8205679: Remove unused ThreadLocalAllocBuffer::undo_allocate()
Reviewed-by: shade, stefank
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_SHARED_OOPSTORAGE_INLINE_HPP
#define SHARE_GC_SHARED_OOPSTORAGE_INLINE_HPP
#include "gc/shared/oopStorage.hpp"
#include "metaprogramming/conditional.hpp"
#include "metaprogramming/isConst.hpp"
#include "oops/oop.hpp"
#include "runtime/safepoint.hpp"
#include "utilities/align.hpp"
#include "utilities/count_trailing_zeros.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
// Array of all active blocks. Refcounted for lock-free reclaim of
// old array when a new array is allocated for expansion.
class OopStorage::ActiveArray {
friend class OopStorage::TestAccess;
size_t _size;
volatile size_t _block_count;
mutable volatile int _refcount;
// Block* _blocks[1]; // Pseudo flexible array member.
ActiveArray(size_t size);
~ActiveArray();
// Noncopyable
ActiveArray(const ActiveArray&);
ActiveArray& operator=(const ActiveArray&);
static size_t blocks_offset();
Block* const* base_ptr() const;
Block* const* block_ptr(size_t index) const;
Block** block_ptr(size_t index);
public:
static ActiveArray* create(size_t size, AllocFailType alloc_fail = AllocFailStrategy::EXIT_OOM);
static void destroy(ActiveArray* ba);
inline Block* at(size_t i) const;
size_t size() const;
size_t block_count() const;
size_t block_count_acquire() const;
void increment_refcount() const;
bool decrement_refcount() const; // Return true if zero, otherwise false
// Support for OopStorage::allocate.
// Add block to the end of the array. Updates block count at the
// end of the operation, with a release_store. Returns true if the
// block was added, false if there was no room available.
// precondition: owner's _allocation_mutex is locked, or at safepoint.
bool push(Block* block);
// Support OopStorage::delete_empty_blocks_xxx operations.
// Remove block from the array.
// precondition: block must be present at its active_index element.
void remove(Block* block);
void copy_from(const ActiveArray* from);
};
inline size_t OopStorage::ActiveArray::blocks_offset() {
return align_up(sizeof(ActiveArray), sizeof(Block*));
}
inline OopStorage::Block* const* OopStorage::ActiveArray::base_ptr() const {
const void* ptr = reinterpret_cast<const char*>(this) + blocks_offset();
return reinterpret_cast<Block* const*>(ptr);
}
inline OopStorage::Block* const* OopStorage::ActiveArray::block_ptr(size_t index) const {
return base_ptr() + index;
}
inline OopStorage::Block** OopStorage::ActiveArray::block_ptr(size_t index) {
return const_cast<Block**>(base_ptr() + index);
}
inline OopStorage::Block* OopStorage::ActiveArray::at(size_t index) const {
assert(index < _block_count, "precondition");
return *block_ptr(index);
}
// A Block has an embedded AllocateEntry to provide the links between
// Blocks in a AllocateList.
class OopStorage::AllocateEntry {
friend class OopStorage::AllocateList;
// Members are mutable, and we deal exclusively with pointers to
// const, to make const blocks easier to use; a block being const
// doesn't prevent modifying its list state.
mutable const Block* _prev;
mutable const Block* _next;
// Noncopyable.
AllocateEntry(const AllocateEntry&);
AllocateEntry& operator=(const AllocateEntry&);
public:
AllocateEntry();
~AllocateEntry();
};
// Fixed-sized array of oops, plus bookkeeping data.
// All blocks are in the storage's _active_array, at the block's _active_index.
// Non-full blocks are in the storage's _allocate_list, linked through the
// block's _allocate_entry. Empty blocks are at the end of that list.
class OopStorage::Block /* No base class, to avoid messing up alignment. */ {
// _data must be the first non-static data member, for alignment.
oop _data[BitsPerWord];
static const unsigned _data_pos = 0; // Position of _data.
volatile uintx _allocated_bitmask; // One bit per _data element.
const OopStorage* _owner;
void* _memory; // Unaligned storage containing block.
size_t _active_index;
AllocateEntry _allocate_entry;
Block* volatile _deferred_updates_next;
volatile uintx _release_refcount;
Block(const OopStorage* owner, void* memory);
~Block();
void check_index(unsigned index) const;
unsigned get_index(const oop* ptr) const;
template<typename F, typename BlockPtr>
static bool iterate_impl(F f, BlockPtr b);
// Noncopyable.
Block(const Block&);
Block& operator=(const Block&);
public:
const AllocateEntry& allocate_entry() const;
static size_t allocation_size();
static size_t allocation_alignment_shift();
oop* get_pointer(unsigned index);
const oop* get_pointer(unsigned index) const;
uintx bitmask_for_index(unsigned index) const;
uintx bitmask_for_entry(const oop* ptr) const;
// Allocation bitmask accessors are racy.
bool is_full() const;
bool is_empty() const;
uintx allocated_bitmask() const;
bool is_deletable() const;
Block* deferred_updates_next() const;
void set_deferred_updates_next(Block* new_next);
bool contains(const oop* ptr) const;
size_t active_index() const;
void set_active_index(size_t index);
static size_t active_index_safe(const Block* block); // Returns 0 if access fails.
// Returns NULL if ptr is not in a block or not allocated in that block.
static Block* block_for_ptr(const OopStorage* owner, const oop* ptr);
oop* allocate();
static Block* new_block(const OopStorage* owner);
static void delete_block(const Block& block);
void release_entries(uintx releasing, Block* volatile* deferred_list);
template<typename F> bool iterate(F f);
template<typename F> bool iterate(F f) const;
}; // class Block
inline OopStorage::Block* OopStorage::AllocateList::head() {
return const_cast<Block*>(_head);
}
inline OopStorage::Block* OopStorage::AllocateList::tail() {
return const_cast<Block*>(_tail);
}
inline const OopStorage::Block* OopStorage::AllocateList::chead() const {
return _head;
}
inline const OopStorage::Block* OopStorage::AllocateList::ctail() const {
return _tail;
}
inline OopStorage::Block* OopStorage::AllocateList::prev(Block& block) {
return const_cast<Block*>(block.allocate_entry()._prev);
}
inline OopStorage::Block* OopStorage::AllocateList::next(Block& block) {
return const_cast<Block*>(block.allocate_entry()._next);
}
inline const OopStorage::Block* OopStorage::AllocateList::prev(const Block& block) const {
return block.allocate_entry()._prev;
}
inline const OopStorage::Block* OopStorage::AllocateList::next(const Block& block) const {
return block.allocate_entry()._next;
}
template<typename Closure>
class OopStorage::OopFn {
public:
explicit OopFn(Closure* cl) : _cl(cl) {}
template<typename OopPtr> // [const] oop*
bool operator()(OopPtr ptr) const {
_cl->do_oop(ptr);
return true;
}
private:
Closure* _cl;
};
template<typename Closure>
inline OopStorage::OopFn<Closure> OopStorage::oop_fn(Closure* cl) {
return OopFn<Closure>(cl);
}
template<typename IsAlive, typename F>
class OopStorage::IfAliveFn {
public:
IfAliveFn(IsAlive* is_alive, F f) : _is_alive(is_alive), _f(f) {}
bool operator()(oop* ptr) const {
bool result = true;
oop v = *ptr;
if (v != NULL) {
if (_is_alive->do_object_b(v)) {
result = _f(ptr);
} else {
*ptr = NULL; // Clear dead value.
}
}
return result;
}
private:
IsAlive* _is_alive;
F _f;
};
template<typename IsAlive, typename F>
inline OopStorage::IfAliveFn<IsAlive, F> OopStorage::if_alive_fn(IsAlive* is_alive, F f) {
return IfAliveFn<IsAlive, F>(is_alive, f);
}
template<typename F>
class OopStorage::SkipNullFn {
public:
SkipNullFn(F f) : _f(f) {}
template<typename OopPtr> // [const] oop*
bool operator()(OopPtr ptr) const {
return (*ptr != NULL) ? _f(ptr) : true;
}
private:
F _f;
};
template<typename F>
inline OopStorage::SkipNullFn<F> OopStorage::skip_null_fn(F f) {
return SkipNullFn<F>(f);
}
// Inline Block accesses for use in iteration loops.
inline const OopStorage::AllocateEntry& OopStorage::Block::allocate_entry() const {
return _allocate_entry;
}
inline void OopStorage::Block::check_index(unsigned index) const {
assert(index < ARRAY_SIZE(_data), "Index out of bounds: %u", index);
}
inline oop* OopStorage::Block::get_pointer(unsigned index) {
check_index(index);
return &_data[index];
}
inline const oop* OopStorage::Block::get_pointer(unsigned index) const {
check_index(index);
return &_data[index];
}
inline uintx OopStorage::Block::allocated_bitmask() const {
return _allocated_bitmask;
}
inline uintx OopStorage::Block::bitmask_for_index(unsigned index) const {
check_index(index);
return uintx(1) << index;
}
// Provide const or non-const iteration, depending on whether BlockPtr
// is const Block* or Block*, respectively.
template<typename F, typename BlockPtr> // BlockPtr := [const] Block*
inline bool OopStorage::Block::iterate_impl(F f, BlockPtr block) {
uintx bitmask = block->allocated_bitmask();
while (bitmask != 0) {
unsigned index = count_trailing_zeros(bitmask);
bitmask ^= block->bitmask_for_index(index);
if (!f(block->get_pointer(index))) {
return false;
}
}
return true;
}
template<typename F>
inline bool OopStorage::Block::iterate(F f) {
return iterate_impl(f, this);
}
template<typename F>
inline bool OopStorage::Block::iterate(F f) const {
return iterate_impl(f, this);
}
//////////////////////////////////////////////////////////////////////////////
// Support for serial iteration, always at a safepoint.
// Provide const or non-const iteration, depending on whether Storage is
// const OopStorage* or OopStorage*, respectively.
template<typename F, typename Storage> // Storage := [const] OopStorage
inline bool OopStorage::iterate_impl(F f, Storage* storage) {
assert_at_safepoint();
// Propagate const/non-const iteration to the block layer, by using
// const or non-const blocks as corresponding to Storage.
typedef typename Conditional<IsConst<Storage>::value, const Block*, Block*>::type BlockPtr;
ActiveArray* blocks = storage->_active_array;
size_t limit = blocks->block_count();
for (size_t i = 0; i < limit; ++i) {
BlockPtr block = blocks->at(i);
if (!block->iterate(f)) {
return false;
}
}
return true;
}
template<typename F>
inline bool OopStorage::iterate_safepoint(F f) {
return iterate_impl(f, this);
}
template<typename F>
inline bool OopStorage::iterate_safepoint(F f) const {
return iterate_impl(f, this);
}
template<typename Closure>
inline void OopStorage::oops_do(Closure* cl) {
iterate_safepoint(oop_fn(cl));
}
template<typename Closure>
inline void OopStorage::oops_do(Closure* cl) const {
iterate_safepoint(oop_fn(cl));
}
template<typename Closure>
inline void OopStorage::weak_oops_do(Closure* cl) {
iterate_safepoint(skip_null_fn(oop_fn(cl)));
}
template<typename IsAliveClosure, typename Closure>
inline void OopStorage::weak_oops_do(IsAliveClosure* is_alive, Closure* cl) {
iterate_safepoint(if_alive_fn(is_alive, oop_fn(cl)));
}
#endif // include guard