8074457: Remove the non-Zero CPP Interpreter
Summary: Remove cppInterpreter assembly files and reorganize InterpreterGenerator includes
Reviewed-by: goetz, bdelsart
/*
* Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc/parallel/mutableSpace.hpp"
#include "gc/serial/defNewGeneration.hpp"
#include "gc/serial/tenuredGeneration.hpp"
#include "gc/shared/collectorPolicy.hpp"
#include "gc/shared/genCollectedHeap.hpp"
#include "gc/shared/generation.hpp"
#include "gc/shared/generationSpec.hpp"
#include "logging/logConfiguration.hpp"
#include "memory/heap.hpp"
#include "memory/memRegion.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/globals.hpp"
#include "runtime/javaCalls.hpp"
#include "services/classLoadingService.hpp"
#include "services/lowMemoryDetector.hpp"
#include "services/management.hpp"
#include "services/memoryManager.hpp"
#include "services/memoryPool.hpp"
#include "services/memoryService.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/cms/concurrentMarkSweepGeneration.hpp"
#include "gc/cms/parNewGeneration.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/parallel/psOldGen.hpp"
#include "gc/parallel/psYoungGen.hpp"
#include "services/g1MemoryPool.hpp"
#include "services/psMemoryPool.hpp"
#endif // INCLUDE_ALL_GCS
GrowableArray<MemoryPool*>* MemoryService::_pools_list =
new (ResourceObj::C_HEAP, mtInternal) GrowableArray<MemoryPool*>(init_pools_list_size, true);
GrowableArray<MemoryManager*>* MemoryService::_managers_list =
new (ResourceObj::C_HEAP, mtInternal) GrowableArray<MemoryManager*>(init_managers_list_size, true);
GCMemoryManager* MemoryService::_minor_gc_manager = NULL;
GCMemoryManager* MemoryService::_major_gc_manager = NULL;
MemoryManager* MemoryService::_code_cache_manager = NULL;
GrowableArray<MemoryPool*>* MemoryService::_code_heap_pools =
new (ResourceObj::C_HEAP, mtInternal) GrowableArray<MemoryPool*>(init_code_heap_pools_size, true);
MemoryPool* MemoryService::_metaspace_pool = NULL;
MemoryPool* MemoryService::_compressed_class_pool = NULL;
class GcThreadCountClosure: public ThreadClosure {
private:
int _count;
public:
GcThreadCountClosure() : _count(0) {};
void do_thread(Thread* thread);
int count() { return _count; }
};
void GcThreadCountClosure::do_thread(Thread* thread) {
_count++;
}
void MemoryService::set_universe_heap(CollectedHeap* heap) {
CollectedHeap::Name kind = heap->kind();
switch (kind) {
case CollectedHeap::GenCollectedHeap : {
add_gen_collected_heap_info(GenCollectedHeap::heap());
break;
}
#if INCLUDE_ALL_GCS
case CollectedHeap::ParallelScavengeHeap : {
add_parallel_scavenge_heap_info(ParallelScavengeHeap::heap());
break;
}
case CollectedHeap::G1CollectedHeap : {
add_g1_heap_info(G1CollectedHeap::heap());
break;
}
#endif // INCLUDE_ALL_GCS
default: {
guarantee(false, "Unrecognized kind of heap");
}
}
// set the GC thread count
GcThreadCountClosure gctcc;
heap->gc_threads_do(&gctcc);
int count = gctcc.count();
if (count > 0) {
_minor_gc_manager->set_num_gc_threads(count);
_major_gc_manager->set_num_gc_threads(count);
}
// All memory pools and memory managers are initialized.
//
_minor_gc_manager->initialize_gc_stat_info();
_major_gc_manager->initialize_gc_stat_info();
}
// Add memory pools for GenCollectedHeap
// This function currently only supports two generations collected heap.
// The collector for GenCollectedHeap will have two memory managers.
void MemoryService::add_gen_collected_heap_info(GenCollectedHeap* heap) {
CollectorPolicy* policy = heap->collector_policy();
assert(policy->is_generation_policy(), "Only support two generations");
GenCollectorPolicy* gen_policy = policy->as_generation_policy();
if (gen_policy != NULL) {
Generation::Name kind = gen_policy->young_gen_spec()->name();
switch (kind) {
case Generation::DefNew:
_minor_gc_manager = MemoryManager::get_copy_memory_manager();
break;
#if INCLUDE_ALL_GCS
case Generation::ParNew:
_minor_gc_manager = MemoryManager::get_parnew_memory_manager();
break;
#endif // INCLUDE_ALL_GCS
default:
guarantee(false, "Unrecognized generation spec");
break;
}
if (policy->is_mark_sweep_policy()) {
_major_gc_manager = MemoryManager::get_msc_memory_manager();
#if INCLUDE_ALL_GCS
} else if (policy->is_concurrent_mark_sweep_policy()) {
_major_gc_manager = MemoryManager::get_cms_memory_manager();
#endif // INCLUDE_ALL_GCS
} else {
guarantee(false, "Unknown two-gen policy");
}
} else {
guarantee(false, "Non two-gen policy");
}
_managers_list->append(_minor_gc_manager);
_managers_list->append(_major_gc_manager);
add_generation_memory_pool(heap->young_gen(), _major_gc_manager, _minor_gc_manager);
add_generation_memory_pool(heap->old_gen(), _major_gc_manager);
}
#if INCLUDE_ALL_GCS
// Add memory pools for ParallelScavengeHeap
// This function currently only supports two generations collected heap.
// The collector for ParallelScavengeHeap will have two memory managers.
void MemoryService::add_parallel_scavenge_heap_info(ParallelScavengeHeap* heap) {
// Two managers to keep statistics about _minor_gc_manager and _major_gc_manager GC.
_minor_gc_manager = MemoryManager::get_psScavenge_memory_manager();
_major_gc_manager = MemoryManager::get_psMarkSweep_memory_manager();
_managers_list->append(_minor_gc_manager);
_managers_list->append(_major_gc_manager);
add_psYoung_memory_pool(heap->young_gen(), _major_gc_manager, _minor_gc_manager);
add_psOld_memory_pool(heap->old_gen(), _major_gc_manager);
}
void MemoryService::add_g1_heap_info(G1CollectedHeap* g1h) {
assert(UseG1GC, "sanity");
_minor_gc_manager = MemoryManager::get_g1YoungGen_memory_manager();
_major_gc_manager = MemoryManager::get_g1OldGen_memory_manager();
_managers_list->append(_minor_gc_manager);
_managers_list->append(_major_gc_manager);
add_g1YoungGen_memory_pool(g1h, _major_gc_manager, _minor_gc_manager);
add_g1OldGen_memory_pool(g1h, _major_gc_manager);
}
#endif // INCLUDE_ALL_GCS
MemoryPool* MemoryService::add_gen(Generation* gen,
const char* name,
bool is_heap,
bool support_usage_threshold) {
MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap);
GenerationPool* pool = new GenerationPool(gen, name, type, support_usage_threshold);
_pools_list->append(pool);
return (MemoryPool*) pool;
}
MemoryPool* MemoryService::add_space(ContiguousSpace* space,
const char* name,
bool is_heap,
size_t max_size,
bool support_usage_threshold) {
MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap);
ContiguousSpacePool* pool = new ContiguousSpacePool(space, name, type, max_size, support_usage_threshold);
_pools_list->append(pool);
return (MemoryPool*) pool;
}
MemoryPool* MemoryService::add_survivor_spaces(DefNewGeneration* young_gen,
const char* name,
bool is_heap,
size_t max_size,
bool support_usage_threshold) {
MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap);
SurvivorContiguousSpacePool* pool = new SurvivorContiguousSpacePool(young_gen, name, type, max_size, support_usage_threshold);
_pools_list->append(pool);
return (MemoryPool*) pool;
}
#if INCLUDE_ALL_GCS
MemoryPool* MemoryService::add_cms_space(CompactibleFreeListSpace* space,
const char* name,
bool is_heap,
size_t max_size,
bool support_usage_threshold) {
MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap);
CompactibleFreeListSpacePool* pool = new CompactibleFreeListSpacePool(space, name, type, max_size, support_usage_threshold);
_pools_list->append(pool);
return (MemoryPool*) pool;
}
#endif // INCLUDE_ALL_GCS
// Add memory pool(s) for one generation
void MemoryService::add_generation_memory_pool(Generation* gen,
MemoryManager* major_mgr,
MemoryManager* minor_mgr) {
guarantee(gen != NULL, "No generation for memory pool");
Generation::Name kind = gen->kind();
int index = _pools_list->length();
switch (kind) {
case Generation::DefNew: {
assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers");
DefNewGeneration* young_gen = (DefNewGeneration*) gen;
// Add a memory pool for each space and young gen doesn't
// support low memory detection as it is expected to get filled up.
MemoryPool* eden = add_space(young_gen->eden(),
"Eden Space",
true, /* is_heap */
young_gen->max_eden_size(),
false /* support_usage_threshold */);
MemoryPool* survivor = add_survivor_spaces(young_gen,
"Survivor Space",
true, /* is_heap */
young_gen->max_survivor_size(),
false /* support_usage_threshold */);
break;
}
#if INCLUDE_ALL_GCS
case Generation::ParNew:
{
assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers");
// Add a memory pool for each space and young gen doesn't
// support low memory detection as it is expected to get filled up.
ParNewGeneration* parnew_gen = (ParNewGeneration*) gen;
MemoryPool* eden = add_space(parnew_gen->eden(),
"Par Eden Space",
true /* is_heap */,
parnew_gen->max_eden_size(),
false /* support_usage_threshold */);
MemoryPool* survivor = add_survivor_spaces(parnew_gen,
"Par Survivor Space",
true, /* is_heap */
parnew_gen->max_survivor_size(),
false /* support_usage_threshold */);
break;
}
#endif // INCLUDE_ALL_GCS
case Generation::MarkSweepCompact: {
assert(major_mgr != NULL && minor_mgr == NULL, "Should have only one manager");
add_gen(gen,
"Tenured Gen",
true, /* is_heap */
true /* support_usage_threshold */);
break;
}
#if INCLUDE_ALL_GCS
case Generation::ConcurrentMarkSweep:
{
assert(major_mgr != NULL && minor_mgr == NULL, "Should have only one manager");
ConcurrentMarkSweepGeneration* cms = (ConcurrentMarkSweepGeneration*) gen;
MemoryPool* pool = add_cms_space(cms->cmsSpace(),
"CMS Old Gen",
true, /* is_heap */
cms->reserved().byte_size(),
true /* support_usage_threshold */);
break;
}
#endif // INCLUDE_ALL_GCS
default:
assert(false, "should not reach here");
// no memory pool added for others
break;
}
assert(major_mgr != NULL, "Should have at least one manager");
// Link managers and the memory pools together
for (int i = index; i < _pools_list->length(); i++) {
MemoryPool* pool = _pools_list->at(i);
major_mgr->add_pool(pool);
if (minor_mgr != NULL) {
minor_mgr->add_pool(pool);
}
}
}
#if INCLUDE_ALL_GCS
void MemoryService::add_psYoung_memory_pool(PSYoungGen* young_gen, MemoryManager* major_mgr, MemoryManager* minor_mgr) {
assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers");
// Add a memory pool for each space and young gen doesn't
// support low memory detection as it is expected to get filled up.
EdenMutableSpacePool* eden = new EdenMutableSpacePool(young_gen,
young_gen->eden_space(),
"PS Eden Space",
MemoryPool::Heap,
false /* support_usage_threshold */);
SurvivorMutableSpacePool* survivor = new SurvivorMutableSpacePool(young_gen,
"PS Survivor Space",
MemoryPool::Heap,
false /* support_usage_threshold */);
major_mgr->add_pool(eden);
major_mgr->add_pool(survivor);
minor_mgr->add_pool(eden);
minor_mgr->add_pool(survivor);
_pools_list->append(eden);
_pools_list->append(survivor);
}
void MemoryService::add_psOld_memory_pool(PSOldGen* old_gen, MemoryManager* mgr) {
PSGenerationPool* old_gen_pool = new PSGenerationPool(old_gen,
"PS Old Gen",
MemoryPool::Heap,
true /* support_usage_threshold */);
mgr->add_pool(old_gen_pool);
_pools_list->append(old_gen_pool);
}
void MemoryService::add_g1YoungGen_memory_pool(G1CollectedHeap* g1h,
MemoryManager* major_mgr,
MemoryManager* minor_mgr) {
assert(major_mgr != NULL && minor_mgr != NULL, "should have two managers");
G1EdenPool* eden = new G1EdenPool(g1h);
G1SurvivorPool* survivor = new G1SurvivorPool(g1h);
major_mgr->add_pool(eden);
major_mgr->add_pool(survivor);
minor_mgr->add_pool(eden);
minor_mgr->add_pool(survivor);
_pools_list->append(eden);
_pools_list->append(survivor);
}
void MemoryService::add_g1OldGen_memory_pool(G1CollectedHeap* g1h,
MemoryManager* mgr) {
assert(mgr != NULL, "should have one manager");
G1OldGenPool* old_gen = new G1OldGenPool(g1h);
mgr->add_pool(old_gen);
_pools_list->append(old_gen);
}
#endif // INCLUDE_ALL_GCS
void MemoryService::add_code_heap_memory_pool(CodeHeap* heap, const char* name) {
// Create new memory pool for this heap
MemoryPool* code_heap_pool = new CodeHeapPool(heap, name, true /* support_usage_threshold */);
// Append to lists
_code_heap_pools->append(code_heap_pool);
_pools_list->append(code_heap_pool);
if (_code_cache_manager == NULL) {
// Create CodeCache memory manager
_code_cache_manager = MemoryManager::get_code_cache_memory_manager();
_managers_list->append(_code_cache_manager);
}
_code_cache_manager->add_pool(code_heap_pool);
}
void MemoryService::add_metaspace_memory_pools() {
MemoryManager* mgr = MemoryManager::get_metaspace_memory_manager();
_metaspace_pool = new MetaspacePool();
mgr->add_pool(_metaspace_pool);
_pools_list->append(_metaspace_pool);
if (UseCompressedClassPointers) {
_compressed_class_pool = new CompressedKlassSpacePool();
mgr->add_pool(_compressed_class_pool);
_pools_list->append(_compressed_class_pool);
}
_managers_list->append(mgr);
}
MemoryManager* MemoryService::get_memory_manager(instanceHandle mh) {
for (int i = 0; i < _managers_list->length(); i++) {
MemoryManager* mgr = _managers_list->at(i);
if (mgr->is_manager(mh)) {
return mgr;
}
}
return NULL;
}
MemoryPool* MemoryService::get_memory_pool(instanceHandle ph) {
for (int i = 0; i < _pools_list->length(); i++) {
MemoryPool* pool = _pools_list->at(i);
if (pool->is_pool(ph)) {
return pool;
}
}
return NULL;
}
void MemoryService::track_memory_usage() {
// Track the peak memory usage
for (int i = 0; i < _pools_list->length(); i++) {
MemoryPool* pool = _pools_list->at(i);
pool->record_peak_memory_usage();
}
// Detect low memory
LowMemoryDetector::detect_low_memory();
}
void MemoryService::track_memory_pool_usage(MemoryPool* pool) {
// Track the peak memory usage
pool->record_peak_memory_usage();
// Detect low memory
if (LowMemoryDetector::is_enabled(pool)) {
LowMemoryDetector::detect_low_memory(pool);
}
}
void MemoryService::gc_begin(bool fullGC, bool recordGCBeginTime,
bool recordAccumulatedGCTime,
bool recordPreGCUsage, bool recordPeakUsage) {
GCMemoryManager* mgr;
if (fullGC) {
mgr = _major_gc_manager;
} else {
mgr = _minor_gc_manager;
}
assert(mgr->is_gc_memory_manager(), "Sanity check");
mgr->gc_begin(recordGCBeginTime, recordPreGCUsage, recordAccumulatedGCTime);
// Track the peak memory usage when GC begins
if (recordPeakUsage) {
for (int i = 0; i < _pools_list->length(); i++) {
MemoryPool* pool = _pools_list->at(i);
pool->record_peak_memory_usage();
}
}
}
void MemoryService::gc_end(bool fullGC, bool recordPostGCUsage,
bool recordAccumulatedGCTime,
bool recordGCEndTime, bool countCollection,
GCCause::Cause cause) {
GCMemoryManager* mgr;
if (fullGC) {
mgr = (GCMemoryManager*) _major_gc_manager;
} else {
mgr = (GCMemoryManager*) _minor_gc_manager;
}
assert(mgr->is_gc_memory_manager(), "Sanity check");
// register the GC end statistics and memory usage
mgr->gc_end(recordPostGCUsage, recordAccumulatedGCTime, recordGCEndTime,
countCollection, cause);
}
void MemoryService::oops_do(OopClosure* f) {
int i;
for (i = 0; i < _pools_list->length(); i++) {
MemoryPool* pool = _pools_list->at(i);
pool->oops_do(f);
}
for (i = 0; i < _managers_list->length(); i++) {
MemoryManager* mgr = _managers_list->at(i);
mgr->oops_do(f);
}
}
bool MemoryService::set_verbose(bool verbose) {
MutexLocker m(Management_lock);
// verbose will be set to the previous value
MutexLocker ml(LogConfiguration_lock);
if (verbose) {
LogConfiguration::parse_log_arguments("stdout", "gc", NULL, NULL, NULL);
} else {
LogConfiguration::parse_log_arguments("stdout", "gc=off", NULL, NULL, NULL);
}
ClassLoadingService::reset_trace_class_unloading();
return verbose;
}
Handle MemoryService::create_MemoryUsage_obj(MemoryUsage usage, TRAPS) {
Klass* k = Management::java_lang_management_MemoryUsage_klass(CHECK_NH);
instanceKlassHandle ik(THREAD, k);
instanceHandle obj = ik->allocate_instance_handle(CHECK_NH);
JavaValue result(T_VOID);
JavaCallArguments args(10);
args.push_oop(obj); // receiver
args.push_long(usage.init_size_as_jlong()); // Argument 1
args.push_long(usage.used_as_jlong()); // Argument 2
args.push_long(usage.committed_as_jlong()); // Argument 3
args.push_long(usage.max_size_as_jlong()); // Argument 4
JavaCalls::call_special(&result,
ik,
vmSymbols::object_initializer_name(),
vmSymbols::long_long_long_long_void_signature(),
&args,
CHECK_NH);
return obj;
}
// GC manager type depends on the type of Generation. Depending on the space
// availability and vm options the gc uses major gc manager or minor gc
// manager or both. The type of gc manager depends on the generation kind.
// For DefNew and ParNew generation doing scavenge gc uses minor gc manager (so
// _fullGC is set to false ) and for other generation kinds doing
// mark-sweep-compact uses major gc manager (so _fullGC is set to true).
TraceMemoryManagerStats::TraceMemoryManagerStats(Generation::Name kind, GCCause::Cause cause) {
switch (kind) {
case Generation::DefNew:
#if INCLUDE_ALL_GCS
case Generation::ParNew:
#endif // INCLUDE_ALL_GCS
_fullGC = false;
break;
case Generation::MarkSweepCompact:
#if INCLUDE_ALL_GCS
case Generation::ConcurrentMarkSweep:
#endif // INCLUDE_ALL_GCS
_fullGC = true;
break;
default:
_fullGC = false;
assert(false, "Unrecognized gc generation kind.");
}
// this has to be called in a stop the world pause and represent
// an entire gc pause, start to finish:
initialize(_fullGC, cause, true, true, true, true, true, true, true);
}
TraceMemoryManagerStats::TraceMemoryManagerStats(bool fullGC,
GCCause::Cause cause,
bool recordGCBeginTime,
bool recordPreGCUsage,
bool recordPeakUsage,
bool recordPostGCUsage,
bool recordAccumulatedGCTime,
bool recordGCEndTime,
bool countCollection) {
initialize(fullGC, cause, recordGCBeginTime, recordPreGCUsage, recordPeakUsage,
recordPostGCUsage, recordAccumulatedGCTime, recordGCEndTime,
countCollection);
}
// for a subclass to create then initialize an instance before invoking
// the MemoryService
void TraceMemoryManagerStats::initialize(bool fullGC,
GCCause::Cause cause,
bool recordGCBeginTime,
bool recordPreGCUsage,
bool recordPeakUsage,
bool recordPostGCUsage,
bool recordAccumulatedGCTime,
bool recordGCEndTime,
bool countCollection) {
_fullGC = fullGC;
_recordGCBeginTime = recordGCBeginTime;
_recordPreGCUsage = recordPreGCUsage;
_recordPeakUsage = recordPeakUsage;
_recordPostGCUsage = recordPostGCUsage;
_recordAccumulatedGCTime = recordAccumulatedGCTime;
_recordGCEndTime = recordGCEndTime;
_countCollection = countCollection;
_cause = cause;
MemoryService::gc_begin(_fullGC, _recordGCBeginTime, _recordAccumulatedGCTime,
_recordPreGCUsage, _recordPeakUsage);
}
TraceMemoryManagerStats::~TraceMemoryManagerStats() {
MemoryService::gc_end(_fullGC, _recordPostGCUsage, _recordAccumulatedGCTime,
_recordGCEndTime, _countCollection, _cause);
}