7148152: Add whitebox testing API to HotSpot
Summary: Add an internal testing API to HotSpot to enable more targeted testing of vm functionality
Reviewed-by: phh, dholmes
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/codeCache.hpp"
#include "code/debugInfoRec.hpp"
#include "code/nmethod.hpp"
#include "code/pcDesc.hpp"
#include "code/scopeDesc.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/oopMapCache.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/monitorChunk.hpp"
#include "runtime/signature.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/vframeArray.hpp"
#include "runtime/vframe_hp.hpp"
#ifdef COMPILER2
#include "opto/matcher.hpp"
#endif
// ------------- compiledVFrame --------------
StackValueCollection* compiledVFrame::locals() const {
// Natives has no scope
if (scope() == NULL) return new StackValueCollection(0);
GrowableArray<ScopeValue*>* scv_list = scope()->locals();
if (scv_list == NULL) return new StackValueCollection(0);
// scv_list is the list of ScopeValues describing the JVM stack state.
// There is one scv_list entry for every JVM stack state in use.
int length = scv_list->length();
StackValueCollection* result = new StackValueCollection(length);
// In rare instances set_locals may have occurred in which case
// there are local values that are not described by the ScopeValue anymore
GrowableArray<jvmtiDeferredLocalVariable*>* deferred = NULL;
GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread()->deferred_locals();
if (list != NULL ) {
// In real life this never happens or is typically a single element search
for (int i = 0; i < list->length(); i++) {
if (list->at(i)->matches((vframe*)this)) {
deferred = list->at(i)->locals();
break;
}
}
}
for( int i = 0; i < length; i++ ) {
result->add( create_stack_value(scv_list->at(i)) );
}
// Replace specified locals with any deferred writes that are present
if (deferred != NULL) {
for ( int l = 0; l < deferred->length() ; l ++) {
jvmtiDeferredLocalVariable* val = deferred->at(l);
switch (val->type()) {
case T_BOOLEAN:
result->set_int_at(val->index(), val->value().z);
break;
case T_CHAR:
result->set_int_at(val->index(), val->value().c);
break;
case T_FLOAT:
result->set_float_at(val->index(), val->value().f);
break;
case T_DOUBLE:
result->set_double_at(val->index(), val->value().d);
break;
case T_BYTE:
result->set_int_at(val->index(), val->value().b);
break;
case T_SHORT:
result->set_int_at(val->index(), val->value().s);
break;
case T_INT:
result->set_int_at(val->index(), val->value().i);
break;
case T_LONG:
result->set_long_at(val->index(), val->value().j);
break;
case T_OBJECT:
{
Handle obj((oop)val->value().l);
result->set_obj_at(val->index(), obj);
}
break;
default:
ShouldNotReachHere();
}
}
}
return result;
}
void compiledVFrame::set_locals(StackValueCollection* values) const {
fatal("Should use update_local for each local update");
}
void compiledVFrame::update_local(BasicType type, int index, jvalue value) {
#ifdef ASSERT
assert(fr().is_deoptimized_frame(), "frame must be scheduled for deoptimization");
#endif /* ASSERT */
GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = thread()->deferred_locals();
if (deferred != NULL ) {
// See if this vframe has already had locals with deferred writes
int f;
for ( f = 0 ; f < deferred->length() ; f++ ) {
if (deferred->at(f)->matches(this)) {
// Matching, vframe now see if the local already had deferred write
GrowableArray<jvmtiDeferredLocalVariable*>* locals = deferred->at(f)->locals();
int l;
for (l = 0 ; l < locals->length() ; l++ ) {
if (locals->at(l)->index() == index) {
locals->at(l)->set_value(value);
return;
}
}
// No matching local already present. Push a new value onto the deferred collection
locals->push(new jvmtiDeferredLocalVariable(index, type, value));
return;
}
}
// No matching vframe must push a new vframe
} else {
// No deferred updates pending for this thread.
// allocate in C heap
deferred = new(ResourceObj::C_HEAP) GrowableArray<jvmtiDeferredLocalVariableSet*> (1, true);
thread()->set_deferred_locals(deferred);
}
deferred->push(new jvmtiDeferredLocalVariableSet(method(), bci(), fr().id()));
assert(deferred->top()->id() == fr().id(), "Huh? Must match");
deferred->top()->set_local_at(index, type, value);
}
StackValueCollection* compiledVFrame::expressions() const {
// Natives has no scope
if (scope() == NULL) return new StackValueCollection(0);
GrowableArray<ScopeValue*>* scv_list = scope()->expressions();
if (scv_list == NULL) return new StackValueCollection(0);
// scv_list is the list of ScopeValues describing the JVM stack state.
// There is one scv_list entry for every JVM stack state in use.
int length = scv_list->length();
StackValueCollection* result = new StackValueCollection(length);
for( int i = 0; i < length; i++ )
result->add( create_stack_value(scv_list->at(i)) );
return result;
}
// The implementation of the following two methods was factorized into the
// class StackValue because it is also used from within deoptimization.cpp for
// rematerialization and relocking of non-escaping objects.
StackValue *compiledVFrame::create_stack_value(ScopeValue *sv) const {
return StackValue::create_stack_value(&_fr, register_map(), sv);
}
BasicLock* compiledVFrame::resolve_monitor_lock(Location location) const {
return StackValue::resolve_monitor_lock(&_fr, location);
}
GrowableArray<MonitorInfo*>* compiledVFrame::monitors() const {
// Natives has no scope
if (scope() == NULL) {
nmethod* nm = code();
methodOop method = nm->method();
assert(method->is_native(), "");
if (!method->is_synchronized()) {
return new GrowableArray<MonitorInfo*>(0);
}
// This monitor is really only needed for UseBiasedLocking, but
// return it in all cases for now as it might be useful for stack
// traces and tools as well
GrowableArray<MonitorInfo*> *monitors = new GrowableArray<MonitorInfo*>(1);
// Casting away const
frame& fr = (frame&) _fr;
MonitorInfo* info = new MonitorInfo(
fr.get_native_receiver(), fr.get_native_monitor(), false, false);
monitors->push(info);
return monitors;
}
GrowableArray<MonitorValue*>* monitors = scope()->monitors();
if (monitors == NULL) {
return new GrowableArray<MonitorInfo*>(0);
}
GrowableArray<MonitorInfo*>* result = new GrowableArray<MonitorInfo*>(monitors->length());
for (int index = 0; index < monitors->length(); index++) {
MonitorValue* mv = monitors->at(index);
ScopeValue* ov = mv->owner();
StackValue *owner_sv = create_stack_value(ov); // it is an oop
if (ov->is_object() && owner_sv->obj_is_scalar_replaced()) { // The owner object was scalar replaced
assert(mv->eliminated(), "monitor should be eliminated for scalar replaced object");
// Put klass for scalar replaced object.
ScopeValue* kv = ((ObjectValue *)ov)->klass();
assert(kv->is_constant_oop(), "klass should be oop constant for scalar replaced object");
KlassHandle k(((ConstantOopReadValue*)kv)->value()());
result->push(new MonitorInfo(k->as_klassOop(), resolve_monitor_lock(mv->basic_lock()),
mv->eliminated(), true));
} else {
result->push(new MonitorInfo(owner_sv->get_obj()(), resolve_monitor_lock(mv->basic_lock()),
mv->eliminated(), false));
}
}
return result;
}
compiledVFrame::compiledVFrame(const frame* fr, const RegisterMap* reg_map, JavaThread* thread, nmethod* nm)
: javaVFrame(fr, reg_map, thread) {
_scope = NULL;
// Compiled method (native stub or Java code)
// native wrappers have no scope data, it is implied
if (!nm->is_native_method()) {
_scope = nm->scope_desc_at(_fr.pc());
}
}
compiledVFrame::compiledVFrame(const frame* fr, const RegisterMap* reg_map, JavaThread* thread, ScopeDesc* scope)
: javaVFrame(fr, reg_map, thread) {
_scope = scope;
guarantee(_scope != NULL, "scope must be present");
}
bool compiledVFrame::is_top() const {
// FIX IT: Remove this when new native stubs are in place
if (scope() == NULL) return true;
return scope()->is_top();
}
nmethod* compiledVFrame::code() const {
return CodeCache::find_nmethod(_fr.pc());
}
methodOop compiledVFrame::method() const {
if (scope() == NULL) {
// native nmethods have no scope the method is implied
nmethod* nm = code();
assert(nm->is_native_method(), "must be native");
return nm->method();
}
return scope()->method()();
}
int compiledVFrame::bci() const {
int raw = raw_bci();
return raw == SynchronizationEntryBCI ? 0 : raw;
}
int compiledVFrame::raw_bci() const {
if (scope() == NULL) {
// native nmethods have no scope the method/bci is implied
nmethod* nm = code();
assert(nm->is_native_method(), "must be native");
return 0;
}
return scope()->bci();
}
bool compiledVFrame::should_reexecute() const {
if (scope() == NULL) {
// native nmethods have no scope the method/bci is implied
nmethod* nm = code();
assert(nm->is_native_method(), "must be native");
return false;
}
return scope()->should_reexecute();
}
vframe* compiledVFrame::sender() const {
const frame f = fr();
if (scope() == NULL) {
// native nmethods have no scope the method/bci is implied
nmethod* nm = code();
assert(nm->is_native_method(), "must be native");
return vframe::sender();
} else {
return scope()->is_top()
? vframe::sender()
: new compiledVFrame(&f, register_map(), thread(), scope()->sender());
}
}
jvmtiDeferredLocalVariableSet::jvmtiDeferredLocalVariableSet(methodOop method, int bci, intptr_t* id) {
_method = method;
_bci = bci;
_id = id;
// Alway will need at least one, must be on C heap
_locals = new(ResourceObj::C_HEAP) GrowableArray<jvmtiDeferredLocalVariable*> (1, true);
}
jvmtiDeferredLocalVariableSet::~jvmtiDeferredLocalVariableSet() {
for (int i = 0; i < _locals->length() ; i++ ) {
delete _locals->at(i);
}
// Free growableArray and c heap for elements
delete _locals;
}
bool jvmtiDeferredLocalVariableSet::matches(vframe* vf) {
if (!vf->is_compiled_frame()) return false;
compiledVFrame* cvf = (compiledVFrame*)vf;
return cvf->fr().id() == id() && cvf->method() == method() && cvf->bci() == bci();
}
void jvmtiDeferredLocalVariableSet::set_local_at(int idx, BasicType type, jvalue val) {
int i;
for ( i = 0 ; i < locals()->length() ; i++ ) {
if ( locals()->at(i)->index() == idx) {
assert(locals()->at(i)->type() == type, "Wrong type");
locals()->at(i)->set_value(val);
return;
}
}
locals()->push(new jvmtiDeferredLocalVariable(idx, type, val));
}
void jvmtiDeferredLocalVariableSet::oops_do(OopClosure* f) {
f->do_oop((oop*) &_method);
for ( int i = 0; i < locals()->length(); i++ ) {
if ( locals()->at(i)->type() == T_OBJECT) {
f->do_oop(locals()->at(i)->oop_addr());
}
}
}
jvmtiDeferredLocalVariable::jvmtiDeferredLocalVariable(int index, BasicType type, jvalue value) {
_index = index;
_type = type;
_value = value;
}
#ifndef PRODUCT
void compiledVFrame::verify() const {
Unimplemented();
}
#endif // PRODUCT