hotspot/src/share/vm/classfile/symbolTable.cpp
author brutisso
Thu, 19 Nov 2015 16:14:45 +0100
changeset 34237 c34adffc35c0
parent 33638 ef49ed90010b
child 34659 3a7071043457
permissions -rw-r--r--
8143255: Remove debug logging from SymbolTable::unlink() and SymbolTable::possibly_parallel_unlink() Reviewed-by: coleenp, tschatzl

/*
 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/altHashing.hpp"
#include "classfile/compactHashtable.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/gcLocker.inline.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/hashtable.inline.hpp"

// --------------------------------------------------------------------------
// the number of buckets a thread claims
const int ClaimChunkSize = 32;

SymbolTable* SymbolTable::_the_table = NULL;
// Static arena for symbols that are not deallocated
Arena* SymbolTable::_arena = NULL;
bool SymbolTable::_needs_rehashing = false;
bool SymbolTable::_lookup_shared_first = false;

CompactHashtable<Symbol*, char> SymbolTable::_shared_table;

Symbol* SymbolTable::allocate_symbol(const u1* name, int len, bool c_heap, TRAPS) {
  assert (len <= Symbol::max_length(), "should be checked by caller");

  Symbol* sym;

  if (DumpSharedSpaces) {
    // Allocate all symbols to CLD shared metaspace
    sym = new (len, ClassLoaderData::the_null_class_loader_data(), THREAD) Symbol(name, len, PERM_REFCOUNT);
  } else if (c_heap) {
    // refcount starts as 1
    sym = new (len, THREAD) Symbol(name, len, 1);
    assert(sym != NULL, "new should call vm_exit_out_of_memory if C_HEAP is exhausted");
  } else {
    // Allocate to global arena
    sym = new (len, arena(), THREAD) Symbol(name, len, PERM_REFCOUNT);
  }
  return sym;
}

void SymbolTable::initialize_symbols(int arena_alloc_size) {
  // Initialize the arena for global symbols, size passed in depends on CDS.
  if (arena_alloc_size == 0) {
    _arena = new (mtSymbol) Arena(mtSymbol);
  } else {
    _arena = new (mtSymbol) Arena(mtSymbol, arena_alloc_size);
  }
}

// Call function for all symbols in the symbol table.
void SymbolTable::symbols_do(SymbolClosure *cl) {
  // all symbols from shared table
  _shared_table.symbols_do(cl);

  // all symbols from the dynamic table
  const int n = the_table()->table_size();
  for (int i = 0; i < n; i++) {
    for (HashtableEntry<Symbol*, mtSymbol>* p = the_table()->bucket(i);
         p != NULL;
         p = p->next()) {
      cl->do_symbol(p->literal_addr());
    }
  }
}

int SymbolTable::_symbols_removed = 0;
int SymbolTable::_symbols_counted = 0;
volatile int SymbolTable::_parallel_claimed_idx = 0;

void SymbolTable::buckets_unlink(int start_idx, int end_idx, int* processed, int* removed) {
  for (int i = start_idx; i < end_idx; ++i) {
    HashtableEntry<Symbol*, mtSymbol>** p = the_table()->bucket_addr(i);
    HashtableEntry<Symbol*, mtSymbol>* entry = the_table()->bucket(i);
    while (entry != NULL) {
      // Shared entries are normally at the end of the bucket and if we run into
      // a shared entry, then there is nothing more to remove. However, if we
      // have rehashed the table, then the shared entries are no longer at the
      // end of the bucket.
      if (entry->is_shared() && !use_alternate_hashcode()) {
        break;
      }
      Symbol* s = entry->literal();
      (*processed)++;
      assert(s != NULL, "just checking");
      // If reference count is zero, remove.
      if (s->refcount() == 0) {
        assert(!entry->is_shared(), "shared entries should be kept live");
        delete s;
        (*removed)++;
        *p = entry->next();
        the_table()->free_entry(entry);
      } else {
        p = entry->next_addr();
      }
      // get next entry
      entry = (HashtableEntry<Symbol*, mtSymbol>*)HashtableEntry<Symbol*, mtSymbol>::make_ptr(*p);
    }
  }
}

// Remove unreferenced symbols from the symbol table
// This is done late during GC.
void SymbolTable::unlink(int* processed, int* removed) {
  size_t memory_total = 0;
  buckets_unlink(0, the_table()->table_size(), processed, removed);
  _symbols_removed += *removed;
  _symbols_counted += *processed;
}

void SymbolTable::possibly_parallel_unlink(int* processed, int* removed) {
  const int limit = the_table()->table_size();

  size_t memory_total = 0;

  for (;;) {
    // Grab next set of buckets to scan
    int start_idx = Atomic::add(ClaimChunkSize, &_parallel_claimed_idx) - ClaimChunkSize;
    if (start_idx >= limit) {
      // End of table
      break;
    }

    int end_idx = MIN2(limit, start_idx + ClaimChunkSize);
    buckets_unlink(start_idx, end_idx, processed, removed);
  }
  Atomic::add(*processed, &_symbols_counted);
  Atomic::add(*removed, &_symbols_removed);
}

// Create a new table and using alternate hash code, populate the new table
// with the existing strings.   Set flag to use the alternate hash code afterwards.
void SymbolTable::rehash_table() {
  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  // This should never happen with -Xshare:dump but it might in testing mode.
  if (DumpSharedSpaces) return;
  // Create a new symbol table
  SymbolTable* new_table = new SymbolTable();

  the_table()->move_to(new_table);

  // Delete the table and buckets (entries are reused in new table).
  delete _the_table;
  // Don't check if we need rehashing until the table gets unbalanced again.
  // Then rehash with a new global seed.
  _needs_rehashing = false;
  _the_table = new_table;
}

// Lookup a symbol in a bucket.

Symbol* SymbolTable::lookup_dynamic(int index, const char* name,
                                    int len, unsigned int hash) {
  int count = 0;
  for (HashtableEntry<Symbol*, mtSymbol>* e = bucket(index); e != NULL; e = e->next()) {
    count++;  // count all entries in this bucket, not just ones with same hash
    if (e->hash() == hash) {
      Symbol* sym = e->literal();
      if (sym->equals(name, len)) {
        // something is referencing this symbol now.
        sym->increment_refcount();
        return sym;
      }
    }
  }
  // If the bucket size is too deep check if this hash code is insufficient.
  if (count >= rehash_count && !needs_rehashing()) {
    _needs_rehashing = check_rehash_table(count);
  }
  return NULL;
}

Symbol* SymbolTable::lookup_shared(const char* name,
                                   int len, unsigned int hash) {
  return _shared_table.lookup(name, hash, len);
}

Symbol* SymbolTable::lookup(int index, const char* name,
                            int len, unsigned int hash) {
  Symbol* sym;
  if (_lookup_shared_first) {
    sym = lookup_shared(name, len, hash);
    if (sym != NULL) {
      return sym;
    }
    _lookup_shared_first = false;
    return lookup_dynamic(index, name, len, hash);
  } else {
    sym = lookup_dynamic(index, name, len, hash);
    if (sym != NULL) {
      return sym;
    }
    sym = lookup_shared(name, len, hash);
    if (sym != NULL) {
      _lookup_shared_first = true;
    }
    return sym;
  }
}

// Pick hashing algorithm.
unsigned int SymbolTable::hash_symbol(const char* s, int len) {
  return use_alternate_hashcode() ?
           AltHashing::murmur3_32(seed(), (const jbyte*)s, len) :
           java_lang_String::hash_code((const jbyte*)s, len);
}


// We take care not to be blocking while holding the
// SymbolTable_lock. Otherwise, the system might deadlock, since the
// symboltable is used during compilation (VM_thread) The lock free
// synchronization is simplified by the fact that we do not delete
// entries in the symbol table during normal execution (only during
// safepoints).

Symbol* SymbolTable::lookup(const char* name, int len, TRAPS) {
  unsigned int hashValue = hash_symbol(name, len);
  int index = the_table()->hash_to_index(hashValue);

  Symbol* s = the_table()->lookup(index, name, len, hashValue);

  // Found
  if (s != NULL) return s;

  // Grab SymbolTable_lock first.
  MutexLocker ml(SymbolTable_lock, THREAD);

  // Otherwise, add to symbol to table
  return the_table()->basic_add(index, (u1*)name, len, hashValue, true, THREAD);
}

Symbol* SymbolTable::lookup(const Symbol* sym, int begin, int end, TRAPS) {
  char* buffer;
  int index, len;
  unsigned int hashValue;
  char* name;
  {
    debug_only(No_Safepoint_Verifier nsv;)

    name = (char*)sym->base() + begin;
    len = end - begin;
    hashValue = hash_symbol(name, len);
    index = the_table()->hash_to_index(hashValue);
    Symbol* s = the_table()->lookup(index, name, len, hashValue);

    // Found
    if (s != NULL) return s;
  }

  // Otherwise, add to symbol to table. Copy to a C string first.
  char stack_buf[128];
  ResourceMark rm(THREAD);
  if (len <= 128) {
    buffer = stack_buf;
  } else {
    buffer = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, len);
  }
  for (int i=0; i<len; i++) {
    buffer[i] = name[i];
  }
  // Make sure there is no safepoint in the code above since name can't move.
  // We can't include the code in No_Safepoint_Verifier because of the
  // ResourceMark.

  // Grab SymbolTable_lock first.
  MutexLocker ml(SymbolTable_lock, THREAD);

  return the_table()->basic_add(index, (u1*)buffer, len, hashValue, true, THREAD);
}

Symbol* SymbolTable::lookup_only(const char* name, int len,
                                   unsigned int& hash) {
  hash = hash_symbol(name, len);
  int index = the_table()->hash_to_index(hash);

  Symbol* s = the_table()->lookup(index, name, len, hash);
  return s;
}

// Look up the address of the literal in the SymbolTable for this Symbol*
// Do not create any new symbols
// Do not increment the reference count to keep this alive
Symbol** SymbolTable::lookup_symbol_addr(Symbol* sym){
  unsigned int hash = hash_symbol((char*)sym->bytes(), sym->utf8_length());
  int index = the_table()->hash_to_index(hash);

  for (HashtableEntry<Symbol*, mtSymbol>* e = the_table()->bucket(index); e != NULL; e = e->next()) {
    if (e->hash() == hash) {
      Symbol* literal_sym = e->literal();
      if (sym == literal_sym) {
        return e->literal_addr();
      }
    }
  }
  return NULL;
}

// Suggestion: Push unicode-based lookup all the way into the hashing
// and probing logic, so there is no need for convert_to_utf8 until
// an actual new Symbol* is created.
Symbol* SymbolTable::lookup_unicode(const jchar* name, int utf16_length, TRAPS) {
  int utf8_length = UNICODE::utf8_length((jchar*) name, utf16_length);
  char stack_buf[128];
  if (utf8_length < (int) sizeof(stack_buf)) {
    char* chars = stack_buf;
    UNICODE::convert_to_utf8(name, utf16_length, chars);
    return lookup(chars, utf8_length, THREAD);
  } else {
    ResourceMark rm(THREAD);
    char* chars = NEW_RESOURCE_ARRAY(char, utf8_length + 1);;
    UNICODE::convert_to_utf8(name, utf16_length, chars);
    return lookup(chars, utf8_length, THREAD);
  }
}

Symbol* SymbolTable::lookup_only_unicode(const jchar* name, int utf16_length,
                                           unsigned int& hash) {
  int utf8_length = UNICODE::utf8_length((jchar*) name, utf16_length);
  char stack_buf[128];
  if (utf8_length < (int) sizeof(stack_buf)) {
    char* chars = stack_buf;
    UNICODE::convert_to_utf8(name, utf16_length, chars);
    return lookup_only(chars, utf8_length, hash);
  } else {
    ResourceMark rm;
    char* chars = NEW_RESOURCE_ARRAY(char, utf8_length + 1);;
    UNICODE::convert_to_utf8(name, utf16_length, chars);
    return lookup_only(chars, utf8_length, hash);
  }
}

void SymbolTable::add(ClassLoaderData* loader_data, const constantPoolHandle& cp,
                      int names_count,
                      const char** names, int* lengths, int* cp_indices,
                      unsigned int* hashValues, TRAPS) {
  // Grab SymbolTable_lock first.
  MutexLocker ml(SymbolTable_lock, THREAD);

  SymbolTable* table = the_table();
  bool added = table->basic_add(loader_data, cp, names_count, names, lengths,
                                cp_indices, hashValues, CHECK);
  if (!added) {
    // do it the hard way
    for (int i=0; i<names_count; i++) {
      int index = table->hash_to_index(hashValues[i]);
      bool c_heap = !loader_data->is_the_null_class_loader_data();
      Symbol* sym = table->basic_add(index, (u1*)names[i], lengths[i], hashValues[i], c_heap, CHECK);
      cp->symbol_at_put(cp_indices[i], sym);
    }
  }
}

Symbol* SymbolTable::new_permanent_symbol(const char* name, TRAPS) {
  unsigned int hash;
  Symbol* result = SymbolTable::lookup_only((char*)name, (int)strlen(name), hash);
  if (result != NULL) {
    return result;
  }
  // Grab SymbolTable_lock first.
  MutexLocker ml(SymbolTable_lock, THREAD);

  SymbolTable* table = the_table();
  int index = table->hash_to_index(hash);
  return table->basic_add(index, (u1*)name, (int)strlen(name), hash, false, THREAD);
}

Symbol* SymbolTable::basic_add(int index_arg, u1 *name, int len,
                               unsigned int hashValue_arg, bool c_heap, TRAPS) {
  assert(!Universe::heap()->is_in_reserved(name),
         "proposed name of symbol must be stable");

  // Don't allow symbols to be created which cannot fit in a Symbol*.
  if (len > Symbol::max_length()) {
    THROW_MSG_0(vmSymbols::java_lang_InternalError(),
                "name is too long to represent");
  }

  // Cannot hit a safepoint in this function because the "this" pointer can move.
  No_Safepoint_Verifier nsv;

  // Check if the symbol table has been rehashed, if so, need to recalculate
  // the hash value and index.
  unsigned int hashValue;
  int index;
  if (use_alternate_hashcode()) {
    hashValue = hash_symbol((const char*)name, len);
    index = hash_to_index(hashValue);
  } else {
    hashValue = hashValue_arg;
    index = index_arg;
  }

  // Since look-up was done lock-free, we need to check if another
  // thread beat us in the race to insert the symbol.
  Symbol* test = lookup(index, (char*)name, len, hashValue);
  if (test != NULL) {
    // A race occurred and another thread introduced the symbol.
    assert(test->refcount() != 0, "lookup should have incremented the count");
    return test;
  }

  // Create a new symbol.
  Symbol* sym = allocate_symbol(name, len, c_heap, CHECK_NULL);
  assert(sym->equals((char*)name, len), "symbol must be properly initialized");

  HashtableEntry<Symbol*, mtSymbol>* entry = new_entry(hashValue, sym);
  add_entry(index, entry);
  return sym;
}

// This version of basic_add adds symbols in batch from the constant pool
// parsing.
bool SymbolTable::basic_add(ClassLoaderData* loader_data, const constantPoolHandle& cp,
                            int names_count,
                            const char** names, int* lengths,
                            int* cp_indices, unsigned int* hashValues,
                            TRAPS) {

  // Check symbol names are not too long.  If any are too long, don't add any.
  for (int i = 0; i< names_count; i++) {
    if (lengths[i] > Symbol::max_length()) {
      THROW_MSG_0(vmSymbols::java_lang_InternalError(),
                  "name is too long to represent");
    }
  }

  // Cannot hit a safepoint in this function because the "this" pointer can move.
  No_Safepoint_Verifier nsv;

  for (int i=0; i<names_count; i++) {
    // Check if the symbol table has been rehashed, if so, need to recalculate
    // the hash value.
    unsigned int hashValue;
    if (use_alternate_hashcode()) {
      hashValue = hash_symbol(names[i], lengths[i]);
    } else {
      hashValue = hashValues[i];
    }
    // Since look-up was done lock-free, we need to check if another
    // thread beat us in the race to insert the symbol.
    int index = hash_to_index(hashValue);
    Symbol* test = lookup(index, names[i], lengths[i], hashValue);
    if (test != NULL) {
      // A race occurred and another thread introduced the symbol, this one
      // will be dropped and collected. Use test instead.
      cp->symbol_at_put(cp_indices[i], test);
      assert(test->refcount() != 0, "lookup should have incremented the count");
    } else {
      // Create a new symbol.  The null class loader is never unloaded so these
      // are allocated specially in a permanent arena.
      bool c_heap = !loader_data->is_the_null_class_loader_data();
      Symbol* sym = allocate_symbol((const u1*)names[i], lengths[i], c_heap, CHECK_(false));
      assert(sym->equals(names[i], lengths[i]), "symbol must be properly initialized");  // why wouldn't it be???
      HashtableEntry<Symbol*, mtSymbol>* entry = new_entry(hashValue, sym);
      add_entry(index, entry);
      cp->symbol_at_put(cp_indices[i], sym);
    }
  }
  return true;
}


void SymbolTable::verify() {
  for (int i = 0; i < the_table()->table_size(); ++i) {
    HashtableEntry<Symbol*, mtSymbol>* p = the_table()->bucket(i);
    for ( ; p != NULL; p = p->next()) {
      Symbol* s = (Symbol*)(p->literal());
      guarantee(s != NULL, "symbol is NULL");
      unsigned int h = hash_symbol((char*)s->bytes(), s->utf8_length());
      guarantee(p->hash() == h, "broken hash in symbol table entry");
      guarantee(the_table()->hash_to_index(h) == i,
                "wrong index in symbol table");
    }
  }
}

void SymbolTable::dump(outputStream* st, bool verbose) {
  if (!verbose) {
    the_table()->dump_table(st, "SymbolTable");
  } else {
    st->print_cr("VERSION: 1.0");
    for (int i = 0; i < the_table()->table_size(); ++i) {
      HashtableEntry<Symbol*, mtSymbol>* p = the_table()->bucket(i);
      for ( ; p != NULL; p = p->next()) {
        Symbol* s = (Symbol*)(p->literal());
        const char* utf8_string = (const char*)s->bytes();
        int utf8_length = s->utf8_length();
        st->print("%d %d: ", utf8_length, s->refcount());
        HashtableTextDump::put_utf8(st, utf8_string, utf8_length);
        st->cr();
      }
    }
  }
}

bool SymbolTable::copy_compact_table(char** top, char*end) {
#if INCLUDE_CDS
  CompactHashtableWriter ch_table(CompactHashtable<Symbol*, char>::_symbol_table,
                                  the_table()->number_of_entries(),
                                  &MetaspaceShared::stats()->symbol);
  if (*top + ch_table.get_required_bytes() > end) {
    // not enough space left
    return false;
  }

  for (int i = 0; i < the_table()->table_size(); ++i) {
    HashtableEntry<Symbol*, mtSymbol>* p = the_table()->bucket(i);
    for ( ; p != NULL; p = p->next()) {
      Symbol* s = (Symbol*)(p->literal());
      unsigned int fixed_hash = hash_symbol((char*)s->bytes(), s->utf8_length());
      assert(fixed_hash == p->hash(), "must not rehash during dumping");
      ch_table.add(fixed_hash, s);
    }
  }

  ch_table.dump(top, end);

  *top = (char*)align_pointer_up(*top, sizeof(void*));
#endif
  return true;
}

const char* SymbolTable::init_shared_table(const char* buffer) {
  const char* end = _shared_table.init(
          CompactHashtable<Symbol*, char>::_symbol_table, buffer);
  return (const char*)align_pointer_up(end, sizeof(void*));
}

//---------------------------------------------------------------------------
// Non-product code

#ifndef PRODUCT

void SymbolTable::print_histogram() {
  MutexLocker ml(SymbolTable_lock);
  const int results_length = 100;
  int counts[results_length];
  int sizes[results_length];
  int i,j;

  // initialize results to zero
  for (j = 0; j < results_length; j++) {
    counts[j] = 0;
    sizes[j] = 0;
  }

  int total_size = 0;
  int total_count = 0;
  int total_length = 0;
  int max_length = 0;
  int out_of_range_count = 0;
  int out_of_range_size = 0;
  for (i = 0; i < the_table()->table_size(); i++) {
    HashtableEntry<Symbol*, mtSymbol>* p = the_table()->bucket(i);
    for ( ; p != NULL; p = p->next()) {
      int size = p->literal()->size();
      int len = p->literal()->utf8_length();
      if (len < results_length) {
        counts[len]++;
        sizes[len] += size;
      } else {
        out_of_range_count++;
        out_of_range_size += size;
      }
      total_count++;
      total_size += size;
      total_length += len;
      max_length = MAX2(max_length, len);
    }
  }
  tty->print_cr("Symbol Table Histogram:");
  tty->print_cr("  Total number of symbols  %7d", total_count);
  tty->print_cr("  Total size in memory     %7dK",
          (total_size*HeapWordSize)/1024);
  tty->print_cr("  Total counted            %7d", _symbols_counted);
  tty->print_cr("  Total removed            %7d", _symbols_removed);
  if (_symbols_counted > 0) {
    tty->print_cr("  Percent removed          %3.2f",
          ((float)_symbols_removed/(float)_symbols_counted)* 100);
  }
  tty->print_cr("  Reference counts         %7d", Symbol::_total_count);
  tty->print_cr("  Symbol arena used        " SIZE_FORMAT_W(7) "K", arena()->used()/1024);
  tty->print_cr("  Symbol arena size        " SIZE_FORMAT_W(7) "K", arena()->size_in_bytes()/1024);
  tty->print_cr("  Total symbol length      %7d", total_length);
  tty->print_cr("  Maximum symbol length    %7d", max_length);
  tty->print_cr("  Average symbol length    %7.2f", ((float) total_length / (float) total_count));
  tty->print_cr("  Symbol length histogram:");
  tty->print_cr("    %6s %10s %10s", "Length", "#Symbols", "Size");
  for (i = 0; i < results_length; i++) {
    if (counts[i] > 0) {
      tty->print_cr("    %6d %10d %10dK", i, counts[i], (sizes[i]*HeapWordSize)/1024);
    }
  }
  tty->print_cr("  >=%6d %10d %10dK\n", results_length,
          out_of_range_count, (out_of_range_size*HeapWordSize)/1024);
}

void SymbolTable::print() {
  for (int i = 0; i < the_table()->table_size(); ++i) {
    HashtableEntry<Symbol*, mtSymbol>** p = the_table()->bucket_addr(i);
    HashtableEntry<Symbol*, mtSymbol>* entry = the_table()->bucket(i);
    if (entry != NULL) {
      while (entry != NULL) {
        tty->print(PTR_FORMAT " ", p2i(entry->literal()));
        entry->literal()->print();
        tty->print(" %d", entry->literal()->refcount());
        p = entry->next_addr();
        entry = (HashtableEntry<Symbol*, mtSymbol>*)HashtableEntry<Symbol*, mtSymbol>::make_ptr(*p);
      }
      tty->cr();
    }
  }
}
#endif // PRODUCT


// Utility for dumping symbols
SymboltableDCmd::SymboltableDCmd(outputStream* output, bool heap) :
                                 DCmdWithParser(output, heap),
  _verbose("-verbose", "Dump the content of each symbol in the table",
           "BOOLEAN", false, "false") {
  _dcmdparser.add_dcmd_option(&_verbose);
}

void SymboltableDCmd::execute(DCmdSource source, TRAPS) {
  VM_DumpHashtable dumper(output(), VM_DumpHashtable::DumpSymbols,
                         _verbose.value());
  VMThread::execute(&dumper);
}

int SymboltableDCmd::num_arguments() {
  ResourceMark rm;
  SymboltableDCmd* dcmd = new SymboltableDCmd(NULL, false);
  if (dcmd != NULL) {
    DCmdMark mark(dcmd);
    return dcmd->_dcmdparser.num_arguments();
  } else {
    return 0;
  }
}