8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/codeCache.hpp"
#include "code/compiledIC.hpp"
#include "code/icBuffer.hpp"
#include "code/nmethod.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/linkResolver.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/oopFactory.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "runtime/icache.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/events.hpp"
// Every time a compiled IC is changed or its type is being accessed,
// either the CompiledIC_lock must be set or we must be at a safe point.
//-----------------------------------------------------------------------------
// Low-level access to an inline cache. Private, since they might not be
// MT-safe to use.
void* CompiledIC::cached_value() const {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
if (!is_in_transition_state()) {
void* data = (void*)_value->data();
// If we let the metadata value here be initialized to zero...
assert(data != NULL || Universe::non_oop_word() == NULL,
"no raw nulls in CompiledIC metadatas, because of patching races");
return (data == (void*)Universe::non_oop_word()) ? NULL : data;
} else {
return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
}
}
void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
assert(entry_point != NULL, "must set legal entry point");
assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
assert(!is_icholder || is_icholder_entry(entry_point), "must be");
// Don't use ic_destination for this test since that forwards
// through ICBuffer instead of returning the actual current state of
// the CompiledIC.
if (is_icholder_entry(_ic_call->destination())) {
// When patching for the ICStub case the cached value isn't
// overwritten until the ICStub copied into the CompiledIC during
// the next safepoint. Make sure that the CompiledICHolder* is
// marked for release at this point since it won't be identifiable
// once the entry point is overwritten.
InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
}
if (TraceCompiledIC) {
tty->print(" ");
print_compiled_ic();
tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
if (!is_optimized()) {
tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
}
if (is_icstub) {
tty->print(" (icstub)");
}
tty->cr();
}
{
MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
#ifdef ASSERT
CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
#endif
_ic_call->set_destination_mt_safe(entry_point);
}
if (is_optimized() || is_icstub) {
// Optimized call sites don't have a cache value and ICStub call
// sites only change the entry point. Changing the value in that
// case could lead to MT safety issues.
assert(cache == NULL, "must be null");
return;
}
if (cache == NULL) cache = (void*)Universe::non_oop_word();
_value->set_data((intptr_t)cache);
}
void CompiledIC::set_ic_destination(ICStub* stub) {
internal_set_ic_destination(stub->code_begin(), true, NULL, false);
}
address CompiledIC::ic_destination() const {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
if (!is_in_transition_state()) {
return _ic_call->destination();
} else {
return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
}
}
bool CompiledIC::is_in_transition_state() const {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
return InlineCacheBuffer::contains(_ic_call->destination());
}
bool CompiledIC::is_icholder_call() const {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
return !_is_optimized && is_icholder_entry(ic_destination());
}
// Returns native address of 'call' instruction in inline-cache. Used by
// the InlineCacheBuffer when it needs to find the stub.
address CompiledIC::stub_address() const {
assert(is_in_transition_state(), "should only be called when we are in a transition state");
return _ic_call->destination();
}
//-----------------------------------------------------------------------------
// High-level access to an inline cache. Guaranteed to be MT-safe.
void CompiledIC::initialize_from_iter(RelocIterator* iter) {
assert(iter->addr() == _ic_call->instruction_address(), "must find ic_call");
if (iter->type() == relocInfo::virtual_call_type) {
virtual_call_Relocation* r = iter->virtual_call_reloc();
_is_optimized = false;
_value = nativeMovConstReg_at(r->cached_value());
} else {
assert(iter->type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
_is_optimized = true;
_value = NULL;
}
}
CompiledIC::CompiledIC(nmethod* nm, NativeCall* call)
: _ic_call(call)
{
address ic_call = _ic_call->instruction_address();
assert(ic_call != NULL, "ic_call address must be set");
assert(nm != NULL, "must pass nmethod");
assert(nm->contains(ic_call), "must be in nmethod");
// Search for the ic_call at the given address.
RelocIterator iter(nm, ic_call, ic_call+1);
bool ret = iter.next();
assert(ret == true, "relocInfo must exist at this address");
assert(iter.addr() == ic_call, "must find ic_call");
initialize_from_iter(&iter);
}
CompiledIC::CompiledIC(RelocIterator* iter)
: _ic_call(nativeCall_at(iter->addr()))
{
address ic_call = _ic_call->instruction_address();
nmethod* nm = iter->code();
assert(ic_call != NULL, "ic_call address must be set");
assert(nm != NULL, "must pass nmethod");
assert(nm->contains(ic_call), "must be in nmethod");
initialize_from_iter(iter);
}
bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
address entry;
if (call_info->call_kind() == CallInfo::itable_call) {
assert(bytecode == Bytecodes::_invokeinterface, "");
int itable_index = call_info->itable_index();
entry = VtableStubs::find_itable_stub(itable_index);
if (entry == false) {
return false;
}
#ifdef ASSERT
int index = call_info->resolved_method()->itable_index();
assert(index == itable_index, "CallInfo pre-computes this");
#endif //ASSERT
InstanceKlass* k = call_info->resolved_method()->method_holder();
assert(k->verify_itable_index(itable_index), "sanity check");
InlineCacheBuffer::create_transition_stub(this, k, entry);
} else {
assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
// Can be different than selected_method->vtable_index(), due to package-private etc.
int vtable_index = call_info->vtable_index();
assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
entry = VtableStubs::find_vtable_stub(vtable_index);
if (entry == NULL) {
return false;
}
InlineCacheBuffer::create_transition_stub(this, NULL, entry);
}
if (TraceICs) {
ResourceMark rm;
tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
}
// We can't check this anymore. With lazy deopt we could have already
// cleaned this IC entry before we even return. This is possible if
// we ran out of space in the inline cache buffer trying to do the
// set_next and we safepointed to free up space. This is a benign
// race because the IC entry was complete when we safepointed so
// cleaning it immediately is harmless.
// assert(is_megamorphic(), "sanity check");
return true;
}
// true if destination is megamorphic stub
bool CompiledIC::is_megamorphic() const {
assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
assert(!is_optimized(), "an optimized call cannot be megamorphic");
// Cannot rely on cached_value. It is either an interface or a method.
return VtableStubs::is_entry_point(ic_destination());
}
bool CompiledIC::is_call_to_compiled() const {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
// Use unsafe, since an inline cache might point to a zombie method. However, the zombie
// method is guaranteed to still exist, since we only remove methods after all inline caches
// has been cleaned up
CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
bool is_monomorphic = (cb != NULL && cb->is_nmethod());
// Check that the cached_value is a klass for non-optimized monomorphic calls
// This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
// for calling directly to vep without using the inline cache (i.e., cached_value == NULL)
#ifdef ASSERT
CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
bool is_c1_method = caller->is_compiled_by_c1();
assert( is_c1_method ||
!is_monomorphic ||
is_optimized() ||
(cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
#endif // ASSERT
return is_monomorphic;
}
bool CompiledIC::is_call_to_interpreted() const {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
// Call to interpreter if destination is either calling to a stub (if it
// is optimized), or calling to an I2C blob
bool is_call_to_interpreted = false;
if (!is_optimized()) {
// must use unsafe because the destination can be a zombie (and we're cleaning)
// and the print_compiled_ic code wants to know if site (in the non-zombie)
// is to the interpreter.
CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
} else {
// Check if we are calling into our own codeblob (i.e., to a stub)
CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
address dest = ic_destination();
#ifdef ASSERT
{
CodeBlob* db = CodeCache::find_blob_unsafe(dest);
assert(!db->is_adapter_blob(), "must use stub!");
}
#endif /* ASSERT */
is_call_to_interpreted = cb->contains(dest);
}
return is_call_to_interpreted;
}
void CompiledIC::set_to_clean() {
assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
if (TraceInlineCacheClearing || TraceICs) {
tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
print();
}
address entry;
if (is_optimized()) {
entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
} else {
entry = SharedRuntime::get_resolve_virtual_call_stub();
}
// A zombie transition will always be safe, since the metadata has already been set to NULL, so
// we only need to patch the destination
bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
if (safe_transition) {
// Kill any leftover stub we might have too
if (is_in_transition_state()) {
ICStub* old_stub = ICStub_from_destination_address(stub_address());
old_stub->clear();
}
if (is_optimized()) {
set_ic_destination(entry);
} else {
set_ic_destination_and_value(entry, (void*)NULL);
}
} else {
// Unsafe transition - create stub.
InlineCacheBuffer::create_transition_stub(this, NULL, entry);
}
// We can't check this anymore. With lazy deopt we could have already
// cleaned this IC entry before we even return. This is possible if
// we ran out of space in the inline cache buffer trying to do the
// set_next and we safepointed to free up space. This is a benign
// race because the IC entry was complete when we safepointed so
// cleaning it immediately is harmless.
// assert(is_clean(), "sanity check");
}
bool CompiledIC::is_clean() const {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
bool is_clean = false;
address dest = ic_destination();
is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
dest == SharedRuntime::get_resolve_virtual_call_stub();
assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
return is_clean;
}
void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
// Updating a cache to the wrong entry can cause bugs that are very hard
// to track down - if cache entry gets invalid - we just clean it. In
// this way it is always the same code path that is responsible for
// updating and resolving an inline cache
//
// The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
// callsites. In addition ic_miss code will update a site to monomorphic if it determines
// that an monomorphic call to the interpreter can now be monomorphic to compiled code.
//
// In both of these cases the only thing being modifed is the jump/call target and these
// transitions are mt_safe
Thread *thread = Thread::current();
if (info.to_interpreter()) {
// Call to interpreter
if (info.is_optimized() && is_optimized()) {
assert(is_clean(), "unsafe IC path");
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
// the call analysis (callee structure) specifies that the call is optimized
// (either because of CHA or the static target is final)
// At code generation time, this call has been emitted as static call
// Call via stub
assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
methodHandle method (thread, (Method*)info.cached_metadata());
csc->set_to_interpreted(method, info.entry());
if (TraceICs) {
ResourceMark rm(thread);
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
p2i(instruction_address()),
method->print_value_string());
}
} else {
// Call via method-klass-holder
InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
if (TraceICs) {
ResourceMark rm(thread);
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
}
}
} else {
// Call to compiled code
bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
#ifdef ASSERT
CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
assert (cb->is_nmethod(), "must be compiled!");
#endif /* ASSERT */
// This is MT safe if we come from a clean-cache and go through a
// non-verified entry point
bool safe = SafepointSynchronize::is_at_safepoint() ||
(!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
if (!safe) {
InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
} else {
if (is_optimized()) {
set_ic_destination(info.entry());
} else {
set_ic_destination_and_value(info.entry(), info.cached_metadata());
}
}
if (TraceICs) {
ResourceMark rm(thread);
assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
p2i(instruction_address()),
((Klass*)info.cached_metadata())->print_value_string(),
(safe) ? "" : "via stub");
}
}
// We can't check this anymore. With lazy deopt we could have already
// cleaned this IC entry before we even return. This is possible if
// we ran out of space in the inline cache buffer trying to do the
// set_next and we safepointed to free up space. This is a benign
// race because the IC entry was complete when we safepointed so
// cleaning it immediately is harmless.
// assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
}
// is_optimized: Compiler has generated an optimized call (i.e., no inline
// cache) static_bound: The call can be static bound (i.e, no need to use
// inline cache)
void CompiledIC::compute_monomorphic_entry(methodHandle method,
KlassHandle receiver_klass,
bool is_optimized,
bool static_bound,
CompiledICInfo& info,
TRAPS) {
nmethod* method_code = method->code();
address entry = NULL;
if (method_code != NULL && method_code->is_in_use()) {
// Call to compiled code
if (static_bound || is_optimized) {
entry = method_code->verified_entry_point();
} else {
entry = method_code->entry_point();
}
}
if (entry != NULL) {
// Call to compiled code
info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
} else {
// Note: the following problem exists with Compiler1:
// - at compile time we may or may not know if the destination is final
// - if we know that the destination is final, we will emit an optimized
// virtual call (no inline cache), and need a Method* to make a call
// to the interpreter
// - if we do not know if the destination is final, we emit a standard
// virtual call, and use CompiledICHolder to call interpreted code
// (no static call stub has been generated)
// However in that case we will now notice it is static_bound
// and convert the call into what looks to be an optimized
// virtual call. This causes problems in verifying the IC because
// it look vanilla but is optimized. Code in is_call_to_interpreted
// is aware of this and weakens its asserts.
// static_bound should imply is_optimized -- otherwise we have a
// performance bug (statically-bindable method is called via
// dynamically-dispatched call note: the reverse implication isn't
// necessarily true -- the call may have been optimized based on compiler
// analysis (static_bound is only based on "final" etc.)
#ifdef COMPILER2
#ifdef TIERED
#if defined(ASSERT)
// can't check the assert because we don't have the CompiledIC with which to
// find the address if the call instruction.
//
// CodeBlob* cb = find_blob_unsafe(instruction_address());
// assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
#endif // ASSERT
#else
assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
#endif // TIERED
#endif // COMPILER2
if (is_optimized) {
// Use stub entry
info.set_interpreter_entry(method()->get_c2i_entry(), method());
} else {
// Use icholder entry
CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
}
}
assert(info.is_optimized() == is_optimized, "must agree");
}
bool CompiledIC::is_icholder_entry(address entry) {
CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
return (cb != NULL && cb->is_adapter_blob());
}
// ----------------------------------------------------------------------------
void CompiledStaticCall::set_to_clean() {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
// Reset call site
MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
#ifdef ASSERT
CodeBlob* cb = CodeCache::find_blob_unsafe(this);
assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
#endif
set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
// Do not reset stub here: It is too expensive to call find_stub.
// Instead, rely on caller (nmethod::clear_inline_caches) to clear
// both the call and its stub.
}
bool CompiledStaticCall::is_clean() const {
return destination() == SharedRuntime::get_resolve_static_call_stub();
}
bool CompiledStaticCall::is_call_to_compiled() const {
return CodeCache::contains(destination());
}
bool CompiledStaticCall::is_call_to_interpreted() const {
// It is a call to interpreted, if it calls to a stub. Hence, the destination
// must be in the stub part of the nmethod that contains the call
nmethod* nm = CodeCache::find_nmethod(instruction_address());
return nm->stub_contains(destination());
}
void CompiledStaticCall::set(const StaticCallInfo& info) {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
// Updating a cache to the wrong entry can cause bugs that are very hard
// to track down - if cache entry gets invalid - we just clean it. In
// this way it is always the same code path that is responsible for
// updating and resolving an inline cache
assert(is_clean(), "do not update a call entry - use clean");
if (info._to_interpreter) {
// Call to interpreted code
set_to_interpreted(info.callee(), info.entry());
} else {
if (TraceICs) {
ResourceMark rm;
tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
p2i(instruction_address()),
p2i(info.entry()));
}
// Call to compiled code
assert (CodeCache::contains(info.entry()), "wrong entry point");
set_destination_mt_safe(info.entry());
}
}
// Compute settings for a CompiledStaticCall. Since we might have to set
// the stub when calling to the interpreter, we need to return arguments.
void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
nmethod* m_code = m->code();
info._callee = m;
if (m_code != NULL && m_code->is_in_use()) {
info._to_interpreter = false;
info._entry = m_code->verified_entry_point();
} else {
// Callee is interpreted code. In any case entering the interpreter
// puts a converter-frame on the stack to save arguments.
info._to_interpreter = true;
info._entry = m()->get_c2i_entry();
}
}
address CompiledStaticCall::find_stub() {
// Find reloc. information containing this call-site
RelocIterator iter((nmethod*)NULL, instruction_address());
while (iter.next()) {
if (iter.addr() == instruction_address()) {
switch(iter.type()) {
case relocInfo::static_call_type:
return iter.static_call_reloc()->static_stub();
// We check here for opt_virtual_call_type, since we reuse the code
// from the CompiledIC implementation
case relocInfo::opt_virtual_call_type:
return iter.opt_virtual_call_reloc()->static_stub();
case relocInfo::poll_type:
case relocInfo::poll_return_type: // A safepoint can't overlap a call.
default:
ShouldNotReachHere();
}
}
}
return NULL;
}
//-----------------------------------------------------------------------------
// Non-product mode code
#ifndef PRODUCT
void CompiledIC::verify() {
// make sure code pattern is actually a call imm32 instruction
_ic_call->verify();
if (os::is_MP()) {
_ic_call->verify_alignment();
}
assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
|| is_optimized() || is_megamorphic(), "sanity check");
}
void CompiledIC::print() {
print_compiled_ic();
tty->cr();
}
void CompiledIC::print_compiled_ic() {
tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
p2i(instruction_address()), is_call_to_interpreted() ? "interpreted " : "", p2i(ic_destination()), p2i(is_optimized() ? NULL : cached_value()));
}
void CompiledStaticCall::print() {
tty->print("static call at " INTPTR_FORMAT " -> ", p2i(instruction_address()));
if (is_clean()) {
tty->print("clean");
} else if (is_call_to_compiled()) {
tty->print("compiled");
} else if (is_call_to_interpreted()) {
tty->print("interpreted");
}
tty->cr();
}
#endif // !PRODUCT