8024921: PPC64 (part 113): Extend Load and Store nodes to know about memory ordering
Summary: Add a field to C2 LoadNode and StoreNode classes which indicates whether the load/store should do an acquire/release on platforms which support it.
Reviewed-by: kvn
/*
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_GRAPHKIT_HPP
#define SHARE_VM_OPTO_GRAPHKIT_HPP
#include "ci/ciEnv.hpp"
#include "ci/ciMethodData.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/compile.hpp"
#include "opto/divnode.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
#include "opto/type.hpp"
#include "runtime/deoptimization.hpp"
class FastLockNode;
class FastUnlockNode;
class IdealKit;
class LibraryCallKit;
class Parse;
class RootNode;
//-----------------------------------------------------------------------------
//----------------------------GraphKit-----------------------------------------
// Toolkit for building the common sorts of subgraphs.
// Does not know about bytecode parsing or type-flow results.
// It is able to create graphs implementing the semantics of most
// or all bytecodes, so that it can expand intrinsics and calls.
// It may depend on JVMState structure, but it must not depend
// on specific bytecode streams.
class GraphKit : public Phase {
friend class PreserveJVMState;
protected:
ciEnv* _env; // Compilation environment
PhaseGVN &_gvn; // Some optimizations while parsing
SafePointNode* _map; // Parser map from JVM to Nodes
SafePointNode* _exceptions;// Parser map(s) for exception state(s)
int _bci; // JVM Bytecode Pointer
ciMethod* _method; // JVM Current Method
private:
int _sp; // JVM Expression Stack Pointer; don't modify directly!
private:
SafePointNode* map_not_null() const {
assert(_map != NULL, "must call stopped() to test for reset compiler map");
return _map;
}
public:
GraphKit(); // empty constructor
GraphKit(JVMState* jvms); // the JVM state on which to operate
#ifdef ASSERT
~GraphKit() {
assert(!has_exceptions(), "user must call transfer_exceptions_into_jvms");
}
#endif
virtual Parse* is_Parse() const { return NULL; }
virtual LibraryCallKit* is_LibraryCallKit() const { return NULL; }
ciEnv* env() const { return _env; }
PhaseGVN& gvn() const { return _gvn; }
void record_for_igvn(Node* n) const { C->record_for_igvn(n); } // delegate to Compile
// Handy well-known nodes:
Node* null() const { return zerocon(T_OBJECT); }
Node* top() const { return C->top(); }
RootNode* root() const { return C->root(); }
// Create or find a constant node
Node* intcon(jint con) const { return _gvn.intcon(con); }
Node* longcon(jlong con) const { return _gvn.longcon(con); }
Node* makecon(const Type *t) const { return _gvn.makecon(t); }
Node* zerocon(BasicType bt) const { return _gvn.zerocon(bt); }
// (See also macro MakeConX in type.hpp, which uses intcon or longcon.)
// Helper for byte_map_base
Node* byte_map_base_node() {
// Get base of card map
CardTableModRefBS* ct = (CardTableModRefBS*)(Universe::heap()->barrier_set());
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
if (ct->byte_map_base != NULL) {
return makecon(TypeRawPtr::make((address)ct->byte_map_base));
} else {
return null();
}
}
jint find_int_con(Node* n, jint value_if_unknown) {
return _gvn.find_int_con(n, value_if_unknown);
}
jlong find_long_con(Node* n, jlong value_if_unknown) {
return _gvn.find_long_con(n, value_if_unknown);
}
// (See also macro find_intptr_t_con in type.hpp, which uses one of these.)
// JVM State accessors:
// Parser mapping from JVM indices into Nodes.
// Low slots are accessed by the StartNode::enum.
// Then come the locals at StartNode::Parms to StartNode::Parms+max_locals();
// Then come JVM stack slots.
// Finally come the monitors, if any.
// See layout accessors in class JVMState.
SafePointNode* map() const { return _map; }
bool has_exceptions() const { return _exceptions != NULL; }
JVMState* jvms() const { return map_not_null()->_jvms; }
int sp() const { return _sp; }
int bci() const { return _bci; }
Bytecodes::Code java_bc() const;
ciMethod* method() const { return _method; }
void set_jvms(JVMState* jvms) { set_map(jvms->map());
assert(jvms == this->jvms(), "sanity");
_sp = jvms->sp();
_bci = jvms->bci();
_method = jvms->has_method() ? jvms->method() : NULL; }
void set_map(SafePointNode* m) { _map = m; debug_only(verify_map()); }
void set_sp(int sp) { assert(sp >= 0, err_msg_res("sp must be non-negative: %d", sp)); _sp = sp; }
void clean_stack(int from_sp); // clear garbage beyond from_sp to top
void inc_sp(int i) { set_sp(sp() + i); }
void dec_sp(int i) { set_sp(sp() - i); }
void set_bci(int bci) { _bci = bci; }
// Make sure jvms has current bci & sp.
JVMState* sync_jvms() const;
JVMState* sync_jvms_for_reexecute();
#ifdef ASSERT
// Make sure JVMS has an updated copy of bci and sp.
// Also sanity-check method, depth, and monitor depth.
bool jvms_in_sync() const;
// Make sure the map looks OK.
void verify_map() const;
// Make sure a proposed exception state looks OK.
static void verify_exception_state(SafePointNode* ex_map);
#endif
// Clone the existing map state. (Implements PreserveJVMState.)
SafePointNode* clone_map();
// Set the map to a clone of the given one.
void set_map_clone(SafePointNode* m);
// Tell if the compilation is failing.
bool failing() const { return C->failing(); }
// Set _map to NULL, signalling a stop to further bytecode execution.
// Preserve the map intact for future use, and return it back to the caller.
SafePointNode* stop() { SafePointNode* m = map(); set_map(NULL); return m; }
// Stop, but first smash the map's inputs to NULL, to mark it dead.
void stop_and_kill_map();
// Tell if _map is NULL, or control is top.
bool stopped();
// Tell if this method or any caller method has exception handlers.
bool has_ex_handler();
// Save an exception without blowing stack contents or other JVM state.
// (The extra pointer is stuck with add_req on the map, beyond the JVMS.)
static void set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop);
// Recover a saved exception from its map.
static Node* saved_ex_oop(SafePointNode* ex_map);
// Recover a saved exception from its map, and remove it from the map.
static Node* clear_saved_ex_oop(SafePointNode* ex_map);
#ifdef ASSERT
// Recover a saved exception from its map, and remove it from the map.
static bool has_saved_ex_oop(SafePointNode* ex_map);
#endif
// Push an exception in the canonical position for handlers (stack(0)).
void push_ex_oop(Node* ex_oop) {
ensure_stack(1); // ensure room to push the exception
set_stack(0, ex_oop);
set_sp(1);
clean_stack(1);
}
// Detach and return an exception state.
SafePointNode* pop_exception_state() {
SafePointNode* ex_map = _exceptions;
if (ex_map != NULL) {
_exceptions = ex_map->next_exception();
ex_map->set_next_exception(NULL);
debug_only(verify_exception_state(ex_map));
}
return ex_map;
}
// Add an exception, using the given JVM state, without commoning.
void push_exception_state(SafePointNode* ex_map) {
debug_only(verify_exception_state(ex_map));
ex_map->set_next_exception(_exceptions);
_exceptions = ex_map;
}
// Turn the current JVM state into an exception state, appending the ex_oop.
SafePointNode* make_exception_state(Node* ex_oop);
// Add an exception, using the given JVM state.
// Combine all exceptions with a common exception type into a single state.
// (This is done via combine_exception_states.)
void add_exception_state(SafePointNode* ex_map);
// Combine all exceptions of any sort whatever into a single master state.
SafePointNode* combine_and_pop_all_exception_states() {
if (_exceptions == NULL) return NULL;
SafePointNode* phi_map = pop_exception_state();
SafePointNode* ex_map;
while ((ex_map = pop_exception_state()) != NULL) {
combine_exception_states(ex_map, phi_map);
}
return phi_map;
}
// Combine the two exception states, building phis as necessary.
// The second argument is updated to include contributions from the first.
void combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map);
// Reset the map to the given state. If there are any half-finished phis
// in it (created by combine_exception_states), transform them now.
// Returns the exception oop. (Caller must call push_ex_oop if required.)
Node* use_exception_state(SafePointNode* ex_map);
// Collect exceptions from a given JVM state into my exception list.
void add_exception_states_from(JVMState* jvms);
// Collect all raised exceptions into the current JVM state.
// Clear the current exception list and map, returns the combined states.
JVMState* transfer_exceptions_into_jvms();
// Helper to throw a built-in exception.
// Range checks take the offending index.
// Cast and array store checks take the offending class.
// Others do not take the optional argument.
// The JVMS must allow the bytecode to be re-executed
// via an uncommon trap.
void builtin_throw(Deoptimization::DeoptReason reason, Node* arg = NULL);
// Helper to check the JavaThread::_should_post_on_exceptions flag
// and branch to an uncommon_trap if it is true (with the specified reason and must_throw)
void uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
bool must_throw) ;
// Helper Functions for adding debug information
void kill_dead_locals();
#ifdef ASSERT
bool dead_locals_are_killed();
#endif
// The call may deoptimize. Supply required JVM state as debug info.
// If must_throw is true, the call is guaranteed not to return normally.
void add_safepoint_edges(SafePointNode* call,
bool must_throw = false);
// How many stack inputs does the current BC consume?
// And, how does the stack change after the bytecode?
// Returns false if unknown.
bool compute_stack_effects(int& inputs, int& depth);
// Add a fixed offset to a pointer
Node* basic_plus_adr(Node* base, Node* ptr, intptr_t offset) {
return basic_plus_adr(base, ptr, MakeConX(offset));
}
Node* basic_plus_adr(Node* base, intptr_t offset) {
return basic_plus_adr(base, base, MakeConX(offset));
}
// Add a variable offset to a pointer
Node* basic_plus_adr(Node* base, Node* offset) {
return basic_plus_adr(base, base, offset);
}
Node* basic_plus_adr(Node* base, Node* ptr, Node* offset);
// Some convenient shortcuts for common nodes
Node* IfTrue(IfNode* iff) { return _gvn.transform(new (C) IfTrueNode(iff)); }
Node* IfFalse(IfNode* iff) { return _gvn.transform(new (C) IfFalseNode(iff)); }
Node* AddI(Node* l, Node* r) { return _gvn.transform(new (C) AddINode(l, r)); }
Node* SubI(Node* l, Node* r) { return _gvn.transform(new (C) SubINode(l, r)); }
Node* MulI(Node* l, Node* r) { return _gvn.transform(new (C) MulINode(l, r)); }
Node* DivI(Node* ctl, Node* l, Node* r) { return _gvn.transform(new (C) DivINode(ctl, l, r)); }
Node* AndI(Node* l, Node* r) { return _gvn.transform(new (C) AndINode(l, r)); }
Node* OrI(Node* l, Node* r) { return _gvn.transform(new (C) OrINode(l, r)); }
Node* XorI(Node* l, Node* r) { return _gvn.transform(new (C) XorINode(l, r)); }
Node* MaxI(Node* l, Node* r) { return _gvn.transform(new (C) MaxINode(l, r)); }
Node* MinI(Node* l, Node* r) { return _gvn.transform(new (C) MinINode(l, r)); }
Node* LShiftI(Node* l, Node* r) { return _gvn.transform(new (C) LShiftINode(l, r)); }
Node* RShiftI(Node* l, Node* r) { return _gvn.transform(new (C) RShiftINode(l, r)); }
Node* URShiftI(Node* l, Node* r) { return _gvn.transform(new (C) URShiftINode(l, r)); }
Node* CmpI(Node* l, Node* r) { return _gvn.transform(new (C) CmpINode(l, r)); }
Node* CmpL(Node* l, Node* r) { return _gvn.transform(new (C) CmpLNode(l, r)); }
Node* CmpP(Node* l, Node* r) { return _gvn.transform(new (C) CmpPNode(l, r)); }
Node* Bool(Node* cmp, BoolTest::mask relop) { return _gvn.transform(new (C) BoolNode(cmp, relop)); }
Node* AddP(Node* b, Node* a, Node* o) { return _gvn.transform(new (C) AddPNode(b, a, o)); }
// Convert between int and long, and size_t.
// (See macros ConvI2X, etc., in type.hpp for ConvI2X, etc.)
Node* ConvI2L(Node* offset);
Node* ConvL2I(Node* offset);
// Find out the klass of an object.
Node* load_object_klass(Node* object);
// Find out the length of an array.
Node* load_array_length(Node* array);
// Helper function to do a NULL pointer check or ZERO check based on type.
// Throw an exception if a given value is null.
// Return the value cast to not-null.
// Be clever about equivalent dominating null checks.
Node* null_check_common(Node* value, BasicType type,
bool assert_null = false, Node* *null_control = NULL);
Node* null_check(Node* value, BasicType type = T_OBJECT) {
return null_check_common(value, type);
}
Node* null_check_receiver() {
assert(argument(0)->bottom_type()->isa_ptr(), "must be");
return null_check(argument(0));
}
Node* zero_check_int(Node* value) {
assert(value->bottom_type()->basic_type() == T_INT,
err_msg_res("wrong type: %s", type2name(value->bottom_type()->basic_type())));
return null_check_common(value, T_INT);
}
Node* zero_check_long(Node* value) {
assert(value->bottom_type()->basic_type() == T_LONG,
err_msg_res("wrong type: %s", type2name(value->bottom_type()->basic_type())));
return null_check_common(value, T_LONG);
}
// Throw an uncommon trap if a given value is __not__ null.
// Return the value cast to null, and be clever about dominating checks.
Node* null_assert(Node* value, BasicType type = T_OBJECT) {
return null_check_common(value, type, true);
}
// Null check oop. Return null-path control into (*null_control).
// Return a cast-not-null node which depends on the not-null control.
// If never_see_null, use an uncommon trap (*null_control sees a top).
// The cast is not valid along the null path; keep a copy of the original.
// If safe_for_replace, then we can replace the value with the cast
// in the parsing map (the cast is guaranteed to dominate the map)
Node* null_check_oop(Node* value, Node* *null_control,
bool never_see_null = false, bool safe_for_replace = false);
// Check the null_seen bit.
bool seems_never_null(Node* obj, ciProfileData* data);
// Check for unique class for receiver at call
ciKlass* profile_has_unique_klass() {
ciCallProfile profile = method()->call_profile_at_bci(bci());
if (profile.count() >= 0 && // no cast failures here
profile.has_receiver(0) &&
profile.morphism() == 1) {
return profile.receiver(0);
}
return NULL;
}
// record type from profiling with the type system
Node* record_profile_for_speculation(Node* n, ciKlass* exact_kls);
Node* record_profiled_receiver_for_speculation(Node* n);
void record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc);
void record_profiled_parameters_for_speculation();
// Use the type profile to narrow an object type.
Node* maybe_cast_profiled_receiver(Node* not_null_obj,
ciKlass* require_klass,
ciKlass* spec,
bool safe_for_replace);
// Cast obj to type and emit guard unless we had too many traps here already
Node* maybe_cast_profiled_obj(Node* obj,
ciKlass* type,
bool not_null = false);
// Cast obj to not-null on this path
Node* cast_not_null(Node* obj, bool do_replace_in_map = true);
// Replace all occurrences of one node by another.
void replace_in_map(Node* old, Node* neww);
void push(Node* n) { map_not_null(); _map->set_stack(_map->_jvms, _sp++ , n); }
Node* pop() { map_not_null(); return _map->stack( _map->_jvms, --_sp ); }
Node* peek(int off = 0) { map_not_null(); return _map->stack( _map->_jvms, _sp - off - 1 ); }
void push_pair(Node* ldval) {
push(ldval);
push(top()); // the halfword is merely a placeholder
}
void push_pair_local(int i) {
// longs are stored in locals in "push" order
push( local(i+0) ); // the real value
assert(local(i+1) == top(), "");
push(top()); // halfword placeholder
}
Node* pop_pair() {
// the second half is pushed last & popped first; it contains exactly nothing
Node* halfword = pop();
assert(halfword == top(), "");
// the long bits are pushed first & popped last:
return pop();
}
void set_pair_local(int i, Node* lval) {
// longs are stored in locals as a value/half pair (like doubles)
set_local(i+0, lval);
set_local(i+1, top());
}
// Push the node, which may be zero, one, or two words.
void push_node(BasicType n_type, Node* n) {
int n_size = type2size[n_type];
if (n_size == 1) push( n ); // T_INT, ...
else if (n_size == 2) push_pair( n ); // T_DOUBLE, T_LONG
else { assert(n_size == 0, "must be T_VOID"); }
}
Node* pop_node(BasicType n_type) {
int n_size = type2size[n_type];
if (n_size == 1) return pop();
else if (n_size == 2) return pop_pair();
else return NULL;
}
Node* control() const { return map_not_null()->control(); }
Node* i_o() const { return map_not_null()->i_o(); }
Node* returnadr() const { return map_not_null()->returnadr(); }
Node* frameptr() const { return map_not_null()->frameptr(); }
Node* local(uint idx) const { map_not_null(); return _map->local( _map->_jvms, idx); }
Node* stack(uint idx) const { map_not_null(); return _map->stack( _map->_jvms, idx); }
Node* argument(uint idx) const { map_not_null(); return _map->argument( _map->_jvms, idx); }
Node* monitor_box(uint idx) const { map_not_null(); return _map->monitor_box(_map->_jvms, idx); }
Node* monitor_obj(uint idx) const { map_not_null(); return _map->monitor_obj(_map->_jvms, idx); }
void set_control (Node* c) { map_not_null()->set_control(c); }
void set_i_o (Node* c) { map_not_null()->set_i_o(c); }
void set_local(uint idx, Node* c) { map_not_null(); _map->set_local( _map->_jvms, idx, c); }
void set_stack(uint idx, Node* c) { map_not_null(); _map->set_stack( _map->_jvms, idx, c); }
void set_argument(uint idx, Node* c){ map_not_null(); _map->set_argument(_map->_jvms, idx, c); }
void ensure_stack(uint stk_size) { map_not_null(); _map->ensure_stack(_map->_jvms, stk_size); }
// Access unaliased memory
Node* memory(uint alias_idx);
Node* memory(const TypePtr *tp) { return memory(C->get_alias_index(tp)); }
Node* memory(Node* adr) { return memory(_gvn.type(adr)->is_ptr()); }
// Access immutable memory
Node* immutable_memory() { return C->immutable_memory(); }
// Set unaliased memory
void set_memory(Node* c, uint alias_idx) { merged_memory()->set_memory_at(alias_idx, c); }
void set_memory(Node* c, const TypePtr *tp) { set_memory(c,C->get_alias_index(tp)); }
void set_memory(Node* c, Node* adr) { set_memory(c,_gvn.type(adr)->is_ptr()); }
// Get the entire memory state (probably a MergeMemNode), and reset it
// (The resetting prevents somebody from using the dangling Node pointer.)
Node* reset_memory();
// Get the entire memory state, asserted to be a MergeMemNode.
MergeMemNode* merged_memory() {
Node* mem = map_not_null()->memory();
assert(mem->is_MergeMem(), "parse memory is always pre-split");
return mem->as_MergeMem();
}
// Set the entire memory state; produce a new MergeMemNode.
void set_all_memory(Node* newmem);
// Create a memory projection from the call, then set_all_memory.
void set_all_memory_call(Node* call, bool separate_io_proj = false);
// Create a LoadNode, reading from the parser's memory state.
// (Note: require_atomic_access is useful only with T_LONG.)
//
// We choose the unordered semantics by default because we have
// adapted the `do_put_xxx' and `do_get_xxx' procedures for the case
// of volatile fields.
Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
MemNode::MemOrd mo, bool require_atomic_access = false) {
// This version computes alias_index from bottom_type
return make_load(ctl, adr, t, bt, adr->bottom_type()->is_ptr(),
mo, require_atomic_access);
}
Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, const TypePtr* adr_type,
MemNode::MemOrd mo, bool require_atomic_access = false) {
// This version computes alias_index from an address type
assert(adr_type != NULL, "use other make_load factory");
return make_load(ctl, adr, t, bt, C->get_alias_index(adr_type),
mo, require_atomic_access);
}
// This is the base version which is given an alias index.
Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, int adr_idx,
MemNode::MemOrd mo, bool require_atomic_access = false);
// Create & transform a StoreNode and store the effect into the
// parser's memory state.
//
// We must ensure that stores of object references will be visible
// only after the object's initialization. So the clients of this
// procedure must indicate that the store requires `release'
// semantics, if the stored value is an object reference that might
// point to a new object and may become externally visible.
Node* store_to_memory(Node* ctl, Node* adr, Node* val, BasicType bt,
const TypePtr* adr_type,
MemNode::MemOrd mo,
bool require_atomic_access = false) {
// This version computes alias_index from an address type
assert(adr_type != NULL, "use other store_to_memory factory");
return store_to_memory(ctl, adr, val, bt,
C->get_alias_index(adr_type),
mo, require_atomic_access);
}
// This is the base version which is given alias index
// Return the new StoreXNode
Node* store_to_memory(Node* ctl, Node* adr, Node* val, BasicType bt,
int adr_idx,
MemNode::MemOrd,
bool require_atomic_access = false);
// All in one pre-barrier, store, post_barrier
// Insert a write-barrier'd store. This is to let generational GC
// work; we have to flag all oop-stores before the next GC point.
//
// It comes in 3 flavors of store to an object, array, or unknown.
// We use precise card marks for arrays to avoid scanning the entire
// array. We use imprecise for object. We use precise for unknown
// since we don't know if we have an array or and object or even
// where the object starts.
//
// If val==NULL, it is taken to be a completely unknown value. QQQ
Node* store_oop(Node* ctl,
Node* obj, // containing obj
Node* adr, // actual adress to store val at
const TypePtr* adr_type,
Node* val,
const TypeOopPtr* val_type,
BasicType bt,
bool use_precise,
MemNode::MemOrd mo);
Node* store_oop_to_object(Node* ctl,
Node* obj, // containing obj
Node* adr, // actual adress to store val at
const TypePtr* adr_type,
Node* val,
const TypeOopPtr* val_type,
BasicType bt,
MemNode::MemOrd mo) {
return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, false, mo);
}
Node* store_oop_to_array(Node* ctl,
Node* obj, // containing obj
Node* adr, // actual adress to store val at
const TypePtr* adr_type,
Node* val,
const TypeOopPtr* val_type,
BasicType bt,
MemNode::MemOrd mo) {
return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo);
}
// Could be an array or object we don't know at compile time (unsafe ref.)
Node* store_oop_to_unknown(Node* ctl,
Node* obj, // containing obj
Node* adr, // actual adress to store val at
const TypePtr* adr_type,
Node* val,
BasicType bt,
MemNode::MemOrd mo);
// For the few case where the barriers need special help
void pre_barrier(bool do_load, Node* ctl,
Node* obj, Node* adr, uint adr_idx, Node* val, const TypeOopPtr* val_type,
Node* pre_val,
BasicType bt);
void post_barrier(Node* ctl, Node* store, Node* obj, Node* adr, uint adr_idx,
Node* val, BasicType bt, bool use_precise);
// Return addressing for an array element.
Node* array_element_address(Node* ary, Node* idx, BasicType elembt,
// Optional constraint on the array size:
const TypeInt* sizetype = NULL);
// Return a load of array element at idx.
Node* load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype);
//---------------- Dtrace support --------------------
void make_dtrace_method_entry_exit(ciMethod* method, bool is_entry);
void make_dtrace_method_entry(ciMethod* method) {
make_dtrace_method_entry_exit(method, true);
}
void make_dtrace_method_exit(ciMethod* method) {
make_dtrace_method_entry_exit(method, false);
}
//--------------- stub generation -------------------
public:
void gen_stub(address C_function,
const char *name,
int is_fancy_jump,
bool pass_tls,
bool return_pc);
//---------- help for generating calls --------------
// Do a null check on the receiver as it would happen before the call to
// callee (with all arguments still on the stack).
Node* null_check_receiver_before_call(ciMethod* callee) {
assert(!callee->is_static(), "must be a virtual method");
const int nargs = callee->arg_size();
inc_sp(nargs);
Node* n = null_check_receiver();
dec_sp(nargs);
return n;
}
// Fill in argument edges for the call from argument(0), argument(1), ...
// (The next step is to call set_edges_for_java_call.)
void set_arguments_for_java_call(CallJavaNode* call);
// Fill in non-argument edges for the call.
// Transform the call, and update the basics: control, i_o, memory.
// (The next step is usually to call set_results_for_java_call.)
void set_edges_for_java_call(CallJavaNode* call,
bool must_throw = false, bool separate_io_proj = false);
// Finish up a java call that was started by set_edges_for_java_call.
// Call add_exception on any throw arising from the call.
// Return the call result (transformed).
Node* set_results_for_java_call(CallJavaNode* call, bool separate_io_proj = false);
// Similar to set_edges_for_java_call, but simplified for runtime calls.
void set_predefined_output_for_runtime_call(Node* call) {
set_predefined_output_for_runtime_call(call, NULL, NULL);
}
void set_predefined_output_for_runtime_call(Node* call,
Node* keep_mem,
const TypePtr* hook_mem);
Node* set_predefined_input_for_runtime_call(SafePointNode* call);
// Replace the call with the current state of the kit. Requires
// that the call was generated with separate io_projs so that
// exceptional control flow can be handled properly.
void replace_call(CallNode* call, Node* result);
// helper functions for statistics
void increment_counter(address counter_addr); // increment a debug counter
void increment_counter(Node* counter_addr); // increment a debug counter
// Bail out to the interpreter right now
// The optional klass is the one causing the trap.
// The optional reason is debug information written to the compile log.
// Optional must_throw is the same as with add_safepoint_edges.
void uncommon_trap(int trap_request,
ciKlass* klass = NULL, const char* reason_string = NULL,
bool must_throw = false, bool keep_exact_action = false);
// Shorthand, to avoid saying "Deoptimization::" so many times.
void uncommon_trap(Deoptimization::DeoptReason reason,
Deoptimization::DeoptAction action,
ciKlass* klass = NULL, const char* reason_string = NULL,
bool must_throw = false, bool keep_exact_action = false) {
uncommon_trap(Deoptimization::make_trap_request(reason, action),
klass, reason_string, must_throw, keep_exact_action);
}
// SP when bytecode needs to be reexecuted.
virtual int reexecute_sp() { return sp(); }
// Report if there were too many traps at the current method and bci.
// Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
// If there is no MDO at all, report no trap unless told to assume it.
bool too_many_traps(Deoptimization::DeoptReason reason) {
return C->too_many_traps(method(), bci(), reason);
}
// Report if there were too many recompiles at the current method and bci.
bool too_many_recompiles(Deoptimization::DeoptReason reason) {
return C->too_many_recompiles(method(), bci(), reason);
}
// Returns the object (if any) which was created the moment before.
Node* just_allocated_object(Node* current_control);
static bool use_ReduceInitialCardMarks() {
return (ReduceInitialCardMarks
&& Universe::heap()->can_elide_tlab_store_barriers());
}
// Sync Ideal and Graph kits.
void sync_kit(IdealKit& ideal);
void final_sync(IdealKit& ideal);
// vanilla/CMS post barrier
void write_barrier_post(Node *store, Node* obj,
Node* adr, uint adr_idx, Node* val, bool use_precise);
// Allow reordering of pre-barrier with oop store and/or post-barrier.
// Used for load_store operations which loads old value.
bool can_move_pre_barrier() const;
// G1 pre/post barriers
void g1_write_barrier_pre(bool do_load,
Node* obj,
Node* adr,
uint alias_idx,
Node* val,
const TypeOopPtr* val_type,
Node* pre_val,
BasicType bt);
void g1_write_barrier_post(Node* store,
Node* obj,
Node* adr,
uint alias_idx,
Node* val,
BasicType bt,
bool use_precise);
// Helper function for g1
private:
void g1_mark_card(IdealKit& ideal, Node* card_adr, Node* store, uint oop_alias_idx,
Node* index, Node* index_adr,
Node* buffer, const TypeFunc* tf);
public:
// Helper function to round double arguments before a call
void round_double_arguments(ciMethod* dest_method);
void round_double_result(ciMethod* dest_method);
// rounding for strict float precision conformance
Node* precision_rounding(Node* n);
// rounding for strict double precision conformance
Node* dprecision_rounding(Node* n);
// rounding for non-strict double stores
Node* dstore_rounding(Node* n);
// Helper functions for fast/slow path codes
Node* opt_iff(Node* region, Node* iff);
Node* make_runtime_call(int flags,
const TypeFunc* call_type, address call_addr,
const char* call_name,
const TypePtr* adr_type, // NULL if no memory effects
Node* parm0 = NULL, Node* parm1 = NULL,
Node* parm2 = NULL, Node* parm3 = NULL,
Node* parm4 = NULL, Node* parm5 = NULL,
Node* parm6 = NULL, Node* parm7 = NULL);
enum { // flag values for make_runtime_call
RC_NO_FP = 1, // CallLeafNoFPNode
RC_NO_IO = 2, // do not hook IO edges
RC_NO_LEAF = 4, // CallStaticJavaNode
RC_MUST_THROW = 8, // flag passed to add_safepoint_edges
RC_NARROW_MEM = 16, // input memory is same as output
RC_UNCOMMON = 32, // freq. expected to be like uncommon trap
RC_LEAF = 0 // null value: no flags set
};
// merge in all memory slices from new_mem, along the given path
void merge_memory(Node* new_mem, Node* region, int new_path);
void make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj);
// Helper functions to build synchronizations
int next_monitor();
Node* insert_mem_bar(int opcode, Node* precedent = NULL);
Node* insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent = NULL);
// Optional 'precedent' is appended as an extra edge, to force ordering.
FastLockNode* shared_lock(Node* obj);
void shared_unlock(Node* box, Node* obj);
// helper functions for the fast path/slow path idioms
Node* fast_and_slow(Node* in, const Type *result_type, Node* null_result, IfNode* fast_test, Node* fast_result, address slow_call, const TypeFunc *slow_call_type, Node* slow_arg, Klass* ex_klass, Node* slow_result);
// Generate an instance-of idiom. Used by both the instance-of bytecode
// and the reflective instance-of call.
Node* gen_instanceof(Node *subobj, Node* superkls, bool safe_for_replace = false);
// Generate a check-cast idiom. Used by both the check-cast bytecode
// and the array-store bytecode
Node* gen_checkcast( Node *subobj, Node* superkls,
Node* *failure_control = NULL );
// Generate a subtyping check. Takes as input the subtype and supertype.
// Returns 2 values: sets the default control() to the true path and
// returns the false path. Only reads from constant memory taken from the
// default memory; does not write anything. It also doesn't take in an
// Object; if you wish to check an Object you need to load the Object's
// class prior to coming here.
Node* gen_subtype_check(Node* subklass, Node* superklass);
// Static parse-time type checking logic for gen_subtype_check:
enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
int static_subtype_check(ciKlass* superk, ciKlass* subk);
// Exact type check used for predicted calls and casts.
// Rewrites (*casted_receiver) to be casted to the stronger type.
// (Caller is responsible for doing replace_in_map.)
Node* type_check_receiver(Node* receiver, ciKlass* klass, float prob,
Node* *casted_receiver);
// implementation of object creation
Node* set_output_for_allocation(AllocateNode* alloc,
const TypeOopPtr* oop_type);
Node* get_layout_helper(Node* klass_node, jint& constant_value);
Node* new_instance(Node* klass_node,
Node* slow_test = NULL,
Node* *return_size_val = NULL);
Node* new_array(Node* klass_node, Node* count_val, int nargs,
Node* *return_size_val = NULL);
// java.lang.String helpers
Node* load_String_offset(Node* ctrl, Node* str);
Node* load_String_length(Node* ctrl, Node* str);
Node* load_String_value(Node* ctrl, Node* str);
void store_String_offset(Node* ctrl, Node* str, Node* value);
void store_String_length(Node* ctrl, Node* str, Node* value);
void store_String_value(Node* ctrl, Node* str, Node* value);
// Handy for making control flow
IfNode* create_and_map_if(Node* ctrl, Node* tst, float prob, float cnt) {
IfNode* iff = new (C) IfNode(ctrl, tst, prob, cnt);// New IfNode's
_gvn.set_type(iff, iff->Value(&_gvn)); // Value may be known at parse-time
// Place 'if' on worklist if it will be in graph
if (!tst->is_Con()) record_for_igvn(iff); // Range-check and Null-check removal is later
return iff;
}
IfNode* create_and_xform_if(Node* ctrl, Node* tst, float prob, float cnt) {
IfNode* iff = new (C) IfNode(ctrl, tst, prob, cnt);// New IfNode's
_gvn.transform(iff); // Value may be known at parse-time
// Place 'if' on worklist if it will be in graph
if (!tst->is_Con()) record_for_igvn(iff); // Range-check and Null-check removal is later
return iff;
}
// Insert a loop predicate into the graph
void add_predicate(int nargs = 0);
void add_predicate_impl(Deoptimization::DeoptReason reason, int nargs);
// Produce new array node of stable type
Node* cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type);
};
// Helper class to support building of control flow branches. Upon
// creation the map and sp at bci are cloned and restored upon de-
// struction. Typical use:
//
// { PreserveJVMState pjvms(this);
// // code of new branch
// }
// // here the JVM state at bci is established
class PreserveJVMState: public StackObj {
protected:
GraphKit* _kit;
#ifdef ASSERT
int _block; // PO of current block, if a Parse
int _bci;
#endif
SafePointNode* _map;
uint _sp;
public:
PreserveJVMState(GraphKit* kit, bool clone_map = true);
~PreserveJVMState();
};
// Helper class to build cutouts of the form if (p) ; else {x...}.
// The code {x...} must not fall through.
// The kit's main flow of control is set to the "then" continuation of if(p).
class BuildCutout: public PreserveJVMState {
public:
BuildCutout(GraphKit* kit, Node* p, float prob, float cnt = COUNT_UNKNOWN);
~BuildCutout();
};
// Helper class to preserve the original _reexecute bit and _sp and restore
// them back
class PreserveReexecuteState: public StackObj {
protected:
GraphKit* _kit;
uint _sp;
JVMState::ReexecuteState _reexecute;
public:
PreserveReexecuteState(GraphKit* kit);
~PreserveReexecuteState();
};
#endif // SHARE_VM_OPTO_GRAPHKIT_HPP