address verified_entry) {
// We just patch one instruction on ppc64, so the jump doesn't have to
// be aligned. Nothing to do here.
}
};
// Instantiates a NativeJump object starting at the given instruction
// address and returns the NativeJump object.
inline NativeJump* nativeJump_at(address instr) {
NativeJump* call = (NativeJump*)instr;
call->verify();
return call;
}
// NativeConditionalFarBranch is abstraction for accessing/manipulating
// conditional far branches.
class NativeConditionalFarBranch : public NativeInstruction {
public:
static bool is_conditional_far_branch_at(address instr) {
return MacroAssembler::is_bc_far_at(instr);
}
address branch_destination() const {
return MacroAssembler::get_dest_of_bc_far_at((address)this);
}
void set_branch_destination(address dest) {
MacroAssembler::set_dest_of_bc_far_at((address)this, dest);
}
};
inline NativeConditionalFarBranch* NativeConditionalFarBranch_at(address address) {
assert(NativeConditionalFarBranch::is_conditional_far_branch_at(address),
"must be a conditional far branch");
return (NativeConditionalFarBranch*)address;
}
// Call trampoline stubs.
class NativeCallTrampolineStub : public NativeInstruction {
private:
address encoded_destination_addr() const;
public:
address destination(nmethod *nm = NULL) const;
int destination_toc_offset() const;
void set_destination(address new_destination);
};
// Note: Other stubs must not begin with this pattern.
inline bool is_NativeCallTrampolineStub_at(address address) {
int first_instr = *(int*)address;
// calculate_address_from_global_toc and long form of ld_largeoffset_unchecked begin with addis with target R12
if (Assembler::is_addis(first_instr) &&
(Register)(intptr_t)Assembler::inv_rt_field(first_instr) == R12_scratch2) return true;
// short form of ld_largeoffset_unchecked is ld which is followed by mtctr
int second_instr = *((int*)address + 1);
if (Assembler::is_ld(first_instr) &&
(Register)(intptr_t)Assembler::inv_rt_field(first_instr) == R12_scratch2 &&
Assembler::is_mtctr(second_instr) &&
(Register)(intptr_t)Assembler::inv_rs_field(second_instr) == R12_scratch2) return true;
return false;
}
inline NativeCallTrampolineStub* NativeCallTrampolineStub_at(address address) {
assert(is_NativeCallTrampolineStub_at(address), "no call trampoline found");
return (NativeCallTrampolineStub*)address;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
//-------------------------------------
// N a t i v e G e n e r a l J u m p
//-------------------------------------
// Despite the name, handles only simple branches.
class NativeGeneralJump;
inline NativeGeneralJump* nativeGeneralJump_at(address address);
// Currently only implemented as single unconditional branch.
class NativeGeneralJump: public NativeInstruction {
public:
enum PPC64_specific_constants {
instruction_size = 4
};
address instruction_address() const { return addr_at(0); }
// Creation.
friend inline NativeGeneralJump* nativeGeneralJump_at(address addr) {
NativeGeneralJump* jump = (NativeGeneralJump*)(addr);
DEBUG_ONLY( jump->verify(); )
return jump;
}
// Insertion of native general jump instruction.
static void insert_unconditional(address code_pos, address entry);
address jump_destination() const {
DEBUG_ONLY( verify(); )
return addr_at(0) + Assembler::inv_li_field(long_at(0));
}
void set_jump_destination(address dest) {
DEBUG_ONLY( verify(); )
insert_unconditional(addr_at(0), dest);
}
static void replace_mt_safe(address instr_addr, address code_buffer);
void verify() const { guarantee(Assembler::is_b(long_at(0)), "invalid NativeGeneralJump"); }
};
// An interface for accessing/manipulating native load int (load_const32).
class NativeMovRegMem;
inline NativeMovRegMem* nativeMovRegMem_at(address address);
class NativeMovRegMem: public NativeInstruction {
public:
enum PPC64_specific_constants {
instruction_size = 8
};
address instruction_address() const { return addr_at(0); }
intptr_t offset() const {
#ifdef VM_LITTLE_ENDIAN
short *hi_ptr = (short*)(addr_at(0));
short *lo_ptr = (short*)(addr_at(4));
#else
short *hi_ptr = (short*)(addr_at(0) + 2);
short *lo_ptr = (short*)(addr_at(4) + 2);
#endif
return ((*hi_ptr) << 16) | ((*lo_ptr) & 0xFFFF);
}
void set_offset(intptr_t x) {
#ifdef VM_LITTLE_ENDIAN
short *hi_ptr = (short*)(addr_at(0));
short *lo_ptr = (short*)(addr_at(4));
#else
short *hi_ptr = (short*)(addr_at(0) + 2);
short *lo_ptr = (short*)(addr_at(4) + 2);
#endif
*hi_ptr = x >> 16;
*lo_ptr = x & 0xFFFF;
ICache::ppc64_flush_icache_bytes(addr_at(0), NativeMovRegMem::instruction_size);
}
void add_offset_in_bytes(intptr_t radd_offset) {
set_offset(offset() + radd_offset);
}
void verify() const {
guarantee(Assembler::is_lis(long_at(0)), "load_const32 1st instr");
guarantee(Assembler::is_ori(long_at(4)), "load_const32 2nd instr");
}
private:
friend inline NativeMovRegMem* nativeMovRegMem_at(address address) {
NativeMovRegMem* test = (NativeMovRegMem*)address;
DEBUG_ONLY( test->verify(); )
return test;
}
};
#endif // CPU_PPC_VM_NATIVEINST_PPC_HPP