8050942: PPC64: implement template interpreter for ppc64le
Reviewed-by: kvn, goetz
Contributed-by: asmundak@google.com
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_ppc.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/top.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
#include "runtime/thread.inline.hpp"
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
class StubGenerator: public StubCodeGenerator {
private:
// Call stubs are used to call Java from C
//
// Arguments:
//
// R3 - call wrapper address : address
// R4 - result : intptr_t*
// R5 - result type : BasicType
// R6 - method : Method
// R7 - frame mgr entry point : address
// R8 - parameter block : intptr_t*
// R9 - parameter count in words : int
// R10 - thread : Thread*
//
address generate_call_stub(address& return_address) {
// Setup a new c frame, copy java arguments, call frame manager or
// native_entry, and process result.
StubCodeMark mark(this, "StubRoutines", "call_stub");
address start = __ function_entry();
// some sanity checks
assert((sizeof(frame::abi_minframe) % 16) == 0, "unaligned");
assert((sizeof(frame::abi_reg_args) % 16) == 0, "unaligned");
assert((sizeof(frame::spill_nonvolatiles) % 16) == 0, "unaligned");
assert((sizeof(frame::parent_ijava_frame_abi) % 16) == 0, "unaligned");
assert((sizeof(frame::entry_frame_locals) % 16) == 0, "unaligned");
Register r_arg_call_wrapper_addr = R3;
Register r_arg_result_addr = R4;
Register r_arg_result_type = R5;
Register r_arg_method = R6;
Register r_arg_entry = R7;
Register r_arg_thread = R10;
Register r_temp = R24;
Register r_top_of_arguments_addr = R25;
Register r_entryframe_fp = R26;
{
// Stack on entry to call_stub:
//
// F1 [C_FRAME]
// ...
Register r_arg_argument_addr = R8;
Register r_arg_argument_count = R9;
Register r_frame_alignment_in_bytes = R27;
Register r_argument_addr = R28;
Register r_argumentcopy_addr = R29;
Register r_argument_size_in_bytes = R30;
Register r_frame_size = R23;
Label arguments_copied;
// Save LR/CR to caller's C_FRAME.
__ save_LR_CR(R0);
// Zero extend arg_argument_count.
__ clrldi(r_arg_argument_count, r_arg_argument_count, 32);
// Save non-volatiles GPRs to ENTRY_FRAME (not yet pushed, but it's safe).
__ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
// Keep copy of our frame pointer (caller's SP).
__ mr(r_entryframe_fp, R1_SP);
BLOCK_COMMENT("Push ENTRY_FRAME including arguments");
// Push ENTRY_FRAME including arguments:
//
// F0 [TOP_IJAVA_FRAME_ABI]
// alignment (optional)
// [outgoing Java arguments]
// [ENTRY_FRAME_LOCALS]
// F1 [C_FRAME]
// ...
// calculate frame size
// unaligned size of arguments
__ sldi(r_argument_size_in_bytes,
r_arg_argument_count, Interpreter::logStackElementSize);
// arguments alignment (max 1 slot)
// FIXME: use round_to() here
__ andi_(r_frame_alignment_in_bytes, r_arg_argument_count, 1);
__ sldi(r_frame_alignment_in_bytes,
r_frame_alignment_in_bytes, Interpreter::logStackElementSize);
// size = unaligned size of arguments + top abi's size
__ addi(r_frame_size, r_argument_size_in_bytes,
frame::top_ijava_frame_abi_size);
// size += arguments alignment
__ add(r_frame_size,
r_frame_size, r_frame_alignment_in_bytes);
// size += size of call_stub locals
__ addi(r_frame_size,
r_frame_size, frame::entry_frame_locals_size);
// push ENTRY_FRAME
__ push_frame(r_frame_size, r_temp);
// initialize call_stub locals (step 1)
__ std(r_arg_call_wrapper_addr,
_entry_frame_locals_neg(call_wrapper_address), r_entryframe_fp);
__ std(r_arg_result_addr,
_entry_frame_locals_neg(result_address), r_entryframe_fp);
__ std(r_arg_result_type,
_entry_frame_locals_neg(result_type), r_entryframe_fp);
// we will save arguments_tos_address later
BLOCK_COMMENT("Copy Java arguments");
// copy Java arguments
// Calculate top_of_arguments_addr which will be R17_tos (not prepushed) later.
// FIXME: why not simply use SP+frame::top_ijava_frame_size?
__ addi(r_top_of_arguments_addr,
R1_SP, frame::top_ijava_frame_abi_size);
__ add(r_top_of_arguments_addr,
r_top_of_arguments_addr, r_frame_alignment_in_bytes);
// any arguments to copy?
__ cmpdi(CCR0, r_arg_argument_count, 0);
__ beq(CCR0, arguments_copied);
// prepare loop and copy arguments in reverse order
{
// init CTR with arg_argument_count
__ mtctr(r_arg_argument_count);
// let r_argumentcopy_addr point to last outgoing Java arguments P
__ mr(r_argumentcopy_addr, r_top_of_arguments_addr);
// let r_argument_addr point to last incoming java argument
__ add(r_argument_addr,
r_arg_argument_addr, r_argument_size_in_bytes);
__ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
// now loop while CTR > 0 and copy arguments
{
Label next_argument;
__ bind(next_argument);
__ ld(r_temp, 0, r_argument_addr);
// argument_addr--;
__ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
__ std(r_temp, 0, r_argumentcopy_addr);
// argumentcopy_addr++;
__ addi(r_argumentcopy_addr, r_argumentcopy_addr, BytesPerWord);
__ bdnz(next_argument);
}
}
// Arguments copied, continue.
__ bind(arguments_copied);
}
{
BLOCK_COMMENT("Call frame manager or native entry.");
// Call frame manager or native entry.
Register r_new_arg_entry = R14; // PPC_state;
assert_different_registers(r_new_arg_entry, r_top_of_arguments_addr,
r_arg_method, r_arg_thread);
__ mr(r_new_arg_entry, r_arg_entry);
// Register state on entry to frame manager / native entry:
//
// tos - intptr_t* sender tos (prepushed) Lesp = (SP) + copied_arguments_offset - 8
// R19_method - Method
// R16_thread - JavaThread*
// Tos must point to last argument - element_size.
#ifdef CC_INTERP
const Register tos = R17_tos;
#else
const Register tos = R15_esp;
#endif
__ addi(tos, r_top_of_arguments_addr, -Interpreter::stackElementSize);
// initialize call_stub locals (step 2)
// now save tos as arguments_tos_address
__ std(tos, _entry_frame_locals_neg(arguments_tos_address), r_entryframe_fp);
// load argument registers for call
__ mr(R19_method, r_arg_method);
__ mr(R16_thread, r_arg_thread);
assert(tos != r_arg_method, "trashed r_arg_method");
assert(tos != r_arg_thread && R19_method != r_arg_thread, "trashed r_arg_thread");
// Set R15_prev_state to 0 for simplifying checks in callee.
#ifdef CC_INTERP
__ li(R15_prev_state, 0);
#else
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
#endif
// Stack on entry to frame manager / native entry:
//
// F0 [TOP_IJAVA_FRAME_ABI]
// alignment (optional)
// [outgoing Java arguments]
// [ENTRY_FRAME_LOCALS]
// F1 [C_FRAME]
// ...
//
// global toc register
__ load_const(R29, MacroAssembler::global_toc(), R11_scratch1);
// Load narrow oop base.
__ reinit_heapbase(R30, R11_scratch1);
// Remember the senderSP so we interpreter can pop c2i arguments off of the stack
// when called via a c2i.
// Pass initial_caller_sp to framemanager.
__ mr(R21_tmp1, R1_SP);
// Do a light-weight C-call here, r_new_arg_entry holds the address
// of the interpreter entry point (frame manager or native entry)
// and save runtime-value of LR in return_address.
assert(r_new_arg_entry != tos && r_new_arg_entry != R19_method && r_new_arg_entry != R16_thread,
"trashed r_new_arg_entry");
return_address = __ call_stub(r_new_arg_entry);
}
{
BLOCK_COMMENT("Returned from frame manager or native entry.");
// Returned from frame manager or native entry.
// Now pop frame, process result, and return to caller.
// Stack on exit from frame manager / native entry:
//
// F0 [ABI]
// ...
// [ENTRY_FRAME_LOCALS]
// F1 [C_FRAME]
// ...
//
// Just pop the topmost frame ...
//
Label ret_is_object;
Label ret_is_long;
Label ret_is_float;
Label ret_is_double;
Register r_entryframe_fp = R30;
Register r_lr = R7_ARG5;
Register r_cr = R8_ARG6;
// Reload some volatile registers which we've spilled before the call
// to frame manager / native entry.
// Access all locals via frame pointer, because we know nothing about
// the topmost frame's size.
__ ld(r_entryframe_fp, _abi(callers_sp), R1_SP);
assert_different_registers(r_entryframe_fp, R3_RET, r_arg_result_addr, r_arg_result_type, r_cr, r_lr);
__ ld(r_arg_result_addr,
_entry_frame_locals_neg(result_address), r_entryframe_fp);
__ ld(r_arg_result_type,
_entry_frame_locals_neg(result_type), r_entryframe_fp);
__ ld(r_cr, _abi(cr), r_entryframe_fp);
__ ld(r_lr, _abi(lr), r_entryframe_fp);
// pop frame and restore non-volatiles, LR and CR
__ mr(R1_SP, r_entryframe_fp);
__ mtcr(r_cr);
__ mtlr(r_lr);
// Store result depending on type. Everything that is not
// T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE is treated as T_INT.
__ cmpwi(CCR0, r_arg_result_type, T_OBJECT);
__ cmpwi(CCR1, r_arg_result_type, T_LONG);
__ cmpwi(CCR5, r_arg_result_type, T_FLOAT);
__ cmpwi(CCR6, r_arg_result_type, T_DOUBLE);
// restore non-volatile registers
__ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
// Stack on exit from call_stub:
//
// 0 [C_FRAME]
// ...
//
// no call_stub frames left.
// All non-volatiles have been restored at this point!!
assert(R3_RET == R3, "R3_RET should be R3");
__ beq(CCR0, ret_is_object);
__ beq(CCR1, ret_is_long);
__ beq(CCR5, ret_is_float);
__ beq(CCR6, ret_is_double);
// default:
__ stw(R3_RET, 0, r_arg_result_addr);
__ blr(); // return to caller
// case T_OBJECT:
__ bind(ret_is_object);
__ std(R3_RET, 0, r_arg_result_addr);
__ blr(); // return to caller
// case T_LONG:
__ bind(ret_is_long);
__ std(R3_RET, 0, r_arg_result_addr);
__ blr(); // return to caller
// case T_FLOAT:
__ bind(ret_is_float);
__ stfs(F1_RET, 0, r_arg_result_addr);
__ blr(); // return to caller
// case T_DOUBLE:
__ bind(ret_is_double);
__ stfd(F1_RET, 0, r_arg_result_addr);
__ blr(); // return to caller
}
return start;
}
// Return point for a Java call if there's an exception thrown in
// Java code. The exception is caught and transformed into a
// pending exception stored in JavaThread that can be tested from
// within the VM.
//
address generate_catch_exception() {
StubCodeMark mark(this, "StubRoutines", "catch_exception");
address start = __ pc();
// Registers alive
//
// R16_thread
// R3_ARG1 - address of pending exception
// R4_ARG2 - return address in call stub
const Register exception_file = R21_tmp1;
const Register exception_line = R22_tmp2;
__ load_const(exception_file, (void*)__FILE__);
__ load_const(exception_line, (void*)__LINE__);
__ std(R3_ARG1, in_bytes(JavaThread::pending_exception_offset()), R16_thread);
// store into `char *'
__ std(exception_file, in_bytes(JavaThread::exception_file_offset()), R16_thread);
// store into `int'
__ stw(exception_line, in_bytes(JavaThread::exception_line_offset()), R16_thread);
// complete return to VM
assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
__ mtlr(R4_ARG2);
// continue in call stub
__ blr();
return start;
}
// Continuation point for runtime calls returning with a pending
// exception. The pending exception check happened in the runtime
// or native call stub. The pending exception in Thread is
// converted into a Java-level exception.
//
address generate_forward_exception() {
StubCodeMark mark(this, "StubRoutines", "forward_exception");
address start = __ pc();
#if !defined(PRODUCT)
if (VerifyOops) {
// Get pending exception oop.
__ ld(R3_ARG1,
in_bytes(Thread::pending_exception_offset()),
R16_thread);
// Make sure that this code is only executed if there is a pending exception.
{
Label L;
__ cmpdi(CCR0, R3_ARG1, 0);
__ bne(CCR0, L);
__ stop("StubRoutines::forward exception: no pending exception (1)");
__ bind(L);
}
__ verify_oop(R3_ARG1, "StubRoutines::forward exception: not an oop");
}
#endif
// Save LR/CR and copy exception pc (LR) into R4_ARG2.
__ save_LR_CR(R4_ARG2);
__ push_frame_reg_args(0, R0);
// Find exception handler.
__ call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
R16_thread,
R4_ARG2);
// Copy handler's address.
__ mtctr(R3_RET);
__ pop_frame();
__ restore_LR_CR(R0);
// Set up the arguments for the exception handler:
// - R3_ARG1: exception oop
// - R4_ARG2: exception pc.
// Load pending exception oop.
__ ld(R3_ARG1,
in_bytes(Thread::pending_exception_offset()),
R16_thread);
// The exception pc is the return address in the caller.
// Must load it into R4_ARG2.
__ mflr(R4_ARG2);
#ifdef ASSERT
// Make sure exception is set.
{
Label L;
__ cmpdi(CCR0, R3_ARG1, 0);
__ bne(CCR0, L);
__ stop("StubRoutines::forward exception: no pending exception (2)");
__ bind(L);
}
#endif
// Clear the pending exception.
__ li(R0, 0);
__ std(R0,
in_bytes(Thread::pending_exception_offset()),
R16_thread);
// Jump to exception handler.
__ bctr();
return start;
}
#undef __
#define __ masm->
// Continuation point for throwing of implicit exceptions that are
// not handled in the current activation. Fabricates an exception
// oop and initiates normal exception dispatching in this
// frame. Only callee-saved registers are preserved (through the
// normal register window / RegisterMap handling). If the compiler
// needs all registers to be preserved between the fault point and
// the exception handler then it must assume responsibility for that
// in AbstractCompiler::continuation_for_implicit_null_exception or
// continuation_for_implicit_division_by_zero_exception. All other
// implicit exceptions (e.g., NullPointerException or
// AbstractMethodError on entry) are either at call sites or
// otherwise assume that stack unwinding will be initiated, so
// caller saved registers were assumed volatile in the compiler.
//
// Note that we generate only this stub into a RuntimeStub, because
// it needs to be properly traversed and ignored during GC, so we
// change the meaning of the "__" macro within this method.
//
// Note: the routine set_pc_not_at_call_for_caller in
// SharedRuntime.cpp requires that this code be generated into a
// RuntimeStub.
address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc,
Register arg1 = noreg, Register arg2 = noreg) {
CodeBuffer code(name, 1024 DEBUG_ONLY(+ 512), 0);
MacroAssembler* masm = new MacroAssembler(&code);
OopMapSet* oop_maps = new OopMapSet();
int frame_size_in_bytes = frame::abi_reg_args_size;
OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
address start = __ pc();
__ save_LR_CR(R11_scratch1);
// Push a frame.
__ push_frame_reg_args(0, R11_scratch1);
address frame_complete_pc = __ pc();
if (restore_saved_exception_pc) {
__ unimplemented("StubGenerator::throw_exception with restore_saved_exception_pc", 74);
}
// Note that we always have a runtime stub frame on the top of
// stack by this point. Remember the offset of the instruction
// whose address will be moved to R11_scratch1.
address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
__ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
__ mr(R3_ARG1, R16_thread);
if (arg1 != noreg) {
__ mr(R4_ARG2, arg1);
}
if (arg2 != noreg) {
__ mr(R5_ARG3, arg2);
}
#if defined(ABI_ELFv2)
__ call_c(runtime_entry, relocInfo::none);
#else
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry), relocInfo::none);
#endif
// Set an oopmap for the call site.
oop_maps->add_gc_map((int)(gc_map_pc - start), map);
__ reset_last_Java_frame();
#ifdef ASSERT
// Make sure that this code is only executed if there is a pending
// exception.
{
Label L;
__ ld(R0,
in_bytes(Thread::pending_exception_offset()),
R16_thread);
__ cmpdi(CCR0, R0, 0);
__ bne(CCR0, L);
__ stop("StubRoutines::throw_exception: no pending exception");
__ bind(L);
}
#endif
// Pop frame.
__ pop_frame();
__ restore_LR_CR(R11_scratch1);
__ load_const(R11_scratch1, StubRoutines::forward_exception_entry());
__ mtctr(R11_scratch1);
__ bctr();
// Create runtime stub with OopMap.
RuntimeStub* stub =
RuntimeStub::new_runtime_stub(name, &code,
/*frame_complete=*/ (int)(frame_complete_pc - start),
frame_size_in_bytes/wordSize,
oop_maps,
false);
return stub->entry_point();
}
#undef __
#define __ _masm->
// Generate G1 pre-write barrier for array.
//
// Input:
// from - register containing src address (only needed for spilling)
// to - register containing starting address
// count - register containing element count
// tmp - scratch register
//
// Kills:
// nothing
//
void gen_write_ref_array_pre_barrier(Register from, Register to, Register count, bool dest_uninitialized, Register Rtmp1) {
BarrierSet* const bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCT:
case BarrierSet::G1SATBCTLogging:
// With G1, don't generate the call if we statically know that the target in uninitialized
if (!dest_uninitialized) {
const int spill_slots = 4 * wordSize;
const int frame_size = frame::abi_reg_args_size + spill_slots;
Label filtered;
// Is marking active?
if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
__ lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
} else {
guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
__ lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
}
__ cmpdi(CCR0, Rtmp1, 0);
__ beq(CCR0, filtered);
__ save_LR_CR(R0);
__ push_frame_reg_args(spill_slots, R0);
__ std(from, frame_size - 1 * wordSize, R1_SP);
__ std(to, frame_size - 2 * wordSize, R1_SP);
__ std(count, frame_size - 3 * wordSize, R1_SP);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), to, count);
__ ld(from, frame_size - 1 * wordSize, R1_SP);
__ ld(to, frame_size - 2 * wordSize, R1_SP);
__ ld(count, frame_size - 3 * wordSize, R1_SP);
__ pop_frame();
__ restore_LR_CR(R0);
__ bind(filtered);
}
break;
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
case BarrierSet::ModRef:
break;
default:
ShouldNotReachHere();
}
}
// Generate CMS/G1 post-write barrier for array.
//
// Input:
// addr - register containing starting address
// count - register containing element count
// tmp - scratch register
//
// The input registers and R0 are overwritten.
//
void gen_write_ref_array_post_barrier(Register addr, Register count, Register tmp, bool branchToEnd) {
BarrierSet* const bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCT:
case BarrierSet::G1SATBCTLogging:
{
if (branchToEnd) {
__ save_LR_CR(R0);
// We need this frame only to spill LR.
__ push_frame_reg_args(0, R0);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), addr, count);
__ pop_frame();
__ restore_LR_CR(R0);
} else {
// Tail call: fake call from stub caller by branching without linking.
address entry_point = (address)CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post);
__ mr_if_needed(R3_ARG1, addr);
__ mr_if_needed(R4_ARG2, count);
__ load_const(R11, entry_point, R0);
__ call_c_and_return_to_caller(R11);
}
}
break;
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
{
Label Lskip_loop, Lstore_loop;
if (UseConcMarkSweepGC) {
// TODO PPC port: contribute optimization / requires shared changes
__ release();
}
CardTableModRefBS* const ct = (CardTableModRefBS*)bs;
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
assert_different_registers(addr, count, tmp);
__ sldi(count, count, LogBytesPerHeapOop);
__ addi(count, count, -BytesPerHeapOop);
__ add(count, addr, count);
// Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
__ srdi(addr, addr, CardTableModRefBS::card_shift);
__ srdi(count, count, CardTableModRefBS::card_shift);
__ subf(count, addr, count);
assert_different_registers(R0, addr, count, tmp);
__ load_const(tmp, (address)ct->byte_map_base);
__ addic_(count, count, 1);
__ beq(CCR0, Lskip_loop);
__ li(R0, 0);
__ mtctr(count);
// Byte store loop
__ bind(Lstore_loop);
__ stbx(R0, tmp, addr);
__ addi(addr, addr, 1);
__ bdnz(Lstore_loop);
__ bind(Lskip_loop);
if (!branchToEnd) __ blr();
}
break;
case BarrierSet::ModRef:
if (!branchToEnd) __ blr();
break;
default:
ShouldNotReachHere();
}
}
// Support for void zero_words_aligned8(HeapWord* to, size_t count)
//
// Arguments:
// to:
// count:
//
// Destroys:
//
address generate_zero_words_aligned8() {
StubCodeMark mark(this, "StubRoutines", "zero_words_aligned8");
// Implemented as in ClearArray.
address start = __ function_entry();
Register base_ptr_reg = R3_ARG1; // tohw (needs to be 8b aligned)
Register cnt_dwords_reg = R4_ARG2; // count (in dwords)
Register tmp1_reg = R5_ARG3;
Register tmp2_reg = R6_ARG4;
Register zero_reg = R7_ARG5;
// Procedure for large arrays (uses data cache block zero instruction).
Label dwloop, fast, fastloop, restloop, lastdword, done;
int cl_size=VM_Version::get_cache_line_size(), cl_dwords=cl_size>>3, cl_dwordaddr_bits=exact_log2(cl_dwords);
int min_dcbz=2; // Needs to be positive, apply dcbz only to at least min_dcbz cache lines.
// Clear up to 128byte boundary if long enough, dword_cnt=(16-(base>>3))%16.
__ dcbtst(base_ptr_reg); // Indicate write access to first cache line ...
__ andi(tmp2_reg, cnt_dwords_reg, 1); // to check if number of dwords is even.
__ srdi_(tmp1_reg, cnt_dwords_reg, 1); // number of double dwords
__ load_const_optimized(zero_reg, 0L); // Use as zero register.
__ cmpdi(CCR1, tmp2_reg, 0); // cnt_dwords even?
__ beq(CCR0, lastdword); // size <= 1
__ mtctr(tmp1_reg); // Speculatively preload counter for rest loop (>0).
__ cmpdi(CCR0, cnt_dwords_reg, (min_dcbz+1)*cl_dwords-1); // Big enough to ensure >=min_dcbz cache lines are included?
__ neg(tmp1_reg, base_ptr_reg); // bit 0..58: bogus, bit 57..60: (16-(base>>3))%16, bit 61..63: 000
__ blt(CCR0, restloop); // Too small. (<31=(2*cl_dwords)-1 is sufficient, but bigger performs better.)
__ rldicl_(tmp1_reg, tmp1_reg, 64-3, 64-cl_dwordaddr_bits); // Extract number of dwords to 128byte boundary=(16-(base>>3))%16.
__ beq(CCR0, fast); // already 128byte aligned
__ mtctr(tmp1_reg); // Set ctr to hit 128byte boundary (0<ctr<cnt).
__ subf(cnt_dwords_reg, tmp1_reg, cnt_dwords_reg); // rest (>0 since size>=256-8)
// Clear in first cache line dword-by-dword if not already 128byte aligned.
__ bind(dwloop);
__ std(zero_reg, 0, base_ptr_reg); // Clear 8byte aligned block.
__ addi(base_ptr_reg, base_ptr_reg, 8);
__ bdnz(dwloop);
// clear 128byte blocks
__ bind(fast);
__ srdi(tmp1_reg, cnt_dwords_reg, cl_dwordaddr_bits); // loop count for 128byte loop (>0 since size>=256-8)
__ andi(tmp2_reg, cnt_dwords_reg, 1); // to check if rest even
__ mtctr(tmp1_reg); // load counter
__ cmpdi(CCR1, tmp2_reg, 0); // rest even?
__ rldicl_(tmp1_reg, cnt_dwords_reg, 63, 65-cl_dwordaddr_bits); // rest in double dwords
__ bind(fastloop);
__ dcbz(base_ptr_reg); // Clear 128byte aligned block.
__ addi(base_ptr_reg, base_ptr_reg, cl_size);
__ bdnz(fastloop);
//__ dcbtst(base_ptr_reg); // Indicate write access to last cache line.
__ beq(CCR0, lastdword); // rest<=1
__ mtctr(tmp1_reg); // load counter
// Clear rest.
__ bind(restloop);
__ std(zero_reg, 0, base_ptr_reg); // Clear 8byte aligned block.
__ std(zero_reg, 8, base_ptr_reg); // Clear 8byte aligned block.
__ addi(base_ptr_reg, base_ptr_reg, 16);
__ bdnz(restloop);
__ bind(lastdword);
__ beq(CCR1, done);
__ std(zero_reg, 0, base_ptr_reg);
__ bind(done);
__ blr(); // return
return start;
}
// The following routine generates a subroutine to throw an asynchronous
// UnknownError when an unsafe access gets a fault that could not be
// reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
//
address generate_handler_for_unsafe_access() {
StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
address start = __ function_entry();
__ unimplemented("StubRoutines::handler_for_unsafe_access", 93);
return start;
}
#if !defined(PRODUCT)
// Wrapper which calls oopDesc::is_oop_or_null()
// Only called by MacroAssembler::verify_oop
static void verify_oop_helper(const char* message, oop o) {
if (!o->is_oop_or_null()) {
fatal(message);
}
++ StubRoutines::_verify_oop_count;
}
#endif
// Return address of code to be called from code generated by
// MacroAssembler::verify_oop.
//
// Don't generate, rather use C++ code.
address generate_verify_oop() {
// this is actually a `FunctionDescriptor*'.
address start = 0;
#if !defined(PRODUCT)
start = CAST_FROM_FN_PTR(address, verify_oop_helper);
#endif
return start;
}
// Fairer handling of safepoints for native methods.
//
// Generate code which reads from the polling page. This special handling is needed as the
// linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults in 64bit mode
// (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6), especially when we try
// to read from the safepoint polling page.
address generate_load_from_poll() {
StubCodeMark mark(this, "StubRoutines", "generate_load_from_poll");
address start = __ function_entry();
__ unimplemented("StubRoutines::verify_oop", 95); // TODO PPC port
return start;
}
// -XX:+OptimizeFill : convert fill/copy loops into intrinsic
//
// The code is implemented(ported from sparc) as we believe it benefits JVM98, however
// tracing(-XX:+TraceOptimizeFill) shows the intrinsic replacement doesn't happen at all!
//
// Source code in function is_range_check_if() shows that OptimizeFill relaxed the condition
// for turning on loop predication optimization, and hence the behavior of "array range check"
// and "loop invariant check" could be influenced, which potentially boosted JVM98.
//
// Generate stub for disjoint short fill. If "aligned" is true, the
// "to" address is assumed to be heapword aligned.
//
// Arguments for generated stub:
// to: R3_ARG1
// value: R4_ARG2
// count: R5_ARG3 treated as signed
//
address generate_fill(BasicType t, bool aligned, const char* name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
const Register to = R3_ARG1; // source array address
const Register value = R4_ARG2; // fill value
const Register count = R5_ARG3; // elements count
const Register temp = R6_ARG4; // temp register
//assert_clean_int(count, O3); // Make sure 'count' is clean int.
Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
Label L_fill_2_bytes, L_fill_4_bytes, L_fill_elements, L_fill_32_bytes;
int shift = -1;
switch (t) {
case T_BYTE:
shift = 2;
// Clone bytes (zero extend not needed because store instructions below ignore high order bytes).
__ rldimi(value, value, 8, 48); // 8 bit -> 16 bit
__ cmpdi(CCR0, count, 2<<shift); // Short arrays (< 8 bytes) fill by element.
__ blt(CCR0, L_fill_elements);
__ rldimi(value, value, 16, 32); // 16 bit -> 32 bit
break;
case T_SHORT:
shift = 1;
// Clone bytes (zero extend not needed because store instructions below ignore high order bytes).
__ rldimi(value, value, 16, 32); // 16 bit -> 32 bit
__ cmpdi(CCR0, count, 2<<shift); // Short arrays (< 8 bytes) fill by element.
__ blt(CCR0, L_fill_elements);
break;
case T_INT:
shift = 0;
__ cmpdi(CCR0, count, 2<<shift); // Short arrays (< 8 bytes) fill by element.
__ blt(CCR0, L_fill_4_bytes);
break;
default: ShouldNotReachHere();
}
if (!aligned && (t == T_BYTE || t == T_SHORT)) {
// Align source address at 4 bytes address boundary.
if (t == T_BYTE) {
// One byte misalignment happens only for byte arrays.
__ andi_(temp, to, 1);
__ beq(CCR0, L_skip_align1);
__ stb(value, 0, to);
__ addi(to, to, 1);
__ addi(count, count, -1);
__ bind(L_skip_align1);
}
// Two bytes misalignment happens only for byte and short (char) arrays.
__ andi_(temp, to, 2);
__ beq(CCR0, L_skip_align2);
__ sth(value, 0, to);
__ addi(to, to, 2);
__ addi(count, count, -(1 << (shift - 1)));
__ bind(L_skip_align2);
}
if (!aligned) {
// Align to 8 bytes, we know we are 4 byte aligned to start.
__ andi_(temp, to, 7);
__ beq(CCR0, L_fill_32_bytes);
__ stw(value, 0, to);
__ addi(to, to, 4);
__ addi(count, count, -(1 << shift));
__ bind(L_fill_32_bytes);
}
__ li(temp, 8<<shift); // Prepare for 32 byte loop.
// Clone bytes int->long as above.
__ rldimi(value, value, 32, 0); // 32 bit -> 64 bit
Label L_check_fill_8_bytes;
// Fill 32-byte chunks.
__ subf_(count, temp, count);
__ blt(CCR0, L_check_fill_8_bytes);
Label L_fill_32_bytes_loop;
__ align(32);
__ bind(L_fill_32_bytes_loop);
__ std(value, 0, to);
__ std(value, 8, to);
__ subf_(count, temp, count); // Update count.
__ std(value, 16, to);
__ std(value, 24, to);
__ addi(to, to, 32);
__ bge(CCR0, L_fill_32_bytes_loop);
__ bind(L_check_fill_8_bytes);
__ add_(count, temp, count);
__ beq(CCR0, L_exit);
__ addic_(count, count, -(2 << shift));
__ blt(CCR0, L_fill_4_bytes);
//
// Length is too short, just fill 8 bytes at a time.
//
Label L_fill_8_bytes_loop;
__ bind(L_fill_8_bytes_loop);
__ std(value, 0, to);
__ addic_(count, count, -(2 << shift));
__ addi(to, to, 8);
__ bge(CCR0, L_fill_8_bytes_loop);
// Fill trailing 4 bytes.
__ bind(L_fill_4_bytes);
__ andi_(temp, count, 1<<shift);
__ beq(CCR0, L_fill_2_bytes);
__ stw(value, 0, to);
if (t == T_BYTE || t == T_SHORT) {
__ addi(to, to, 4);
// Fill trailing 2 bytes.
__ bind(L_fill_2_bytes);
__ andi_(temp, count, 1<<(shift-1));
__ beq(CCR0, L_fill_byte);
__ sth(value, 0, to);
if (t == T_BYTE) {
__ addi(to, to, 2);
// Fill trailing byte.
__ bind(L_fill_byte);
__ andi_(count, count, 1);
__ beq(CCR0, L_exit);
__ stb(value, 0, to);
} else {
__ bind(L_fill_byte);
}
} else {
__ bind(L_fill_2_bytes);
}
__ bind(L_exit);
__ blr();
// Handle copies less than 8 bytes. Int is handled elsewhere.
if (t == T_BYTE) {
__ bind(L_fill_elements);
Label L_fill_2, L_fill_4;
__ andi_(temp, count, 1);
__ beq(CCR0, L_fill_2);
__ stb(value, 0, to);
__ addi(to, to, 1);
__ bind(L_fill_2);
__ andi_(temp, count, 2);
__ beq(CCR0, L_fill_4);
__ stb(value, 0, to);
__ stb(value, 0, to);
__ addi(to, to, 2);
__ bind(L_fill_4);
__ andi_(temp, count, 4);
__ beq(CCR0, L_exit);
__ stb(value, 0, to);
__ stb(value, 1, to);
__ stb(value, 2, to);
__ stb(value, 3, to);
__ blr();
}
if (t == T_SHORT) {
Label L_fill_2;
__ bind(L_fill_elements);
__ andi_(temp, count, 1);
__ beq(CCR0, L_fill_2);
__ sth(value, 0, to);
__ addi(to, to, 2);
__ bind(L_fill_2);
__ andi_(temp, count, 2);
__ beq(CCR0, L_exit);
__ sth(value, 0, to);
__ sth(value, 2, to);
__ blr();
}
return start;
}
// Generate overlap test for array copy stubs.
//
// Input:
// R3_ARG1 - from
// R4_ARG2 - to
// R5_ARG3 - element count
//
void array_overlap_test(address no_overlap_target, int log2_elem_size) {
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Label l_overlap;
#ifdef ASSERT
__ srdi_(tmp2, R5_ARG3, 31);
__ asm_assert_eq("missing zero extend", 0xAFFE);
#endif
__ subf(tmp1, R3_ARG1, R4_ARG2); // distance in bytes
__ sldi(tmp2, R5_ARG3, log2_elem_size); // size in bytes
__ cmpld(CCR0, R3_ARG1, R4_ARG2); // Use unsigned comparison!
__ cmpld(CCR1, tmp1, tmp2);
__ crand(/*CCR0 lt*/0, /*CCR1 lt*/4+0, /*CCR0 lt*/0);
__ blt(CCR0, l_overlap); // Src before dst and distance smaller than size.
// need to copy forwards
if (__ is_within_range_of_b(no_overlap_target, __ pc())) {
__ b(no_overlap_target);
} else {
__ load_const(tmp1, no_overlap_target, tmp2);
__ mtctr(tmp1);
__ bctr();
}
__ bind(l_overlap);
// need to copy backwards
}
// The guideline in the implementations of generate_disjoint_xxx_copy
// (xxx=byte,short,int,long,oop) is to copy as many elements as possible with
// single instructions, but to avoid alignment interrupts (see subsequent
// comment). Furthermore, we try to minimize misaligned access, even
// though they cause no alignment interrupt.
//
// In Big-Endian mode, the PowerPC architecture requires implementations to
// handle automatically misaligned integer halfword and word accesses,
// word-aligned integer doubleword accesses, and word-aligned floating-point
// accesses. Other accesses may or may not generate an Alignment interrupt
// depending on the implementation.
// Alignment interrupt handling may require on the order of hundreds of cycles,
// so every effort should be made to avoid misaligned memory values.
//
//
// Generate stub for disjoint byte copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
address generate_disjoint_byte_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
Register tmp4 = R9_ARG7;
Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9;
// Don't try anything fancy if arrays don't have many elements.
__ li(tmp3, 0);
__ cmpwi(CCR0, R5_ARG3, 17);
__ ble(CCR0, l_6); // copy 4 at a time
if (!aligned) {
__ xorr(tmp1, R3_ARG1, R4_ARG2);
__ andi_(tmp1, tmp1, 3);
__ bne(CCR0, l_6); // If arrays don't have the same alignment mod 4, do 4 element copy.
// Copy elements if necessary to align to 4 bytes.
__ neg(tmp1, R3_ARG1); // Compute distance to alignment boundary.
__ andi_(tmp1, tmp1, 3);
__ beq(CCR0, l_2);
__ subf(R5_ARG3, tmp1, R5_ARG3);
__ bind(l_9);
__ lbz(tmp2, 0, R3_ARG1);
__ addic_(tmp1, tmp1, -1);
__ stb(tmp2, 0, R4_ARG2);
__ addi(R3_ARG1, R3_ARG1, 1);
__ addi(R4_ARG2, R4_ARG2, 1);
__ bne(CCR0, l_9);
__ bind(l_2);
}
// copy 8 elements at a time
__ xorr(tmp2, R3_ARG1, R4_ARG2); // skip if src & dest have differing alignment mod 8
__ andi_(tmp1, tmp2, 7);
__ bne(CCR0, l_7); // not same alignment -> to or from is aligned -> copy 8
// copy a 2-element word if necessary to align to 8 bytes
__ andi_(R0, R3_ARG1, 7);
__ beq(CCR0, l_7);
__ lwzx(tmp2, R3_ARG1, tmp3);
__ addi(R5_ARG3, R5_ARG3, -4);
__ stwx(tmp2, R4_ARG2, tmp3);
{ // FasterArrayCopy
__ addi(R3_ARG1, R3_ARG1, 4);
__ addi(R4_ARG2, R4_ARG2, 4);
}
__ bind(l_7);
{ // FasterArrayCopy
__ cmpwi(CCR0, R5_ARG3, 31);
__ ble(CCR0, l_6); // copy 2 at a time if less than 32 elements remain
__ srdi(tmp1, R5_ARG3, 5);
__ andi_(R5_ARG3, R5_ARG3, 31);
__ mtctr(tmp1);
__ bind(l_8);
// Use unrolled version for mass copying (copy 32 elements a time)
// Load feeding store gets zero latency on Power6, however not on Power5.
// Therefore, the following sequence is made for the good of both.
__ ld(tmp1, 0, R3_ARG1);
__ ld(tmp2, 8, R3_ARG1);
__ ld(tmp3, 16, R3_ARG1);
__ ld(tmp4, 24, R3_ARG1);
__ std(tmp1, 0, R4_ARG2);
__ std(tmp2, 8, R4_ARG2);
__ std(tmp3, 16, R4_ARG2);
__ std(tmp4, 24, R4_ARG2);
__ addi(R3_ARG1, R3_ARG1, 32);
__ addi(R4_ARG2, R4_ARG2, 32);
__ bdnz(l_8);
}
__ bind(l_6);
// copy 4 elements at a time
__ cmpwi(CCR0, R5_ARG3, 4);
__ blt(CCR0, l_1);
__ srdi(tmp1, R5_ARG3, 2);
__ mtctr(tmp1); // is > 0
__ andi_(R5_ARG3, R5_ARG3, 3);
{ // FasterArrayCopy
__ addi(R3_ARG1, R3_ARG1, -4);
__ addi(R4_ARG2, R4_ARG2, -4);
__ bind(l_3);
__ lwzu(tmp2, 4, R3_ARG1);
__ stwu(tmp2, 4, R4_ARG2);
__ bdnz(l_3);
__ addi(R3_ARG1, R3_ARG1, 4);
__ addi(R4_ARG2, R4_ARG2, 4);
}
// do single element copy
__ bind(l_1);
__ cmpwi(CCR0, R5_ARG3, 0);
__ beq(CCR0, l_4);
{ // FasterArrayCopy
__ mtctr(R5_ARG3);
__ addi(R3_ARG1, R3_ARG1, -1);
__ addi(R4_ARG2, R4_ARG2, -1);
__ bind(l_5);
__ lbzu(tmp2, 1, R3_ARG1);
__ stbu(tmp2, 1, R4_ARG2);
__ bdnz(l_5);
}
__ bind(l_4);
__ blr();
return start;
}
// Generate stub for conjoint byte copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
address generate_conjoint_byte_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
StubRoutines::jbyte_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_jbyte_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::jbyte_disjoint_arraycopy())->entry();
#endif
array_overlap_test(nooverlap_target, 0);
// Do reverse copy. We assume the case of actual overlap is rare enough
// that we don't have to optimize it.
Label l_1, l_2;
__ b(l_2);
__ bind(l_1);
__ stbx(tmp1, R4_ARG2, R5_ARG3);
__ bind(l_2);
__ addic_(R5_ARG3, R5_ARG3, -1);
__ lbzx(tmp1, R3_ARG1, R5_ARG3);
__ bge(CCR0, l_1);
__ blr();
return start;
}
// Generate stub for disjoint short copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// elm.count: R5_ARG3 treated as signed
//
// Strategy for aligned==true:
//
// If length <= 9:
// 1. copy 2 elements at a time (l_6)
// 2. copy last element if original element count was odd (l_1)
//
// If length > 9:
// 1. copy 4 elements at a time until less than 4 elements are left (l_7)
// 2. copy 2 elements at a time until less than 2 elements are left (l_6)
// 3. copy last element if one was left in step 2. (l_1)
//
//
// Strategy for aligned==false:
//
// If length <= 9: same as aligned==true case, but NOTE: load/stores
// can be unaligned (see comment below)
//
// If length > 9:
// 1. continue with step 6. if the alignment of from and to mod 4
// is different.
// 2. align from and to to 4 bytes by copying 1 element if necessary
// 3. at l_2 from and to are 4 byte aligned; continue with
// 5. if they cannot be aligned to 8 bytes because they have
// got different alignment mod 8.
// 4. at this point we know that both, from and to, have the same
// alignment mod 8, now copy one element if necessary to get
// 8 byte alignment of from and to.
// 5. copy 4 elements at a time until less than 4 elements are
// left; depending on step 3. all load/stores are aligned or
// either all loads or all stores are unaligned.
// 6. copy 2 elements at a time until less than 2 elements are
// left (l_6); arriving here from step 1., there is a chance
// that all accesses are unaligned.
// 7. copy last element if one was left in step 6. (l_1)
//
// There are unaligned data accesses using integer load/store
// instructions in this stub. POWER allows such accesses.
//
// According to the manuals (PowerISA_V2.06_PUBLIC, Book II,
// Chapter 2: Effect of Operand Placement on Performance) unaligned
// integer load/stores have good performance. Only unaligned
// floating point load/stores can have poor performance.
//
// TODO:
//
// 1. check if aligning the backbranch target of loops is beneficial
//
address generate_disjoint_short_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
Register tmp4 = R9_ARG7;
address start = __ function_entry();
Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8;
// don't try anything fancy if arrays don't have many elements
__ li(tmp3, 0);
__ cmpwi(CCR0, R5_ARG3, 9);
__ ble(CCR0, l_6); // copy 2 at a time
if (!aligned) {
__ xorr(tmp1, R3_ARG1, R4_ARG2);
__ andi_(tmp1, tmp1, 3);
__ bne(CCR0, l_6); // if arrays don't have the same alignment mod 4, do 2 element copy
// At this point it is guaranteed that both, from and to have the same alignment mod 4.
// Copy 1 element if necessary to align to 4 bytes.
__ andi_(tmp1, R3_ARG1, 3);
__ beq(CCR0, l_2);
__ lhz(tmp2, 0, R3_ARG1);
__ addi(R3_ARG1, R3_ARG1, 2);
__ sth(tmp2, 0, R4_ARG2);
__ addi(R4_ARG2, R4_ARG2, 2);
__ addi(R5_ARG3, R5_ARG3, -1);
__ bind(l_2);
// At this point the positions of both, from and to, are at least 4 byte aligned.
// Copy 4 elements at a time.
// Align to 8 bytes, but only if both, from and to, have same alignment mod 8.
__ xorr(tmp2, R3_ARG1, R4_ARG2);
__ andi_(tmp1, tmp2, 7);
__ bne(CCR0, l_7); // not same alignment mod 8 -> copy 4, either from or to will be unaligned
// Copy a 2-element word if necessary to align to 8 bytes.
__ andi_(R0, R3_ARG1, 7);
__ beq(CCR0, l_7);
__ lwzx(tmp2, R3_ARG1, tmp3);
__ addi(R5_ARG3, R5_ARG3, -2);
__ stwx(tmp2, R4_ARG2, tmp3);
{ // FasterArrayCopy
__ addi(R3_ARG1, R3_ARG1, 4);
__ addi(R4_ARG2, R4_ARG2, 4);
}
}
__ bind(l_7);
// Copy 4 elements at a time; either the loads or the stores can
// be unaligned if aligned == false.
{ // FasterArrayCopy
__ cmpwi(CCR0, R5_ARG3, 15);
__ ble(CCR0, l_6); // copy 2 at a time if less than 16 elements remain
__ srdi(tmp1, R5_ARG3, 4);
__ andi_(R5_ARG3, R5_ARG3, 15);
__ mtctr(tmp1);
__ bind(l_8);
// Use unrolled version for mass copying (copy 16 elements a time).
// Load feeding store gets zero latency on Power6, however not on Power5.
// Therefore, the following sequence is made for the good of both.
__ ld(tmp1, 0, R3_ARG1);
__ ld(tmp2, 8, R3_ARG1);
__ ld(tmp3, 16, R3_ARG1);
__ ld(tmp4, 24, R3_ARG1);
__ std(tmp1, 0, R4_ARG2);
__ std(tmp2, 8, R4_ARG2);
__ std(tmp3, 16, R4_ARG2);
__ std(tmp4, 24, R4_ARG2);
__ addi(R3_ARG1, R3_ARG1, 32);
__ addi(R4_ARG2, R4_ARG2, 32);
__ bdnz(l_8);
}
__ bind(l_6);
// copy 2 elements at a time
{ // FasterArrayCopy
__ cmpwi(CCR0, R5_ARG3, 2);
__ blt(CCR0, l_1);
__ srdi(tmp1, R5_ARG3, 1);
__ andi_(R5_ARG3, R5_ARG3, 1);
__ addi(R3_ARG1, R3_ARG1, -4);
__ addi(R4_ARG2, R4_ARG2, -4);
__ mtctr(tmp1);
__ bind(l_3);
__ lwzu(tmp2, 4, R3_ARG1);
__ stwu(tmp2, 4, R4_ARG2);
__ bdnz(l_3);
__ addi(R3_ARG1, R3_ARG1, 4);
__ addi(R4_ARG2, R4_ARG2, 4);
}
// do single element copy
__ bind(l_1);
__ cmpwi(CCR0, R5_ARG3, 0);
__ beq(CCR0, l_4);
{ // FasterArrayCopy
__ mtctr(R5_ARG3);
__ addi(R3_ARG1, R3_ARG1, -2);
__ addi(R4_ARG2, R4_ARG2, -2);
__ bind(l_5);
__ lhzu(tmp2, 2, R3_ARG1);
__ sthu(tmp2, 2, R4_ARG2);
__ bdnz(l_5);
}
__ bind(l_4);
__ blr();
return start;
}
// Generate stub for conjoint short copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
address generate_conjoint_short_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_jshort_disjoint_arraycopy() :
StubRoutines::jshort_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_jshort_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::jshort_disjoint_arraycopy())->entry();
#endif
array_overlap_test(nooverlap_target, 1);
Label l_1, l_2;
__ sldi(tmp1, R5_ARG3, 1);
__ b(l_2);
__ bind(l_1);
__ sthx(tmp2, R4_ARG2, tmp1);
__ bind(l_2);
__ addic_(tmp1, tmp1, -2);
__ lhzx(tmp2, R3_ARG1, tmp1);
__ bge(CCR0, l_1);
__ blr();
return start;
}
// Generate core code for disjoint int copy (and oop copy on 32-bit). If "aligned"
// is true, the "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
void generate_disjoint_int_copy_core(bool aligned) {
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
Register tmp4 = R0;
Label l_1, l_2, l_3, l_4, l_5, l_6;
// for short arrays, just do single element copy
__ li(tmp3, 0);
__ cmpwi(CCR0, R5_ARG3, 5);
__ ble(CCR0, l_2);
if (!aligned) {
// check if arrays have same alignment mod 8.
__ xorr(tmp1, R3_ARG1, R4_ARG2);
__ andi_(R0, tmp1, 7);
// Not the same alignment, but ld and std just need to be 4 byte aligned.
__ bne(CCR0, l_4); // to OR from is 8 byte aligned -> copy 2 at a time
// copy 1 element to align to and from on an 8 byte boundary
__ andi_(R0, R3_ARG1, 7);
__ beq(CCR0, l_4);
__ lwzx(tmp2, R3_ARG1, tmp3);
__ addi(R5_ARG3, R5_ARG3, -1);
__ stwx(tmp2, R4_ARG2, tmp3);
{ // FasterArrayCopy
__ addi(R3_ARG1, R3_ARG1, 4);
__ addi(R4_ARG2, R4_ARG2, 4);
}
__ bind(l_4);
}
{ // FasterArrayCopy
__ cmpwi(CCR0, R5_ARG3, 7);
__ ble(CCR0, l_2); // copy 1 at a time if less than 8 elements remain
__ srdi(tmp1, R5_ARG3, 3);
__ andi_(R5_ARG3, R5_ARG3, 7);
__ mtctr(tmp1);
__ bind(l_6);
// Use unrolled version for mass copying (copy 8 elements a time).
// Load feeding store gets zero latency on power6, however not on power 5.
// Therefore, the following sequence is made for the good of both.
__ ld(tmp1, 0, R3_ARG1);
__ ld(tmp2, 8, R3_ARG1);
__ ld(tmp3, 16, R3_ARG1);
__ ld(tmp4, 24, R3_ARG1);
__ std(tmp1, 0, R4_ARG2);
__ std(tmp2, 8, R4_ARG2);
__ std(tmp3, 16, R4_ARG2);
__ std(tmp4, 24, R4_ARG2);
__ addi(R3_ARG1, R3_ARG1, 32);
__ addi(R4_ARG2, R4_ARG2, 32);
__ bdnz(l_6);
}
// copy 1 element at a time
__ bind(l_2);
__ cmpwi(CCR0, R5_ARG3, 0);
__ beq(CCR0, l_1);
{ // FasterArrayCopy
__ mtctr(R5_ARG3);
__ addi(R3_ARG1, R3_ARG1, -4);
__ addi(R4_ARG2, R4_ARG2, -4);
__ bind(l_3);
__ lwzu(tmp2, 4, R3_ARG1);
__ stwu(tmp2, 4, R4_ARG2);
__ bdnz(l_3);
}
__ bind(l_1);
return;
}
// Generate stub for disjoint int copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
address generate_disjoint_int_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
generate_disjoint_int_copy_core(aligned);
__ blr();
return start;
}
// Generate core code for conjoint int copy (and oop copy on
// 32-bit). If "aligned" is true, the "from" and "to" addresses
// are assumed to be heapword aligned.
//
// Arguments:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
void generate_conjoint_int_copy_core(bool aligned) {
// Do reverse copy. We assume the case of actual overlap is rare enough
// that we don't have to optimize it.
Label l_1, l_2, l_3, l_4, l_5, l_6;
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
Register tmp4 = R0;
{ // FasterArrayCopy
__ cmpwi(CCR0, R5_ARG3, 0);
__ beq(CCR0, l_6);
__ sldi(R5_ARG3, R5_ARG3, 2);
__ add(R3_ARG1, R3_ARG1, R5_ARG3);
__ add(R4_ARG2, R4_ARG2, R5_ARG3);
__ srdi(R5_ARG3, R5_ARG3, 2);
__ cmpwi(CCR0, R5_ARG3, 7);
__ ble(CCR0, l_5); // copy 1 at a time if less than 8 elements remain
__ srdi(tmp1, R5_ARG3, 3);
__ andi(R5_ARG3, R5_ARG3, 7);
__ mtctr(tmp1);
__ bind(l_4);
// Use unrolled version for mass copying (copy 4 elements a time).
// Load feeding store gets zero latency on Power6, however not on Power5.
// Therefore, the following sequence is made for the good of both.
__ addi(R3_ARG1, R3_ARG1, -32);
__ addi(R4_ARG2, R4_ARG2, -32);
__ ld(tmp4, 24, R3_ARG1);
__ ld(tmp3, 16, R3_ARG1);
__ ld(tmp2, 8, R3_ARG1);
__ ld(tmp1, 0, R3_ARG1);
__ std(tmp4, 24, R4_ARG2);
__ std(tmp3, 16, R4_ARG2);
__ std(tmp2, 8, R4_ARG2);
__ std(tmp1, 0, R4_ARG2);
__ bdnz(l_4);
__ cmpwi(CCR0, R5_ARG3, 0);
__ beq(CCR0, l_6);
__ bind(l_5);
__ mtctr(R5_ARG3);
__ bind(l_3);
__ lwz(R0, -4, R3_ARG1);
__ stw(R0, -4, R4_ARG2);
__ addi(R3_ARG1, R3_ARG1, -4);
__ addi(R4_ARG2, R4_ARG2, -4);
__ bdnz(l_3);
__ bind(l_6);
}
}
// Generate stub for conjoint int copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
address generate_conjoint_int_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_jint_disjoint_arraycopy() :
StubRoutines::jint_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_jint_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::jint_disjoint_arraycopy())->entry();
#endif
array_overlap_test(nooverlap_target, 2);
generate_conjoint_int_copy_core(aligned);
__ blr();
return start;
}
// Generate core code for disjoint long copy (and oop copy on
// 64-bit). If "aligned" is true, the "from" and "to" addresses
// are assumed to be heapword aligned.
//
// Arguments:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
void generate_disjoint_long_copy_core(bool aligned) {
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
Register tmp4 = R0;
Label l_1, l_2, l_3, l_4;
{ // FasterArrayCopy
__ cmpwi(CCR0, R5_ARG3, 3);
__ ble(CCR0, l_3); // copy 1 at a time if less than 4 elements remain
__ srdi(tmp1, R5_ARG3, 2);
__ andi_(R5_ARG3, R5_ARG3, 3);
__ mtctr(tmp1);
__ bind(l_4);
// Use unrolled version for mass copying (copy 4 elements a time).
// Load feeding store gets zero latency on Power6, however not on Power5.
// Therefore, the following sequence is made for the good of both.
__ ld(tmp1, 0, R3_ARG1);
__ ld(tmp2, 8, R3_ARG1);
__ ld(tmp3, 16, R3_ARG1);
__ ld(tmp4, 24, R3_ARG1);
__ std(tmp1, 0, R4_ARG2);
__ std(tmp2, 8, R4_ARG2);
__ std(tmp3, 16, R4_ARG2);
__ std(tmp4, 24, R4_ARG2);
__ addi(R3_ARG1, R3_ARG1, 32);
__ addi(R4_ARG2, R4_ARG2, 32);
__ bdnz(l_4);
}
// copy 1 element at a time
__ bind(l_3);
__ cmpwi(CCR0, R5_ARG3, 0);
__ beq(CCR0, l_1);
{ // FasterArrayCopy
__ mtctr(R5_ARG3);
__ addi(R3_ARG1, R3_ARG1, -8);
__ addi(R4_ARG2, R4_ARG2, -8);
__ bind(l_2);
__ ldu(R0, 8, R3_ARG1);
__ stdu(R0, 8, R4_ARG2);
__ bdnz(l_2);
}
__ bind(l_1);
}
// Generate stub for disjoint long copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
address generate_disjoint_long_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
generate_disjoint_long_copy_core(aligned);
__ blr();
return start;
}
// Generate core code for conjoint long copy (and oop copy on
// 64-bit). If "aligned" is true, the "from" and "to" addresses
// are assumed to be heapword aligned.
//
// Arguments:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
void generate_conjoint_long_copy_core(bool aligned) {
Register tmp1 = R6_ARG4;
Register tmp2 = R7_ARG5;
Register tmp3 = R8_ARG6;
Register tmp4 = R0;
Label l_1, l_2, l_3, l_4, l_5;
__ cmpwi(CCR0, R5_ARG3, 0);
__ beq(CCR0, l_1);
{ // FasterArrayCopy
__ sldi(R5_ARG3, R5_ARG3, 3);
__ add(R3_ARG1, R3_ARG1, R5_ARG3);
__ add(R4_ARG2, R4_ARG2, R5_ARG3);
__ srdi(R5_ARG3, R5_ARG3, 3);
__ cmpwi(CCR0, R5_ARG3, 3);
__ ble(CCR0, l_5); // copy 1 at a time if less than 4 elements remain
__ srdi(tmp1, R5_ARG3, 2);
__ andi(R5_ARG3, R5_ARG3, 3);
__ mtctr(tmp1);
__ bind(l_4);
// Use unrolled version for mass copying (copy 4 elements a time).
// Load feeding store gets zero latency on Power6, however not on Power5.
// Therefore, the following sequence is made for the good of both.
__ addi(R3_ARG1, R3_ARG1, -32);
__ addi(R4_ARG2, R4_ARG2, -32);
__ ld(tmp4, 24, R3_ARG1);
__ ld(tmp3, 16, R3_ARG1);
__ ld(tmp2, 8, R3_ARG1);
__ ld(tmp1, 0, R3_ARG1);
__ std(tmp4, 24, R4_ARG2);
__ std(tmp3, 16, R4_ARG2);
__ std(tmp2, 8, R4_ARG2);
__ std(tmp1, 0, R4_ARG2);
__ bdnz(l_4);
__ cmpwi(CCR0, R5_ARG3, 0);
__ beq(CCR0, l_1);
__ bind(l_5);
__ mtctr(R5_ARG3);
__ bind(l_3);
__ ld(R0, -8, R3_ARG1);
__ std(R0, -8, R4_ARG2);
__ addi(R3_ARG1, R3_ARG1, -8);
__ addi(R4_ARG2, R4_ARG2, -8);
__ bdnz(l_3);
}
__ bind(l_1);
}
// Generate stub for conjoint long copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
//
address generate_conjoint_long_copy(bool aligned, const char * name) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_jlong_disjoint_arraycopy() :
StubRoutines::jlong_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_jlong_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::jlong_disjoint_arraycopy())->entry();
#endif
array_overlap_test(nooverlap_target, 3);
generate_conjoint_long_copy_core(aligned);
__ blr();
return start;
}
// Generate stub for conjoint oop copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
// dest_uninitialized: G1 support
//
address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
#if defined(ABI_ELFv2)
address nooverlap_target = aligned ?
StubRoutines::arrayof_oop_disjoint_arraycopy() :
StubRoutines::oop_disjoint_arraycopy();
#else
address nooverlap_target = aligned ?
((FunctionDescriptor*)StubRoutines::arrayof_oop_disjoint_arraycopy())->entry() :
((FunctionDescriptor*)StubRoutines::oop_disjoint_arraycopy())->entry();
#endif
gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);
// Save arguments.
__ mr(R9_ARG7, R4_ARG2);
__ mr(R10_ARG8, R5_ARG3);
if (UseCompressedOops) {
array_overlap_test(nooverlap_target, 2);
generate_conjoint_int_copy_core(aligned);
} else {
array_overlap_test(nooverlap_target, 3);
generate_conjoint_long_copy_core(aligned);
}
gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1, /*branchToEnd*/ false);
return start;
}
// Generate stub for disjoint oop copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: R3_ARG1
// to: R4_ARG2
// count: R5_ARG3 treated as signed
// dest_uninitialized: G1 support
//
address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
StubCodeMark mark(this, "StubRoutines", name);
address start = __ function_entry();
gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);
// save some arguments, disjoint_long_copy_core destroys them.
// needed for post barrier
__ mr(R9_ARG7, R4_ARG2);
__ mr(R10_ARG8, R5_ARG3);
if (UseCompressedOops) {
generate_disjoint_int_copy_core(aligned);
} else {
generate_disjoint_long_copy_core(aligned);
}
gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1, /*branchToEnd*/ false);
return start;
}
void generate_arraycopy_stubs() {
// Note: the disjoint stubs must be generated first, some of
// the conjoint stubs use them.
// non-aligned disjoint versions
StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy", false);
StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy_uninit", true);
// aligned disjoint versions
StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy", false);
StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, "oop_disjoint_arraycopy_uninit", true);
// non-aligned conjoint versions
StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy");
StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy", false);
StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, "oop_arraycopy_uninit", true);
// aligned conjoint versions
StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, "arrayof_jlong_arraycopy");
StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", false);
StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", true);
// fill routines
StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
}
// Safefetch stubs.
void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) {
// safefetch signatures:
// int SafeFetch32(int* adr, int errValue);
// intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
//
// arguments:
// R3_ARG1 = adr
// R4_ARG2 = errValue
//
// result:
// R3_RET = *adr or errValue
StubCodeMark mark(this, "StubRoutines", name);
// Entry point, pc or function descriptor.
*entry = __ function_entry();
// Load *adr into R4_ARG2, may fault.
*fault_pc = __ pc();
switch (size) {
case 4:
// int32_t, signed extended
__ lwa(R4_ARG2, 0, R3_ARG1);
break;
case 8:
// int64_t
__ ld(R4_ARG2, 0, R3_ARG1);
break;
default:
ShouldNotReachHere();
}
// return errValue or *adr
*continuation_pc = __ pc();
__ mr(R3_RET, R4_ARG2);
__ blr();
}
// Initialization
void generate_initial() {
// Generates all stubs and initializes the entry points
// Entry points that exist in all platforms.
// Note: This is code that could be shared among different platforms - however the
// benefit seems to be smaller than the disadvantage of having a
// much more complicated generator structure. See also comment in
// stubRoutines.hpp.
StubRoutines::_forward_exception_entry = generate_forward_exception();
StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
StubRoutines::_catch_exception_entry = generate_catch_exception();
// Build this early so it's available for the interpreter.
StubRoutines::_throw_StackOverflowError_entry =
generate_throw_exception("StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
}
void generate_all() {
// Generates all stubs and initializes the entry points
// These entry points require SharedInfo::stack0 to be set up in
// non-core builds
StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
// Handle IncompatibleClassChangeError in itable stubs.
StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
StubRoutines::_handler_for_unsafe_access_entry = generate_handler_for_unsafe_access();
// support for verify_oop (must happen after universe_init)
StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
// arraycopy stubs used by compilers
generate_arraycopy_stubs();
if (UseAESIntrinsics) {
guarantee(!UseAESIntrinsics, "not yet implemented.");
}
// Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc,
&StubRoutines::_safefetch32_continuation_pc);
generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
&StubRoutines::_safefetchN_fault_pc,
&StubRoutines::_safefetchN_continuation_pc);
}
public:
StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
// replace the standard masm with a special one:
_masm = new MacroAssembler(code);
if (all) {
generate_all();
} else {
generate_initial();
}
}
};
void StubGenerator_generate(CodeBuffer* code, bool all) {
StubGenerator g(code, all);
}