8006110: pageDialog is showing the swing dialog with DialogTypeSelection.NATIVE
Reviewed-by: bae, prr
/*
* Copyright (c) 1998, 2008, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.print;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.Shape;
import java.awt.Transparency;
import java.awt.font.FontRenderContext;
import java.awt.font.TextLayout;
import java.awt.geom.AffineTransform;
import java.awt.geom.Area;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.Line2D;
import java.awt.image.BufferedImage;
import sun.awt.image.ByteComponentRaster;
import java.awt.print.PageFormat;
import java.awt.print.Printable;
import java.awt.print.PrinterException;
import java.awt.print.PrinterJob;
/**
* This class converts paths into PostScript
* by breaking all graphics into fills and
* clips of paths.
*/
class PSPathGraphics extends PathGraphics {
/**
* For a drawing application the initial user space
* resolution is 72dpi.
*/
private static final int DEFAULT_USER_RES = 72;
PSPathGraphics(Graphics2D graphics, PrinterJob printerJob,
Printable painter, PageFormat pageFormat, int pageIndex,
boolean canRedraw) {
super(graphics, printerJob, painter, pageFormat, pageIndex, canRedraw);
}
/**
* Creates a new <code>Graphics</code> object that is
* a copy of this <code>Graphics</code> object.
* @return a new graphics context that is a copy of
* this graphics context.
* @since JDK1.0
*/
public Graphics create() {
return new PSPathGraphics((Graphics2D) getDelegate().create(),
getPrinterJob(),
getPrintable(),
getPageFormat(),
getPageIndex(),
canDoRedraws());
}
/**
* Override the inherited implementation of fill
* so that we can generate PostScript in user space
* rather than device space.
*/
public void fill(Shape s, Color color) {
deviceFill(s.getPathIterator(new AffineTransform()), color);
}
/**
* Draws the text given by the specified string, using this
* graphics context's current font and color. The baseline of the
* first character is at position (<i>x</i>, <i>y</i>) in this
* graphics context's coordinate system.
* @param str the string to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @see java.awt.Graphics#drawBytes
* @see java.awt.Graphics#drawChars
* @since JDK1.0
*/
public void drawString(String str, int x, int y) {
drawString(str, (float) x, (float) y);
}
/**
* Renders the text specified by the specified <code>String</code>,
* using the current <code>Font</code> and <code>Paint</code> attributes
* in the <code>Graphics2D</code> context.
* The baseline of the first character is at position
* (<i>x</i>, <i>y</i>) in the User Space.
* The rendering attributes applied include the <code>Clip</code>,
* <code>Transform</code>, <code>Paint</code>, <code>Font</code> and
* <code>Composite</code> attributes. For characters in script systems
* such as Hebrew and Arabic, the glyphs can be rendered from right to
* left, in which case the coordinate supplied is the location of the
* leftmost character on the baseline.
* @param s the <code>String</code> to be rendered
* @param x, y the coordinates where the <code>String</code>
* should be rendered
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see java.awt.Graphics#setFont
* @see #setTransform
* @see #setComposite
* @see #setClip
*/
public void drawString(String str, float x, float y) {
drawString(str, x, y, getFont(), getFontRenderContext(), 0f);
}
protected boolean canDrawStringToWidth() {
return true;
}
protected int platformFontCount(Font font, String str) {
PSPrinterJob psPrinterJob = (PSPrinterJob) getPrinterJob();
return psPrinterJob.platformFontCount(font, str);
}
protected void drawString(String str, float x, float y,
Font font, FontRenderContext frc, float w) {
if (str.length() == 0) {
return;
}
/* If the Font has layout attributes we need to delegate to TextLayout.
* TextLayout renders text as GlyphVectors. We try to print those
* using printer fonts - ie using Postscript text operators so
* we may be reinvoked. In that case the "!printingGlyphVector" test
* prevents us recursing and instead sends us into the body of the
* method where we can safely ignore layout attributes as those
* are already handled by TextLayout.
*/
if (font.hasLayoutAttributes() && !printingGlyphVector) {
TextLayout layout = new TextLayout(str, font, frc);
layout.draw(this, x, y);
return;
}
Font oldFont = getFont();
if (!oldFont.equals(font)) {
setFont(font);
} else {
oldFont = null;
}
boolean drawnWithPS = false;
float translateX = 0f, translateY = 0f;
boolean fontisTransformed = getFont().isTransformed();
if (fontisTransformed) {
AffineTransform fontTx = getFont().getTransform();
int transformType = fontTx.getType();
/* TYPE_TRANSLATION is a flag bit but we can do "==" here
* because we want to detect when its just that bit set and
*
*/
if (transformType == AffineTransform.TYPE_TRANSLATION) {
translateX = (float)(fontTx.getTranslateX());
translateY = (float)(fontTx.getTranslateY());
if (Math.abs(translateX) < 0.00001) translateX = 0f;
if (Math.abs(translateY) < 0.00001) translateY = 0f;
fontisTransformed = false;
}
}
boolean directToPS = !fontisTransformed;
if (!PSPrinterJob.shapeTextProp && directToPS) {
PSPrinterJob psPrinterJob = (PSPrinterJob) getPrinterJob();
if (psPrinterJob.setFont(getFont())) {
/* Set the text color.
* We should not be in this shape printing path
* if the application is drawing with non-solid
* colors. We should be in the raster path. Because
* we are here in the shape path, the cast of the
* paint to a Color should be fine.
*/
try {
psPrinterJob.setColor((Color)getPaint());
} catch (ClassCastException e) {
if (oldFont != null) {
setFont(oldFont);
}
throw new IllegalArgumentException(
"Expected a Color instance");
}
psPrinterJob.setTransform(getTransform());
psPrinterJob.setClip(getClip());
drawnWithPS = psPrinterJob.textOut(this, str,
x+translateX, y+translateY,
font, frc, w);
}
}
/* The text could not be converted directly to PS text
* calls so decompose the text into a shape.
*/
if (drawnWithPS == false) {
if (oldFont != null) {
setFont(oldFont);
oldFont = null;
}
super.drawString(str, x, y, font, frc, w);
}
if (oldFont != null) {
setFont(oldFont);
}
}
/**
* The various <code>drawImage()</code> methods for
* <code>WPathGraphics</code> are all decomposed
* into an invocation of <code>drawImageToPlatform</code>.
* The portion of the passed in image defined by
* <code>srcX, srcY, srcWidth, and srcHeight</code>
* is transformed by the supplied AffineTransform and
* drawn using PS to the printer context.
*
* @param img The image to be drawn.
* This method does nothing if <code>img</code> is null.
* @param xform Used to tranform the image before drawing.
* This can be null.
* @param bgcolor This color is drawn where the image has transparent
* pixels. If this parameter is null then the
* pixels already in the destination should show
* through.
* @param srcX With srcY this defines the upper-left corner
* of the portion of the image to be drawn.
*
* @param srcY With srcX this defines the upper-left corner
* of the portion of the image to be drawn.
* @param srcWidth The width of the portion of the image to
* be drawn.
* @param srcHeight The height of the portion of the image to
* be drawn.
* @param handlingTransparency if being recursively called to
* print opaque region of transparent image
*/
protected boolean drawImageToPlatform(Image image, AffineTransform xform,
Color bgcolor,
int srcX, int srcY,
int srcWidth, int srcHeight,
boolean handlingTransparency) {
BufferedImage img = getBufferedImage(image);
if (img == null) {
return true;
}
PSPrinterJob psPrinterJob = (PSPrinterJob) getPrinterJob();
/* The full transform to be applied to the image is the
* caller's transform concatenated on to the transform
* from user space to device space. If the caller didn't
* supply a transform then we just act as if they passed
* in the identify transform.
*/
AffineTransform fullTransform = getTransform();
if (xform == null) {
xform = new AffineTransform();
}
fullTransform.concatenate(xform);
/* Split the full transform into a pair of
* transforms. The first transform holds effects
* such as rotation and shearing. The second transform
* is setup to hold only the scaling effects.
* These transforms are created such that a point,
* p, in user space, when transformed by 'fullTransform'
* lands in the same place as when it is transformed
* by 'rotTransform' and then 'scaleTransform'.
*
* The entire image transformation is not in Java in order
* to minimize the amount of memory needed in the VM. By
* dividing the transform in two, we rotate and shear
* the source image in its own space and only go to
* the, usually, larger, device space when we ask
* PostScript to perform the final scaling.
*/
double[] fullMatrix = new double[6];
fullTransform.getMatrix(fullMatrix);
/* Calculate the amount of scaling in the x
* and y directions. This scaling is computed by
* transforming a unit vector along each axis
* and computing the resulting magnitude.
* The computed values 'scaleX' and 'scaleY'
* represent the amount of scaling PS will be asked
* to perform.
* Clamp this to the device scale for better quality printing.
*/
Point2D.Float unitVectorX = new Point2D.Float(1, 0);
Point2D.Float unitVectorY = new Point2D.Float(0, 1);
fullTransform.deltaTransform(unitVectorX, unitVectorX);
fullTransform.deltaTransform(unitVectorY, unitVectorY);
Point2D.Float origin = new Point2D.Float(0, 0);
double scaleX = unitVectorX.distance(origin);
double scaleY = unitVectorY.distance(origin);
double devResX = psPrinterJob.getXRes();
double devResY = psPrinterJob.getYRes();
double devScaleX = devResX / DEFAULT_USER_RES;
double devScaleY = devResY / DEFAULT_USER_RES;
/* check if rotated or sheared */
int transformType = fullTransform.getType();
boolean clampScale = ((transformType &
(AffineTransform.TYPE_GENERAL_ROTATION |
AffineTransform.TYPE_GENERAL_TRANSFORM)) != 0);
if (clampScale) {
if (scaleX > devScaleX) scaleX = devScaleX;
if (scaleY > devScaleY) scaleY = devScaleY;
}
/* We do not need to draw anything if either scaling
* factor is zero.
*/
if (scaleX != 0 && scaleY != 0) {
/* Here's the transformation we will do with Java2D,
*/
AffineTransform rotTransform = new AffineTransform(
fullMatrix[0] / scaleX, //m00
fullMatrix[1] / scaleY, //m10
fullMatrix[2] / scaleX, //m01
fullMatrix[3] / scaleY, //m11
fullMatrix[4] / scaleX, //m02
fullMatrix[5] / scaleY); //m12
/* The scale transform is not used directly: we instead
* directly multiply by scaleX and scaleY.
*
* Conceptually here is what the scaleTransform is:
*
* AffineTransform scaleTransform = new AffineTransform(
* scaleX, //m00
* 0, //m10
* 0, //m01
* scaleY, //m11
* 0, //m02
* 0); //m12
*/
/* Convert the image source's rectangle into the rotated
* and sheared space. Once there, we calculate a rectangle
* that encloses the resulting shape. It is this rectangle
* which defines the size of the BufferedImage we need to
* create to hold the transformed image.
*/
Rectangle2D.Float srcRect = new Rectangle2D.Float(srcX, srcY,
srcWidth,
srcHeight);
Shape rotShape = rotTransform.createTransformedShape(srcRect);
Rectangle2D rotBounds = rotShape.getBounds2D();
/* add a fudge factor as some fp precision problems have
* been observed which caused pixels to be rounded down and
* out of the image.
*/
rotBounds.setRect(rotBounds.getX(), rotBounds.getY(),
rotBounds.getWidth()+0.001,
rotBounds.getHeight()+0.001);
int boundsWidth = (int) rotBounds.getWidth();
int boundsHeight = (int) rotBounds.getHeight();
if (boundsWidth > 0 && boundsHeight > 0) {
/* If the image has transparent or semi-transparent
* pixels then we'll have the application re-render
* the portion of the page covered by the image.
* This will be done in a later call to print using the
* saved graphics state.
* However several special cases can be handled otherwise:
* - bitmask transparency with a solid background colour
* - images which have transparency color models but no
* transparent pixels
* - images with bitmask transparency and an IndexColorModel
* (the common transparent GIF case) can be handled by
* rendering just the opaque pixels.
*/
boolean drawOpaque = true;
if (!handlingTransparency && hasTransparentPixels(img)) {
drawOpaque = false;
if (isBitmaskTransparency(img)) {
if (bgcolor == null) {
if (drawBitmaskImage(img, xform, bgcolor,
srcX, srcY,
srcWidth, srcHeight)) {
// image drawn, just return.
return true;
}
} else if (bgcolor.getTransparency()
== Transparency.OPAQUE) {
drawOpaque = true;
}
}
if (!canDoRedraws()) {
drawOpaque = true;
}
} else {
// if there's no transparent pixels there's no need
// for a background colour. This can avoid edge artifacts
// in rotation cases.
bgcolor = null;
}
// if src region extends beyond the image, the "opaque" path
// may blit b/g colour (including white) where it shoudn't.
if ((srcX+srcWidth > img.getWidth(null) ||
srcY+srcHeight > img.getHeight(null))
&& canDoRedraws()) {
drawOpaque = false;
}
if (drawOpaque == false) {
fullTransform.getMatrix(fullMatrix);
AffineTransform tx =
new AffineTransform(
fullMatrix[0] / devScaleX, //m00
fullMatrix[1] / devScaleY, //m10
fullMatrix[2] / devScaleX, //m01
fullMatrix[3] / devScaleY, //m11
fullMatrix[4] / devScaleX, //m02
fullMatrix[5] / devScaleY); //m12
Rectangle2D.Float rect =
new Rectangle2D.Float(srcX, srcY, srcWidth, srcHeight);
Shape shape = fullTransform.createTransformedShape(rect);
// Region isn't user space because its potentially
// been rotated for landscape.
Rectangle2D region = shape.getBounds2D();
region.setRect(region.getX(), region.getY(),
region.getWidth()+0.001,
region.getHeight()+0.001);
// Try to limit the amount of memory used to 8Mb, so
// if at device resolution this exceeds a certain
// image size then scale down the region to fit in
// that memory, but never to less than 72 dpi.
int w = (int)region.getWidth();
int h = (int)region.getHeight();
int nbytes = w * h * 3;
int maxBytes = 8 * 1024 * 1024;
double origDpi = (devResX < devResY) ? devResX : devResY;
int dpi = (int)origDpi;
double scaleFactor = 1;
double maxSFX = w/(double)boundsWidth;
double maxSFY = h/(double)boundsHeight;
double maxSF = (maxSFX > maxSFY) ? maxSFY : maxSFX;
int minDpi = (int)(dpi/maxSF);
if (minDpi < DEFAULT_USER_RES) minDpi = DEFAULT_USER_RES;
while (nbytes > maxBytes && dpi > minDpi) {
scaleFactor *= 2;
dpi /= 2;
nbytes /= 4;
}
if (dpi < minDpi) {
scaleFactor = (origDpi / minDpi);
}
region.setRect(region.getX()/scaleFactor,
region.getY()/scaleFactor,
region.getWidth()/scaleFactor,
region.getHeight()/scaleFactor);
/*
* We need to have the clip as part of the saved state,
* either directly, or all the components that are
* needed to reconstitute it (image source area,
* image transform and current graphics transform).
* The clip is described in user space, so we need to
* save the current graphics transform anyway so just
* save these two.
*/
psPrinterJob.saveState(getTransform(), getClip(),
region, scaleFactor, scaleFactor);
return true;
/* The image can be rendered directly by PS so we
* copy it into a BufferedImage (this takes care of
* ColorSpace and BufferedImageOp issues) and then
* send that to PS.
*/
} else {
/* Create a buffered image big enough to hold the portion
* of the source image being printed.
*/
BufferedImage deepImage = new BufferedImage(
(int) rotBounds.getWidth(),
(int) rotBounds.getHeight(),
BufferedImage.TYPE_3BYTE_BGR);
/* Setup a Graphics2D on to the BufferedImage so that the
* source image when copied, lands within the image buffer.
*/
Graphics2D imageGraphics = deepImage.createGraphics();
imageGraphics.clipRect(0, 0,
deepImage.getWidth(),
deepImage.getHeight());
imageGraphics.translate(-rotBounds.getX(),
-rotBounds.getY());
imageGraphics.transform(rotTransform);
/* Fill the BufferedImage either with the caller supplied
* color, 'bgColor' or, if null, with white.
*/
if (bgcolor == null) {
bgcolor = Color.white;
}
/* REMIND: no need to use scaling here. */
imageGraphics.drawImage(img,
srcX, srcY,
srcX + srcWidth, srcY + srcHeight,
srcX, srcY,
srcX + srcWidth, srcY + srcHeight,
bgcolor, null);
/* In PSPrinterJob images are printed in device space
* and therefore we need to set a device space clip.
* FIX: this is an overly tight coupling of these
* two classes.
* The temporary clip set needs to be an intersection
* with the previous user clip.
* REMIND: two xfms may lose accuracy in clip path.
*/
Shape holdClip = getClip();
Shape oldClip =
getTransform().createTransformedShape(holdClip);
AffineTransform sat = AffineTransform.getScaleInstance(
scaleX, scaleY);
Shape imgClip = sat.createTransformedShape(rotShape);
Area imgArea = new Area(imgClip);
Area oldArea = new Area(oldClip);
imgArea.intersect(oldArea);
psPrinterJob.setClip(imgArea);
/* Scale the bounding rectangle by the scale transform.
* Because the scaling transform has only x and y
* scaling components it is equivalent to multiply
* the x components of the bounding rectangle by
* the x scaling factor and to multiply the y components
* by the y scaling factor.
*/
Rectangle2D.Float scaledBounds
= new Rectangle2D.Float(
(float) (rotBounds.getX() * scaleX),
(float) (rotBounds.getY() * scaleY),
(float) (rotBounds.getWidth() * scaleX),
(float) (rotBounds.getHeight() * scaleY));
/* Pull the raster data from the buffered image
* and pass it along to PS.
*/
ByteComponentRaster tile =
(ByteComponentRaster)deepImage.getRaster();
psPrinterJob.drawImageBGR(tile.getDataStorage(),
scaledBounds.x, scaledBounds.y,
(float)Math.rint(scaledBounds.width+0.5),
(float)Math.rint(scaledBounds.height+0.5),
0f, 0f,
deepImage.getWidth(), deepImage.getHeight(),
deepImage.getWidth(), deepImage.getHeight());
/* Reset the device clip to match user clip */
psPrinterJob.setClip(
getTransform().createTransformedShape(holdClip));
imageGraphics.dispose();
}
}
}
return true;
}
/** Redraw a rectanglular area using a proxy graphics
* To do this we need to know the rectangular area to redraw and
* the transform & clip in effect at the time of the original drawImage
*
*/
public void redrawRegion(Rectangle2D region, double scaleX, double scaleY,
Shape savedClip, AffineTransform savedTransform)
throws PrinterException {
PSPrinterJob psPrinterJob = (PSPrinterJob)getPrinterJob();
Printable painter = getPrintable();
PageFormat pageFormat = getPageFormat();
int pageIndex = getPageIndex();
/* Create a buffered image big enough to hold the portion
* of the source image being printed.
*/
BufferedImage deepImage = new BufferedImage(
(int) region.getWidth(),
(int) region.getHeight(),
BufferedImage.TYPE_3BYTE_BGR);
/* Get a graphics for the application to render into.
* We initialize the buffer to white in order to
* match the paper and then we shift the BufferedImage
* so that it covers the area on the page where the
* caller's Image will be drawn.
*/
Graphics2D g = deepImage.createGraphics();
ProxyGraphics2D proxy = new ProxyGraphics2D(g, psPrinterJob);
proxy.setColor(Color.white);
proxy.fillRect(0, 0, deepImage.getWidth(), deepImage.getHeight());
proxy.clipRect(0, 0, deepImage.getWidth(), deepImage.getHeight());
proxy.translate(-region.getX(), -region.getY());
/* Calculate the resolution of the source image.
*/
float sourceResX = (float)(psPrinterJob.getXRes() / scaleX);
float sourceResY = (float)(psPrinterJob.getYRes() / scaleY);
/* The application expects to see user space at 72 dpi.
* so change user space from image source resolution to
* 72 dpi.
*/
proxy.scale(sourceResX / DEFAULT_USER_RES,
sourceResY / DEFAULT_USER_RES);
proxy.translate(
-psPrinterJob.getPhysicalPrintableX(pageFormat.getPaper())
/ psPrinterJob.getXRes() * DEFAULT_USER_RES,
-psPrinterJob.getPhysicalPrintableY(pageFormat.getPaper())
/ psPrinterJob.getYRes() * DEFAULT_USER_RES);
/* NB User space now has to be at 72 dpi for this calc to be correct */
proxy.transform(new AffineTransform(getPageFormat().getMatrix()));
proxy.setPaint(Color.black);
painter.print(proxy, pageFormat, pageIndex);
g.dispose();
/* In PSPrinterJob images are printed in device space
* and therefore we need to set a device space clip.
*/
psPrinterJob.setClip(savedTransform.createTransformedShape(savedClip));
/* Scale the bounding rectangle by the scale transform.
* Because the scaling transform has only x and y
* scaling components it is equivalent to multiply
* the x components of the bounding rectangle by
* the x scaling factor and to multiply the y components
* by the y scaling factor.
*/
Rectangle2D.Float scaledBounds
= new Rectangle2D.Float(
(float) (region.getX() * scaleX),
(float) (region.getY() * scaleY),
(float) (region.getWidth() * scaleX),
(float) (region.getHeight() * scaleY));
/* Pull the raster data from the buffered image
* and pass it along to PS.
*/
ByteComponentRaster tile = (ByteComponentRaster)deepImage.getRaster();
psPrinterJob.drawImageBGR(tile.getDataStorage(),
scaledBounds.x, scaledBounds.y,
scaledBounds.width,
scaledBounds.height,
0f, 0f,
deepImage.getWidth(), deepImage.getHeight(),
deepImage.getWidth(), deepImage.getHeight());
}
/*
* Fill the path defined by <code>pathIter</code>
* with the specified color.
* The path is provided in current user space.
*/
protected void deviceFill(PathIterator pathIter, Color color) {
PSPrinterJob psPrinterJob = (PSPrinterJob) getPrinterJob();
psPrinterJob.deviceFill(pathIter, color, getTransform(), getClip());
}
/*
* Draw the bounding rectangle using path by calling draw()
* function and passing a rectangle shape.
*/
protected void deviceFrameRect(int x, int y, int width, int height,
Color color) {
draw(new Rectangle2D.Float(x, y, width, height));
}
/*
* Draw a line using path by calling draw() function and passing
* a line shape.
*/
protected void deviceDrawLine(int xBegin, int yBegin,
int xEnd, int yEnd, Color color) {
draw(new Line2D.Float(xBegin, yBegin, xEnd, yEnd));
}
/*
* Fill the rectangle with the specified color by calling fill().
*/
protected void deviceFillRect(int x, int y, int width, int height,
Color color) {
fill(new Rectangle2D.Float(x, y, width, height));
}
/*
* This method should not be invoked by PSPathGraphics.
* FIX: Rework PathGraphics so that this method is
* not an abstract method there.
*/
protected void deviceClip(PathIterator pathIter) {
}
}