8065993: Merge OneContigSpaceCardGeneration with TenuredGeneration
Reviewed-by: mgerdin, kbarrett
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/os.hpp"
#include "runtime/task.hpp"
#include "runtime/threadCritical.hpp"
#include "services/memTracker.hpp"
#include "utilities/ostream.hpp"
void* StackObj::operator new(size_t size) throw() { ShouldNotCallThis(); return 0; }
void StackObj::operator delete(void* p) { ShouldNotCallThis(); }
void* StackObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
void StackObj::operator delete [](void* p) { ShouldNotCallThis(); }
void* _ValueObj::operator new(size_t size) throw() { ShouldNotCallThis(); return 0; }
void _ValueObj::operator delete(void* p) { ShouldNotCallThis(); }
void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
void _ValueObj::operator delete [](void* p) { ShouldNotCallThis(); }
void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
size_t word_size, bool read_only,
MetaspaceObj::Type type, TRAPS) throw() {
// Klass has it's own operator new
return Metaspace::allocate(loader_data, word_size, read_only, type, THREAD);
}
bool MetaspaceObj::is_shared() const {
return MetaspaceShared::is_in_shared_space(this);
}
bool MetaspaceObj::is_metaspace_object() const {
return Metaspace::contains((void*)this);
}
void MetaspaceObj::print_address_on(outputStream* st) const {
st->print(" {" INTPTR_FORMAT "}", p2i(this));
}
void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() {
address res;
switch (type) {
case C_HEAP:
res = (address)AllocateHeap(size, flags, CALLER_PC);
DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
break;
case RESOURCE_AREA:
// new(size) sets allocation type RESOURCE_AREA.
res = (address)operator new(size);
break;
default:
ShouldNotReachHere();
}
return res;
}
void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() {
return (address) operator new(size, type, flags);
}
void* ResourceObj::operator new(size_t size, const std::nothrow_t& nothrow_constant,
allocation_type type, MEMFLAGS flags) throw() {
//should only call this with std::nothrow, use other operator new() otherwise
address res;
switch (type) {
case C_HEAP:
res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
break;
case RESOURCE_AREA:
// new(size) sets allocation type RESOURCE_AREA.
res = (address)operator new(size, std::nothrow);
break;
default:
ShouldNotReachHere();
}
return res;
}
void* ResourceObj::operator new [](size_t size, const std::nothrow_t& nothrow_constant,
allocation_type type, MEMFLAGS flags) throw() {
return (address)operator new(size, nothrow_constant, type, flags);
}
void ResourceObj::operator delete(void* p) {
assert(((ResourceObj *)p)->allocated_on_C_heap(),
"delete only allowed for C_HEAP objects");
DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
FreeHeap(p);
}
void ResourceObj::operator delete [](void* p) {
operator delete(p);
}
#ifdef ASSERT
void ResourceObj::set_allocation_type(address res, allocation_type type) {
// Set allocation type in the resource object
uintptr_t allocation = (uintptr_t)res;
assert((allocation & allocation_mask) == 0, err_msg("address should be aligned to 4 bytes at least: " INTPTR_FORMAT, p2i(res)));
assert(type <= allocation_mask, "incorrect allocation type");
ResourceObj* resobj = (ResourceObj *)res;
resobj->_allocation_t[0] = ~(allocation + type);
if (type != STACK_OR_EMBEDDED) {
// Called from operator new() and CollectionSetChooser(),
// set verification value.
resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
}
}
ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
return (allocation_type)((~_allocation_t[0]) & allocation_mask);
}
bool ResourceObj::is_type_set() const {
allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
return get_allocation_type() == type &&
(_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
}
ResourceObj::ResourceObj() { // default constructor
if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
// Operator new() is not called for allocations
// on stack and for embedded objects.
set_allocation_type((address)this, STACK_OR_EMBEDDED);
} else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
// For some reason we got a value which resembles
// an embedded or stack object (operator new() does not
// set such type). Keep it since it is valid value
// (even if it was garbage).
// Ignore garbage in other fields.
} else if (is_type_set()) {
// Operator new() was called and type was set.
assert(!allocated_on_stack(),
err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
} else {
// Operator new() was not called.
// Assume that it is embedded or stack object.
set_allocation_type((address)this, STACK_OR_EMBEDDED);
}
_allocation_t[1] = 0; // Zap verification value
}
ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
// Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
// Note: garbage may resembles valid value.
assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
set_allocation_type((address)this, STACK_OR_EMBEDDED);
_allocation_t[1] = 0; // Zap verification value
}
ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
// Used in InlineTree::ok_to_inline() for WarmCallInfo.
assert(allocated_on_stack(),
err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
// Keep current _allocation_t value;
return *this;
}
ResourceObj::~ResourceObj() {
// allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
_allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
}
}
#endif // ASSERT
void trace_heap_malloc(size_t size, const char* name, void* p) {
// A lock is not needed here - tty uses a lock internally
tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p2i(p), size, name == NULL ? "" : name);
}
void trace_heap_free(void* p) {
// A lock is not needed here - tty uses a lock internally
tty->print_cr("Heap free " INTPTR_FORMAT, p2i(p));
}
//--------------------------------------------------------------------------------------
// ChunkPool implementation
// MT-safe pool of chunks to reduce malloc/free thrashing
// NB: not using Mutex because pools are used before Threads are initialized
class ChunkPool: public CHeapObj<mtInternal> {
Chunk* _first; // first cached Chunk; its first word points to next chunk
size_t _num_chunks; // number of unused chunks in pool
size_t _num_used; // number of chunks currently checked out
const size_t _size; // size of each chunk (must be uniform)
// Our four static pools
static ChunkPool* _large_pool;
static ChunkPool* _medium_pool;
static ChunkPool* _small_pool;
static ChunkPool* _tiny_pool;
// return first element or null
void* get_first() {
Chunk* c = _first;
if (_first) {
_first = _first->next();
_num_chunks--;
}
return c;
}
public:
// All chunks in a ChunkPool has the same size
ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
// Allocate a new chunk from the pool (might expand the pool)
_NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
assert(bytes == _size, "bad size");
void* p = NULL;
// No VM lock can be taken inside ThreadCritical lock, so os::malloc
// should be done outside ThreadCritical lock due to NMT
{ ThreadCritical tc;
_num_used++;
p = get_first();
}
if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
}
return p;
}
// Return a chunk to the pool
void free(Chunk* chunk) {
assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
ThreadCritical tc;
_num_used--;
// Add chunk to list
chunk->set_next(_first);
_first = chunk;
_num_chunks++;
}
// Prune the pool
void free_all_but(size_t n) {
Chunk* cur = NULL;
Chunk* next;
{
// if we have more than n chunks, free all of them
ThreadCritical tc;
if (_num_chunks > n) {
// free chunks at end of queue, for better locality
cur = _first;
for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
if (cur != NULL) {
next = cur->next();
cur->set_next(NULL);
cur = next;
_num_chunks = n;
}
}
}
// Free all remaining chunks, outside of ThreadCritical
// to avoid deadlock with NMT
while(cur != NULL) {
next = cur->next();
os::free(cur, mtChunk);
cur = next;
}
}
// Accessors to preallocated pool's
static ChunkPool* large_pool() { assert(_large_pool != NULL, "must be initialized"); return _large_pool; }
static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
static ChunkPool* small_pool() { assert(_small_pool != NULL, "must be initialized"); return _small_pool; }
static ChunkPool* tiny_pool() { assert(_tiny_pool != NULL, "must be initialized"); return _tiny_pool; }
static void initialize() {
_large_pool = new ChunkPool(Chunk::size + Chunk::aligned_overhead_size());
_medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
_small_pool = new ChunkPool(Chunk::init_size + Chunk::aligned_overhead_size());
_tiny_pool = new ChunkPool(Chunk::tiny_size + Chunk::aligned_overhead_size());
}
static void clean() {
enum { BlocksToKeep = 5 };
_tiny_pool->free_all_but(BlocksToKeep);
_small_pool->free_all_but(BlocksToKeep);
_medium_pool->free_all_but(BlocksToKeep);
_large_pool->free_all_but(BlocksToKeep);
}
};
ChunkPool* ChunkPool::_large_pool = NULL;
ChunkPool* ChunkPool::_medium_pool = NULL;
ChunkPool* ChunkPool::_small_pool = NULL;
ChunkPool* ChunkPool::_tiny_pool = NULL;
void chunkpool_init() {
ChunkPool::initialize();
}
void
Chunk::clean_chunk_pool() {
ChunkPool::clean();
}
//--------------------------------------------------------------------------------------
// ChunkPoolCleaner implementation
//
class ChunkPoolCleaner : public PeriodicTask {
enum { CleaningInterval = 5000 }; // cleaning interval in ms
public:
ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
void task() {
ChunkPool::clean();
}
};
//--------------------------------------------------------------------------------------
// Chunk implementation
void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
// requested_size is equal to sizeof(Chunk) but in order for the arena
// allocations to come out aligned as expected the size must be aligned
// to expected arena alignment.
// expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
size_t bytes = ARENA_ALIGN(requested_size) + length;
switch (length) {
case Chunk::size: return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
case Chunk::init_size: return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
case Chunk::tiny_size: return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
default: {
void* p = os::malloc(bytes, mtChunk, CALLER_PC);
if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
}
return p;
}
}
}
void Chunk::operator delete(void* p) {
Chunk* c = (Chunk*)p;
switch (c->length()) {
case Chunk::size: ChunkPool::large_pool()->free(c); break;
case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
case Chunk::init_size: ChunkPool::small_pool()->free(c); break;
case Chunk::tiny_size: ChunkPool::tiny_pool()->free(c); break;
default: os::free(c, mtChunk);
}
}
Chunk::Chunk(size_t length) : _len(length) {
_next = NULL; // Chain on the linked list
}
void Chunk::chop() {
Chunk *k = this;
while( k ) {
Chunk *tmp = k->next();
// clear out this chunk (to detect allocation bugs)
if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
delete k; // Free chunk (was malloc'd)
k = tmp;
}
}
void Chunk::next_chop() {
_next->chop();
_next = NULL;
}
void Chunk::start_chunk_pool_cleaner_task() {
#ifdef ASSERT
static bool task_created = false;
assert(!task_created, "should not start chuck pool cleaner twice");
task_created = true;
#endif
ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
cleaner->enroll();
}
//------------------------------Arena------------------------------------------
Arena::Arena(MEMFLAGS flag, size_t init_size) : _flags(flag), _size_in_bytes(0) {
size_t round_size = (sizeof (char *)) - 1;
init_size = (init_size+round_size) & ~round_size;
_first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
_hwm = _chunk->bottom(); // Save the cached hwm, max
_max = _chunk->top();
MemTracker::record_new_arena(flag);
set_size_in_bytes(init_size);
}
Arena::Arena(MEMFLAGS flag) : _flags(flag), _size_in_bytes(0) {
_first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
_hwm = _chunk->bottom(); // Save the cached hwm, max
_max = _chunk->top();
MemTracker::record_new_arena(flag);
set_size_in_bytes(Chunk::init_size);
}
Arena *Arena::move_contents(Arena *copy) {
copy->destruct_contents();
copy->_chunk = _chunk;
copy->_hwm = _hwm;
copy->_max = _max;
copy->_first = _first;
// workaround rare racing condition, which could double count
// the arena size by native memory tracking
size_t size = size_in_bytes();
set_size_in_bytes(0);
copy->set_size_in_bytes(size);
// Destroy original arena
reset();
return copy; // Return Arena with contents
}
Arena::~Arena() {
destruct_contents();
MemTracker::record_arena_free(_flags);
}
void* Arena::operator new(size_t size) throw() {
assert(false, "Use dynamic memory type binding");
return NULL;
}
void* Arena::operator new (size_t size, const std::nothrow_t& nothrow_constant) throw() {
assert(false, "Use dynamic memory type binding");
return NULL;
}
// dynamic memory type binding
void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
#ifdef ASSERT
void* p = (void*)AllocateHeap(size, flags, CALLER_PC);
if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
return p;
#else
return (void *) AllocateHeap(size, flags, CALLER_PC);
#endif
}
void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
#ifdef ASSERT
void* p = os::malloc(size, flags, CALLER_PC);
if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
return p;
#else
return os::malloc(size, flags, CALLER_PC);
#endif
}
void Arena::operator delete(void* p) {
FreeHeap(p);
}
// Destroy this arenas contents and reset to empty
void Arena::destruct_contents() {
if (UseMallocOnly && _first != NULL) {
char* end = _first->next() ? _first->top() : _hwm;
free_malloced_objects(_first, _first->bottom(), end, _hwm);
}
// reset size before chop to avoid a rare racing condition
// that can have total arena memory exceed total chunk memory
set_size_in_bytes(0);
_first->chop();
reset();
}
// This is high traffic method, but many calls actually don't
// change the size
void Arena::set_size_in_bytes(size_t size) {
if (_size_in_bytes != size) {
long delta = (long)(size - size_in_bytes());
_size_in_bytes = size;
MemTracker::record_arena_size_change(delta, _flags);
}
}
// Total of all Chunks in arena
size_t Arena::used() const {
size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
register Chunk *k = _first;
while( k != _chunk) { // Whilst have Chunks in a row
sum += k->length(); // Total size of this Chunk
k = k->next(); // Bump along to next Chunk
}
return sum; // Return total consumed space.
}
void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
}
// Grow a new Chunk
void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
// Get minimal required size. Either real big, or even bigger for giant objs
size_t len = MAX2(x, (size_t) Chunk::size);
Chunk *k = _chunk; // Get filled-up chunk address
_chunk = new (alloc_failmode, len) Chunk(len);
if (_chunk == NULL) {
_chunk = k; // restore the previous value of _chunk
return NULL;
}
if (k) k->set_next(_chunk); // Append new chunk to end of linked list
else _first = _chunk;
_hwm = _chunk->bottom(); // Save the cached hwm, max
_max = _chunk->top();
set_size_in_bytes(size_in_bytes() + len);
void* result = _hwm;
_hwm += x;
return result;
}
// Reallocate storage in Arena.
void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
assert(new_size >= 0, "bad size");
if (new_size == 0) return NULL;
#ifdef ASSERT
if (UseMallocOnly) {
// always allocate a new object (otherwise we'll free this one twice)
char* copy = (char*)Amalloc(new_size, alloc_failmode);
if (copy == NULL) {
return NULL;
}
size_t n = MIN2(old_size, new_size);
if (n > 0) memcpy(copy, old_ptr, n);
Afree(old_ptr,old_size); // Mostly done to keep stats accurate
return copy;
}
#endif
char *c_old = (char*)old_ptr; // Handy name
// Stupid fast special case
if( new_size <= old_size ) { // Shrink in-place
if( c_old+old_size == _hwm) // Attempt to free the excess bytes
_hwm = c_old+new_size; // Adjust hwm
return c_old;
}
// make sure that new_size is legal
size_t corrected_new_size = ARENA_ALIGN(new_size);
// See if we can resize in-place
if( (c_old+old_size == _hwm) && // Adjusting recent thing
(c_old+corrected_new_size <= _max) ) { // Still fits where it sits
_hwm = c_old+corrected_new_size; // Adjust hwm
return c_old; // Return old pointer
}
// Oops, got to relocate guts
void *new_ptr = Amalloc(new_size, alloc_failmode);
if (new_ptr == NULL) {
return NULL;
}
memcpy( new_ptr, c_old, old_size );
Afree(c_old,old_size); // Mostly done to keep stats accurate
return new_ptr;
}
// Determine if pointer belongs to this Arena or not.
bool Arena::contains( const void *ptr ) const {
#ifdef ASSERT
if (UseMallocOnly) {
// really slow, but not easy to make fast
if (_chunk == NULL) return false;
char** bottom = (char**)_chunk->bottom();
for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
if (*p == ptr) return true;
}
for (Chunk *c = _first; c != NULL; c = c->next()) {
if (c == _chunk) continue; // current chunk has been processed
char** bottom = (char**)c->bottom();
for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
if (*p == ptr) return true;
}
}
return false;
}
#endif
if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
return true; // Check for in this chunk
for (Chunk *c = _first; c; c = c->next()) {
if (c == _chunk) continue; // current chunk has been processed
if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
return true; // Check for every chunk in Arena
}
}
return false; // Not in any Chunk, so not in Arena
}
#ifdef ASSERT
void* Arena::malloc(size_t size) {
assert(UseMallocOnly, "shouldn't call");
// use malloc, but save pointer in res. area for later freeing
char** save = (char**)internal_malloc_4(sizeof(char*));
return (*save = (char*)os::malloc(size, mtChunk));
}
// for debugging with UseMallocOnly
void* Arena::internal_malloc_4(size_t x) {
assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
check_for_overflow(x, "Arena::internal_malloc_4");
if (_hwm + x > _max) {
return grow(x);
} else {
char *old = _hwm;
_hwm += x;
return old;
}
}
#endif
//--------------------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
// The global operator new should never be called since it will usually indicate
// a memory leak. Use CHeapObj as the base class of such objects to make it explicit
// that they're allocated on the C heap.
// Commented out in product version to avoid conflicts with third-party C++ native code.
//
// In C++98/03 the throwing new operators are defined with the following signature:
//
// void* operator new(std::size_tsize) throw(std::bad_alloc);
// void* operator new[](std::size_tsize) throw(std::bad_alloc);
//
// while all the other (non-throwing) new and delete operators are defined with an empty
// throw clause (i.e. "operator delete(void* p) throw()") which means that they do not
// throw any exceptions (see section 18.4 of the C++ standard).
//
// In the new C++11/14 standard, the signature of the throwing new operators was changed
// by completely omitting the throw clause (which effectively means they could throw any
// exception) while all the other new/delete operators where changed to have a 'nothrow'
// clause instead of an empty throw clause.
//
// Unfortunately, the support for exception specifications among C++ compilers is still
// very fragile. While some more strict compilers like AIX xlC or HP aCC reject to
// override the default throwing new operator with a user operator with an empty throw()
// clause, the MS Visual C++ compiler warns for every non-empty throw clause like
// throw(std::bad_alloc) that it will ignore the exception specification. The following
// operator definitions have been checked to correctly work with all currently supported
// compilers and they should be upwards compatible with C++11/14. Therefore
// PLEASE BE CAREFUL if you change the signature of the following operators!
static void * zero = (void *) 0;
void* operator new(size_t size) /* throw(std::bad_alloc) */ {
fatal("Should not call global operator new");
return zero;
}
void* operator new [](size_t size) /* throw(std::bad_alloc) */ {
fatal("Should not call global operator new[]");
return zero;
}
void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
fatal("Should not call global operator new");
return 0;
}
void* operator new [](size_t size, std::nothrow_t& nothrow_constant) throw() {
fatal("Should not call global operator new[]");
return 0;
}
void operator delete(void* p) throw() {
fatal("Should not call global delete");
}
void operator delete [](void* p) throw() {
fatal("Should not call global delete []");
}
void AllocatedObj::print() const { print_on(tty); }
void AllocatedObj::print_value() const { print_value_on(tty); }
void AllocatedObj::print_on(outputStream* st) const {
st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
}
void AllocatedObj::print_value_on(outputStream* st) const {
st->print("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
}
julong Arena::_bytes_allocated = 0;
void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
AllocStats::AllocStats() {
start_mallocs = os::num_mallocs;
start_frees = os::num_frees;
start_malloc_bytes = os::alloc_bytes;
start_mfree_bytes = os::free_bytes;
start_res_bytes = Arena::_bytes_allocated;
}
julong AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
julong AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
julong AllocStats::num_frees() { return os::num_frees - start_frees; }
julong AllocStats::free_bytes() { return os::free_bytes - start_mfree_bytes; }
julong AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
void AllocStats::print() {
tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
}
// debugging code
inline void Arena::free_all(char** start, char** end) {
for (char** p = start; p < end; p++) if (*p) os::free(*p);
}
void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
assert(UseMallocOnly, "should not call");
// free all objects malloced since resource mark was created; resource area
// contains their addresses
if (chunk->next()) {
// this chunk is full, and some others too
for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
char* top = c->top();
if (c->next() == NULL) {
top = hwm2; // last junk is only used up to hwm2
assert(c->contains(hwm2), "bad hwm2");
}
free_all((char**)c->bottom(), (char**)top);
}
assert(chunk->contains(hwm), "bad hwm");
assert(chunk->contains(max), "bad max");
free_all((char**)hwm, (char**)max);
} else {
// this chunk was partially used
assert(chunk->contains(hwm), "bad hwm");
assert(chunk->contains(hwm2), "bad hwm2");
free_all((char**)hwm, (char**)hwm2);
}
}
ReallocMark::ReallocMark() {
#ifdef ASSERT
Thread *thread = ThreadLocalStorage::get_thread_slow();
_nesting = thread->resource_area()->nesting();
#endif
}
void ReallocMark::check() {
#ifdef ASSERT
if (_nesting != Thread::current()->resource_area()->nesting()) {
fatal("allocation bug: array could grow within nested ResourceMark");
}
#endif
}
#endif // Non-product