8075118: JVM stuck in infinite loop during verification
Summary: keep a list of handlers to prevent the same handler from being scanned repeatedly.
Reviewed-by: dlong, dholmes
/*
* Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CLASSFILE_VERIFIER_HPP
#define SHARE_VM_CLASSFILE_VERIFIER_HPP
#include "classfile/verificationType.hpp"
#include "memory/gcLocker.hpp"
#include "oops/klass.hpp"
#include "oops/method.hpp"
#include "runtime/handles.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/exceptions.hpp"
// The verifier class
class Verifier : AllStatic {
public:
enum {
STRICTER_ACCESS_CTRL_CHECK_VERSION = 49,
STACKMAP_ATTRIBUTE_MAJOR_VERSION = 50,
INVOKEDYNAMIC_MAJOR_VERSION = 51,
NO_RELAX_ACCESS_CTRL_CHECK_VERSION = 52
};
typedef enum { ThrowException, NoException } Mode;
/**
* Verify the bytecodes for a class. If 'throw_exception' is true
* then the appropriate VerifyError or ClassFormatError will be thrown.
* Otherwise, no exception is thrown and the return indicates the
* error.
*/
static bool verify(instanceKlassHandle klass, Mode mode, bool should_verify_class, TRAPS);
// Return false if the class is loaded by the bootstrap loader,
// or if defineClass was called requesting skipping verification
// -Xverify:all/none override this value
static bool should_verify_for(oop class_loader, bool should_verify_class);
// Relax certain verifier checks to enable some broken 1.1 apps to run on 1.2.
static bool relax_verify_for(oop class_loader);
private:
static bool is_eligible_for_verification(instanceKlassHandle klass, bool should_verify_class);
static Symbol* inference_verify(
instanceKlassHandle klass, char* msg, size_t msg_len, TRAPS);
};
class RawBytecodeStream;
class StackMapFrame;
class StackMapTable;
// Summary of verifier's memory usage:
// StackMapTable is stack allocated.
// StackMapFrame are resource allocated. There is only one ResourceMark
// for each class verification, which is created at the top level.
// There is one mutable StackMapFrame (current_frame) which is updated
// by abstract bytecode interpretation. frame_in_exception_handler() returns
// a frame that has a mutable one-item stack (ready for pushing the
// catch type exception object). All the other StackMapFrame's
// are immutable (including their locals and stack arrays) after
// their constructions.
// locals/stack arrays in StackMapFrame are resource allocated.
// locals/stack arrays can be shared between StackMapFrame's, except
// the mutable StackMapFrame (current_frame).
// These macros are used similarly to CHECK macros but also check
// the status of the verifier and return if that has an error.
#define CHECK_VERIFY(verifier) \
CHECK); if ((verifier)->has_error()) return; ((void)0
#define CHECK_VERIFY_(verifier, result) \
CHECK_(result)); if ((verifier)->has_error()) return (result); ((void)0
class TypeOrigin VALUE_OBJ_CLASS_SPEC {
private:
typedef enum {
CF_LOCALS, // Comes from the current frame locals
CF_STACK, // Comes from the current frame expression stack
SM_LOCALS, // Comes from stackmap locals
SM_STACK, // Comes from stackmap expression stack
CONST_POOL, // Comes from the constant pool
SIG, // Comes from method signature
IMPLICIT, // Comes implicitly from code or context
BAD_INDEX, // No type, but the index is bad
FRAME_ONLY, // No type, context just contains the frame
NONE
} Origin;
Origin _origin;
u2 _index; // local, stack, or constant pool index
StackMapFrame* _frame; // source frame if CF or SM
VerificationType _type; // The actual type
TypeOrigin(
Origin origin, u2 index, StackMapFrame* frame, VerificationType type)
: _origin(origin), _index(index), _frame(frame), _type(type) {}
public:
TypeOrigin() : _origin(NONE), _index(0), _frame(NULL) {}
static TypeOrigin null();
static TypeOrigin local(u2 index, StackMapFrame* frame);
static TypeOrigin stack(u2 index, StackMapFrame* frame);
static TypeOrigin sm_local(u2 index, StackMapFrame* frame);
static TypeOrigin sm_stack(u2 index, StackMapFrame* frame);
static TypeOrigin cp(u2 index, VerificationType vt);
static TypeOrigin signature(VerificationType vt);
static TypeOrigin bad_index(u2 index);
static TypeOrigin implicit(VerificationType t);
static TypeOrigin frame(StackMapFrame* frame);
void reset_frame();
void details(outputStream* ss) const;
void print_frame(outputStream* ss) const;
const StackMapFrame* frame() const { return _frame; }
bool is_valid() const { return _origin != NONE; }
u2 index() const { return _index; }
#ifdef ASSERT
void print_on(outputStream* str) const;
#endif
};
class ErrorContext VALUE_OBJ_CLASS_SPEC {
private:
typedef enum {
INVALID_BYTECODE, // There was a problem with the bytecode
WRONG_TYPE, // Type value was not as expected
FLAGS_MISMATCH, // Frame flags are not assignable
BAD_CP_INDEX, // Invalid constant pool index
BAD_LOCAL_INDEX, // Invalid local index
LOCALS_SIZE_MISMATCH, // Frames have differing local counts
STACK_SIZE_MISMATCH, // Frames have different stack sizes
STACK_OVERFLOW, // Attempt to push onto a full expression stack
STACK_UNDERFLOW, // Attempt to pop and empty expression stack
MISSING_STACKMAP, // No stackmap for this location and there should be
BAD_STACKMAP, // Format error in stackmap
NO_FAULT, // No error
UNKNOWN
} FaultType;
int _bci;
FaultType _fault;
TypeOrigin _type;
TypeOrigin _expected;
ErrorContext(int bci, FaultType fault) :
_bci(bci), _fault(fault) {}
ErrorContext(int bci, FaultType fault, TypeOrigin type) :
_bci(bci), _fault(fault), _type(type) {}
ErrorContext(int bci, FaultType fault, TypeOrigin type, TypeOrigin exp) :
_bci(bci), _fault(fault), _type(type), _expected(exp) {}
public:
ErrorContext() : _bci(-1), _fault(NO_FAULT) {}
static ErrorContext bad_code(u2 bci) {
return ErrorContext(bci, INVALID_BYTECODE);
}
static ErrorContext bad_type(u2 bci, TypeOrigin type) {
return ErrorContext(bci, WRONG_TYPE, type);
}
static ErrorContext bad_type(u2 bci, TypeOrigin type, TypeOrigin exp) {
return ErrorContext(bci, WRONG_TYPE, type, exp);
}
static ErrorContext bad_flags(u2 bci, StackMapFrame* frame) {
return ErrorContext(bci, FLAGS_MISMATCH, TypeOrigin::frame(frame));
}
static ErrorContext bad_flags(u2 bci, StackMapFrame* cur, StackMapFrame* sm) {
return ErrorContext(bci, FLAGS_MISMATCH,
TypeOrigin::frame(cur), TypeOrigin::frame(sm));
}
static ErrorContext bad_cp_index(u2 bci, u2 index) {
return ErrorContext(bci, BAD_CP_INDEX, TypeOrigin::bad_index(index));
}
static ErrorContext bad_local_index(u2 bci, u2 index) {
return ErrorContext(bci, BAD_LOCAL_INDEX, TypeOrigin::bad_index(index));
}
static ErrorContext locals_size_mismatch(
u2 bci, StackMapFrame* frame0, StackMapFrame* frame1) {
return ErrorContext(bci, LOCALS_SIZE_MISMATCH,
TypeOrigin::frame(frame0), TypeOrigin::frame(frame1));
}
static ErrorContext stack_size_mismatch(
u2 bci, StackMapFrame* frame0, StackMapFrame* frame1) {
return ErrorContext(bci, STACK_SIZE_MISMATCH,
TypeOrigin::frame(frame0), TypeOrigin::frame(frame1));
}
static ErrorContext stack_overflow(u2 bci, StackMapFrame* frame) {
return ErrorContext(bci, STACK_OVERFLOW, TypeOrigin::frame(frame));
}
static ErrorContext stack_underflow(u2 bci, StackMapFrame* frame) {
return ErrorContext(bci, STACK_UNDERFLOW, TypeOrigin::frame(frame));
}
static ErrorContext missing_stackmap(u2 bci) {
return ErrorContext(bci, MISSING_STACKMAP);
}
static ErrorContext bad_stackmap(int index, StackMapFrame* frame) {
return ErrorContext(0, BAD_STACKMAP, TypeOrigin::frame(frame));
}
bool is_valid() const { return _fault != NO_FAULT; }
int bci() const { return _bci; }
void reset_frames() {
_type.reset_frame();
_expected.reset_frame();
}
void details(outputStream* ss, const Method* method) const;
#ifdef ASSERT
void print_on(outputStream* str) const {
str->print("error_context(%d, %d,", _bci, _fault);
_type.print_on(str);
str->print(",");
_expected.print_on(str);
str->print(")");
}
#endif
private:
void location_details(outputStream* ss, const Method* method) const;
void reason_details(outputStream* ss) const;
void frame_details(outputStream* ss) const;
void bytecode_details(outputStream* ss, const Method* method) const;
void handler_details(outputStream* ss, const Method* method) const;
void stackmap_details(outputStream* ss, const Method* method) const;
};
// A new instance of this class is created for each class being verified
class ClassVerifier : public StackObj {
private:
Thread* _thread;
GrowableArray<Symbol*>* _symbols; // keep a list of symbols created
Symbol* _exception_type;
char* _message;
ErrorContext _error_context; // contains information about an error
void verify_method(methodHandle method, TRAPS);
char* generate_code_data(methodHandle m, u4 code_length, TRAPS);
void verify_exception_handler_table(u4 code_length, char* code_data,
int& min, int& max, TRAPS);
void verify_local_variable_table(u4 code_length, char* code_data, TRAPS);
VerificationType cp_ref_index_to_type(
int index, constantPoolHandle cp, TRAPS) {
return cp_index_to_type(cp->klass_ref_index_at(index), cp, THREAD);
}
bool is_protected_access(
instanceKlassHandle this_class, Klass* target_class,
Symbol* field_name, Symbol* field_sig, bool is_method);
void verify_cp_index(u2 bci, constantPoolHandle cp, int index, TRAPS);
void verify_cp_type(u2 bci, int index, constantPoolHandle cp,
unsigned int types, TRAPS);
void verify_cp_class_type(u2 bci, int index, constantPoolHandle cp, TRAPS);
u2 verify_stackmap_table(
u2 stackmap_index, u2 bci, StackMapFrame* current_frame,
StackMapTable* stackmap_table, bool no_control_flow, TRAPS);
void verify_exception_handler_targets(
u2 bci, bool this_uninit, StackMapFrame* current_frame,
StackMapTable* stackmap_table, TRAPS);
void verify_ldc(
int opcode, u2 index, StackMapFrame *current_frame,
constantPoolHandle cp, u2 bci, TRAPS);
void verify_switch(
RawBytecodeStream* bcs, u4 code_length, char* code_data,
StackMapFrame* current_frame, StackMapTable* stackmap_table, TRAPS);
void verify_field_instructions(
RawBytecodeStream* bcs, StackMapFrame* current_frame,
constantPoolHandle cp, bool allow_arrays, TRAPS);
void verify_invoke_init(
RawBytecodeStream* bcs, u2 ref_index, VerificationType ref_class_type,
StackMapFrame* current_frame, u4 code_length, bool in_try_block,
bool* this_uninit, constantPoolHandle cp, StackMapTable* stackmap_table,
TRAPS);
// Used by ends_in_athrow() to push all handlers that contain bci onto the
// handler_stack, if the handler has not already been pushed on the stack.
void push_handlers(ExceptionTable* exhandlers,
GrowableArray<u4>* handler_list,
GrowableArray<u4>* handler_stack,
u4 bci);
// Returns true if all paths starting with start_bc_offset end in athrow
// bytecode or loop.
bool ends_in_athrow(u4 start_bc_offset);
void verify_invoke_instructions(
RawBytecodeStream* bcs, u4 code_length, StackMapFrame* current_frame,
bool in_try_block, bool* this_uninit, VerificationType return_type,
constantPoolHandle cp, StackMapTable* stackmap_table, TRAPS);
VerificationType get_newarray_type(u2 index, u2 bci, TRAPS);
void verify_anewarray(u2 bci, u2 index, constantPoolHandle cp,
StackMapFrame* current_frame, TRAPS);
void verify_return_value(
VerificationType return_type, VerificationType type, u2 offset,
StackMapFrame* current_frame, TRAPS);
void verify_iload (u2 index, StackMapFrame* current_frame, TRAPS);
void verify_lload (u2 index, StackMapFrame* current_frame, TRAPS);
void verify_fload (u2 index, StackMapFrame* current_frame, TRAPS);
void verify_dload (u2 index, StackMapFrame* current_frame, TRAPS);
void verify_aload (u2 index, StackMapFrame* current_frame, TRAPS);
void verify_istore(u2 index, StackMapFrame* current_frame, TRAPS);
void verify_lstore(u2 index, StackMapFrame* current_frame, TRAPS);
void verify_fstore(u2 index, StackMapFrame* current_frame, TRAPS);
void verify_dstore(u2 index, StackMapFrame* current_frame, TRAPS);
void verify_astore(u2 index, StackMapFrame* current_frame, TRAPS);
void verify_iinc (u2 index, StackMapFrame* current_frame, TRAPS);
bool name_in_supers(Symbol* ref_name, instanceKlassHandle current);
VerificationType object_type() const;
instanceKlassHandle _klass; // the class being verified
methodHandle _method; // current method being verified
VerificationType _this_type; // the verification type of the current class
// Some recursive calls from the verifier to the name resolver
// can cause the current class to be re-verified and rewritten.
// If this happens, the original verification should not continue,
// because constant pool indexes will have changed.
// The rewriter is preceded by the verifier. If the verifier throws
// an error, rewriting is prevented. Also, rewriting always precedes
// bytecode execution or compilation. Thus, is_rewritten implies
// that a class has been verified and prepared for execution.
bool was_recursively_verified() { return _klass->is_rewritten(); }
bool is_same_or_direct_interface(instanceKlassHandle klass,
VerificationType klass_type, VerificationType ref_class_type);
public:
enum {
BYTECODE_OFFSET = 1,
NEW_OFFSET = 2
};
// constructor
ClassVerifier(instanceKlassHandle klass, TRAPS);
// destructor
~ClassVerifier();
Thread* thread() { return _thread; }
methodHandle method() { return _method; }
instanceKlassHandle current_class() const { return _klass; }
VerificationType current_type() const { return _this_type; }
// Verifies the class. If a verify or class file format error occurs,
// the '_exception_name' symbols will set to the exception name and
// the message_buffer will be filled in with the exception message.
void verify_class(TRAPS);
// Return status modes
Symbol* result() const { return _exception_type; }
bool has_error() const { return result() != NULL; }
char* exception_message() {
stringStream ss;
ss.print("%s", _message);
_error_context.details(&ss, _method());
return ss.as_string();
}
// Called when verify or class format errors are encountered.
// May throw an exception based upon the mode.
void verify_error(ErrorContext ctx, const char* fmt, ...) ATTRIBUTE_PRINTF(3, 4);
void class_format_error(const char* fmt, ...) ATTRIBUTE_PRINTF(2, 3);
Klass* load_class(Symbol* name, TRAPS);
int change_sig_to_verificationType(
SignatureStream* sig_type, VerificationType* inference_type, TRAPS);
VerificationType cp_index_to_type(int index, constantPoolHandle cp, TRAPS) {
return VerificationType::reference_type(cp->klass_name_at(index));
}
// Keep a list of temporary symbols created during verification because
// their reference counts need to be decremented when the verifier object
// goes out of scope. Since these symbols escape the scope in which they're
// created, we can't use a TempNewSymbol.
Symbol* create_temporary_symbol(const Symbol* s, int begin, int end, TRAPS);
Symbol* create_temporary_symbol(const char *s, int length, TRAPS);
Symbol* create_temporary_symbol(Symbol* s) {
// This version just updates the reference count and saves the symbol to be
// dereferenced later.
s->increment_refcount();
_symbols->push(s);
return s;
}
TypeOrigin ref_ctx(const char* str, TRAPS);
};
inline int ClassVerifier::change_sig_to_verificationType(
SignatureStream* sig_type, VerificationType* inference_type, TRAPS) {
BasicType bt = sig_type->type();
switch (bt) {
case T_OBJECT:
case T_ARRAY:
{
Symbol* name = sig_type->as_symbol(CHECK_0);
// Create another symbol to save as signature stream unreferences this symbol.
Symbol* name_copy = create_temporary_symbol(name);
assert(name_copy == name, "symbols don't match");
*inference_type =
VerificationType::reference_type(name_copy);
return 1;
}
case T_LONG:
*inference_type = VerificationType::long_type();
*++inference_type = VerificationType::long2_type();
return 2;
case T_DOUBLE:
*inference_type = VerificationType::double_type();
*++inference_type = VerificationType::double2_type();
return 2;
case T_INT:
case T_BOOLEAN:
case T_BYTE:
case T_CHAR:
case T_SHORT:
*inference_type = VerificationType::integer_type();
return 1;
case T_FLOAT:
*inference_type = VerificationType::float_type();
return 1;
default:
ShouldNotReachHere();
return 1;
}
}
#endif // SHARE_VM_CLASSFILE_VERIFIER_HPP