jdk/src/jdk.crypto.ec/share/native/libsunec/impl/ecl-priv.h
author mcberg
Tue, 05 Apr 2016 11:37:41 -0700
changeset 37293 c010188d360f
parent 25859 3317bb8137f4
child 45993 076a6b39a5a9
permissions -rw-r--r--
8151003: Remove nds->is_valid() checks from assembler_x86.cpp Reviewed-by: kvn

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Stephen Fung <fungstep@hotmail.com> and
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
 *
 *********************************************************************** */

#ifndef _ECL_PRIV_H
#define _ECL_PRIV_H

#include "ecl.h"
#include "mpi.h"
#include "mplogic.h"

/* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */
/* the following needs to go away... */
#if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT)
#define ECL_SIXTY_FOUR_BIT
#else
#define ECL_THIRTY_TWO_BIT
#endif

#define ECL_CURVE_DIGITS(curve_size_in_bits) \
        (((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8))
#define ECL_BITS (sizeof(mp_digit)*8)
#define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit))

/* Gets the i'th bit in the binary representation of a. If i >= length(a),
 * then return 0. (The above behaviour differs from mpl_get_bit, which
 * causes an error if i >= length(a).) */
#define MP_GET_BIT(a, i) \
        ((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))

#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
#define MP_ADD_CARRY(a1, a2, s, cin, cout)   \
    { mp_word w; \
    w = ((mp_word)(cin)) + (a1) + (a2); \
    s = ACCUM(w); \
    cout = CARRYOUT(w); }

/* Handle case when carry-in value is zero */
#define MP_ADD_CARRY_ZERO(a1, a2, s, cout)   \
    MP_ADD_CARRY(a1, a2, s, 0, cout);

#define MP_SUB_BORROW(a1, a2, s, bin, bout)   \
    { mp_word w; \
    w = ((mp_word)(a1)) - (a2) - (bin); \
    s = ACCUM(w); \
    bout = (w >> MP_DIGIT_BIT) & 1; }

#else
/* NOTE,
 * cin and cout could be the same variable.
 * bin and bout could be the same variable.
 * a1 or a2 and s could be the same variable.
 * don't trash those outputs until their respective inputs have
 * been read. */
#define MP_ADD_CARRY(a1, a2, s, cin, cout)   \
    { mp_digit tmp,sum; \
    tmp = (a1); \
    sum = tmp + (a2); \
    tmp = (sum < tmp);                     /* detect overflow */ \
    s = sum += (cin); \
    cout = tmp + (sum < (cin)); }

/* Handle case when carry-in value is zero */
#define MP_ADD_CARRY_ZERO(a1, a2, s, cout)   \
    { mp_digit tmp,sum; \
    tmp = (a1); \
    sum = tmp + (a2); \
    tmp = (sum < tmp);                     /* detect overflow */ \
    s = sum; \
    cout = tmp; }

#define MP_SUB_BORROW(a1, a2, s, bin, bout)   \
    { mp_digit tmp; \
    tmp = (a1); \
    s = tmp - (a2); \
    tmp = (s > tmp);                    /* detect borrow */ \
    if ((bin) && !s--) tmp++;   \
    bout = tmp; }
#endif


struct GFMethodStr;
typedef struct GFMethodStr GFMethod;
struct GFMethodStr {
        /* Indicates whether the structure was constructed from dynamic memory
         * or statically created. */
        int constructed;
        /* Irreducible that defines the field. For prime fields, this is the
         * prime p. For binary polynomial fields, this is the bitstring
         * representation of the irreducible polynomial. */
        mp_int irr;
        /* For prime fields, the value irr_arr[0] is the number of bits in the
         * field. For binary polynomial fields, the irreducible polynomial
         * f(t) is represented as an array of unsigned int[], where f(t) is
         * of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0]
         * > p[1] > ... > p[4] = 0. */
        unsigned int irr_arr[5];
        /* Field arithmetic methods. All methods (except field_enc and
         * field_dec) are assumed to take field-encoded parameters and return
         * field-encoded values. All methods (except field_enc and field_dec)
         * are required to be implemented. */
        mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r,
                                                 const GFMethod *meth);
        mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth);
        mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r,
                                                 const GFMethod *meth);
        mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth);
        mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r,
                                                 const GFMethod *meth);
        mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth);
        mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r,
                                                 const GFMethod *meth);
        mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth);
        mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth);
        /* Extra storage for implementation-specific data.  Any memory
         * allocated to these extra fields will be cleared by extra_free. */
        void *extra1;
        void *extra2;
        void (*extra_free) (GFMethod *meth);
};

/* Construct generic GFMethods. */
GFMethod *GFMethod_consGFp(const mp_int *irr);
GFMethod *GFMethod_consGFp_mont(const mp_int *irr);
GFMethod *GFMethod_consGF2m(const mp_int *irr,
                                                        const unsigned int irr_arr[5]);
/* Free the memory allocated (if any) to a GFMethod object. */
void GFMethod_free(GFMethod *meth);

struct ECGroupStr {
        /* Indicates whether the structure was constructed from dynamic memory
         * or statically created. */
        int constructed;
        /* Field definition and arithmetic. */
        GFMethod *meth;
        /* Textual representation of curve name, if any. */
        char *text;
#ifdef _KERNEL
        int text_len;
#endif
        /* Curve parameters, field-encoded. */
        mp_int curvea, curveb;
        /* x and y coordinates of the base point, field-encoded. */
        mp_int genx, geny;
        /* Order and cofactor of the base point. */
        mp_int order;
        int cofactor;
        /* Point arithmetic methods. All methods are assumed to take
         * field-encoded parameters and return field-encoded values. All
         * methods (except base_point_mul and points_mul) are required to be
         * implemented. */
        mp_err (*point_add) (const mp_int *px, const mp_int *py,
                                                 const mp_int *qx, const mp_int *qy, mp_int *rx,
                                                 mp_int *ry, const ECGroup *group);
        mp_err (*point_sub) (const mp_int *px, const mp_int *py,
                                                 const mp_int *qx, const mp_int *qy, mp_int *rx,
                                                 mp_int *ry, const ECGroup *group);
        mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx,
                                                 mp_int *ry, const ECGroup *group);
        mp_err (*point_mul) (const mp_int *n, const mp_int *px,
                                                 const mp_int *py, mp_int *rx, mp_int *ry,
                                                 const ECGroup *group);
        mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry,
                                                          const ECGroup *group);
        mp_err (*points_mul) (const mp_int *k1, const mp_int *k2,
                                                  const mp_int *px, const mp_int *py, mp_int *rx,
                                                  mp_int *ry, const ECGroup *group);
        mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group);
        /* Extra storage for implementation-specific data.  Any memory
         * allocated to these extra fields will be cleared by extra_free. */
        void *extra1;
        void *extra2;
        void (*extra_free) (ECGroup *group);
};

/* Wrapper functions for generic prime field arithmetic. */
mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);

/* fixed length in-line adds. Count is in words */
mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);

mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
                                  const GFMethod *meth);
/* Wrapper functions for generic binary polynomial field arithmetic. */
mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
                                   const GFMethod *meth);
mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
                                   const GFMethod *meth);
mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
                                   const GFMethod *meth);

/* Montgomery prime field arithmetic. */
mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
                                           const GFMethod *meth);
mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
                                           const GFMethod *meth);
mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
void ec_GFp_extra_free_mont(GFMethod *meth);

/* point multiplication */
mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2,
                                                const mp_int *px, const mp_int *py, mp_int *rx,
                                                mp_int *ry, const ECGroup *group);
mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2,
                                                   const mp_int *px, const mp_int *py, mp_int *rx,
                                                   mp_int *ry, const ECGroup *group);

/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
 * be an array of signed char's to output to, bitsize should be the number
 * of bits of out, in is the original scalar, and w is the window size.
 * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
 * Menezes, "Software implementation of elliptic curve cryptography over
 * binary fields", Proc. CHES 2000. */
mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in,
                                           int w);

/* Optimized field arithmetic */
mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName);
mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name);

/* Optimized floating-point arithmetic */
#ifdef ECL_USE_FP
mp_err ec_group_set_secp160r1_fp(ECGroup *group);
mp_err ec_group_set_nistp192_fp(ECGroup *group);
mp_err ec_group_set_nistp224_fp(ECGroup *group);
#endif

#endif /* _ECL_PRIV_H */