8160399: is_oop_or_null involves undefined behavior
8164984: Improper use of is_oop in production code
Summary: replace oop->is_oop*() with oopDesc::is_oop*(oop) so this pointer can be verified
Reviewed-by: iklam, kvn, dholmes
/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/linkResolver.hpp"
#include "interpreter/templateTable.hpp"
#include "logging/log.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.inline.hpp"
#include "oops/constantPool.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/methodData.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/nativeLookup.hpp"
#include "runtime/atomic.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/compilationPolicy.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/fieldDescriptor.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/icache.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/jfieldIDWorkaround.hpp"
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/threadCritical.hpp"
#include "utilities/align.hpp"
#include "utilities/events.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
class UnlockFlagSaver {
private:
JavaThread* _thread;
bool _do_not_unlock;
public:
UnlockFlagSaver(JavaThread* t) {
_thread = t;
_do_not_unlock = t->do_not_unlock_if_synchronized();
t->set_do_not_unlock_if_synchronized(false);
}
~UnlockFlagSaver() {
_thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
}
};
//------------------------------------------------------------------------------------------------------------------------
// State accessors
void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
last_frame(thread).interpreter_frame_set_bcp(bcp);
if (ProfileInterpreter) {
// ProfileTraps uses MDOs independently of ProfileInterpreter.
// That is why we must check both ProfileInterpreter and mdo != NULL.
MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
if (mdo != NULL) {
NEEDS_CLEANUP;
last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
}
}
}
//------------------------------------------------------------------------------------------------------------------------
// Constants
IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
// access constant pool
ConstantPool* pool = method(thread)->constants();
int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
constantTag tag = pool->tag_at(index);
assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
Klass* klass = pool->klass_at(index, CHECK);
oop java_class = klass->java_mirror();
thread->set_vm_result(java_class);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
assert(bytecode == Bytecodes::_fast_aldc ||
bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
ResourceMark rm(thread);
methodHandle m (thread, method(thread));
Bytecode_loadconstant ldc(m, bci(thread));
oop result = ldc.resolve_constant(CHECK);
#ifdef ASSERT
{
// The bytecode wrappers aren't GC-safe so construct a new one
Bytecode_loadconstant ldc2(m, bci(thread));
oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
assert(result == coop, "expected result for assembly code");
}
#endif
thread->set_vm_result(result);
}
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Allocation
IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
Klass* k = pool->klass_at(index, CHECK);
InstanceKlass* klass = InstanceKlass::cast(k);
// Make sure we are not instantiating an abstract klass
klass->check_valid_for_instantiation(true, CHECK);
// Make sure klass is initialized
klass->initialize(CHECK);
// At this point the class may not be fully initialized
// because of recursive initialization. If it is fully
// initialized & has_finalized is not set, we rewrite
// it into its fast version (Note: no locking is needed
// here since this is an atomic byte write and can be
// done more than once).
//
// Note: In case of classes with has_finalized we don't
// rewrite since that saves us an extra check in
// the fast version which then would call the
// slow version anyway (and do a call back into
// Java).
// If we have a breakpoint, then we don't rewrite
// because the _breakpoint bytecode would be lost.
oop obj = klass->allocate_instance(CHECK);
thread->set_vm_result(obj);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
oop obj = oopFactory::new_typeArray(type, size, CHECK);
thread->set_vm_result(obj);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
Klass* klass = pool->klass_at(index, CHECK);
objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
thread->set_vm_result(obj);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
// We may want to pass in more arguments - could make this slightly faster
ConstantPool* constants = method(thread)->constants();
int i = get_index_u2(thread, Bytecodes::_multianewarray);
Klass* klass = constants->klass_at(i, CHECK);
int nof_dims = number_of_dimensions(thread);
assert(klass->is_klass(), "not a class");
assert(nof_dims >= 1, "multianewarray rank must be nonzero");
// We must create an array of jints to pass to multi_allocate.
ResourceMark rm(thread);
const int small_dims = 10;
jint dim_array[small_dims];
jint *dims = &dim_array[0];
if (nof_dims > small_dims) {
dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
}
for (int index = 0; index < nof_dims; index++) {
// offset from first_size_address is addressed as local[index]
int n = Interpreter::local_offset_in_bytes(index)/jintSize;
dims[index] = first_size_address[n];
}
oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
thread->set_vm_result(obj);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
assert(oopDesc::is_oop(obj), "must be a valid oop");
assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
IRT_END
// Quicken instance-of and check-cast bytecodes
IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
// Force resolving; quicken the bytecode
int which = get_index_u2(thread, Bytecodes::_checkcast);
ConstantPool* cpool = method(thread)->constants();
// We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
// program we might have seen an unquick'd bytecode in the interpreter but have another
// thread quicken the bytecode before we get here.
// assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
Klass* klass = cpool->klass_at(which, CHECK);
thread->set_vm_result_2(klass);
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Exceptions
void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
const methodHandle& trap_method, int trap_bci, TRAPS) {
if (trap_method.not_null()) {
MethodData* trap_mdo = trap_method->method_data();
if (trap_mdo == NULL) {
Method::build_interpreter_method_data(trap_method, THREAD);
if (HAS_PENDING_EXCEPTION) {
assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
"we expect only an OOM error here");
CLEAR_PENDING_EXCEPTION;
}
trap_mdo = trap_method->method_data();
// and fall through...
}
if (trap_mdo != NULL) {
// Update per-method count of trap events. The interpreter
// is updating the MDO to simulate the effect of compiler traps.
Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
}
}
}
// Assume the compiler is (or will be) interested in this event.
// If necessary, create an MDO to hold the information, and record it.
void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
assert(ProfileTraps, "call me only if profiling");
methodHandle trap_method(thread, method(thread));
int trap_bci = trap_method->bci_from(bcp(thread));
note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
}
#ifdef CC_INTERP
// As legacy note_trap, but we have more arguments.
IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
methodHandle trap_method(method);
note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
IRT_END
// Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
// for each exception.
void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
{ if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
{ if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
{ if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
{ if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
{ if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
#endif // CC_INTERP
static Handle get_preinitialized_exception(Klass* k, TRAPS) {
// get klass
InstanceKlass* klass = InstanceKlass::cast(k);
assert(klass->is_initialized(),
"this klass should have been initialized during VM initialization");
// create instance - do not call constructor since we may have no
// (java) stack space left (should assert constructor is empty)
Handle exception;
oop exception_oop = klass->allocate_instance(CHECK_(exception));
exception = Handle(THREAD, exception_oop);
if (StackTraceInThrowable) {
java_lang_Throwable::fill_in_stack_trace(exception);
}
return exception;
}
// Special handling for stack overflow: since we don't have any (java) stack
// space left we use the pre-allocated & pre-initialized StackOverflowError
// klass to create an stack overflow error instance. We do not call its
// constructor for the same reason (it is empty, anyway).
IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
Handle exception = get_preinitialized_exception(
SystemDictionary::StackOverflowError_klass(),
CHECK);
// Increment counter for hs_err file reporting
Atomic::inc(&Exceptions::_stack_overflow_errors);
THROW_HANDLE(exception);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
Handle exception = get_preinitialized_exception(
SystemDictionary::StackOverflowError_klass(),
CHECK);
java_lang_Throwable::set_message(exception(),
Universe::delayed_stack_overflow_error_message());
// Increment counter for hs_err file reporting
Atomic::inc(&Exceptions::_stack_overflow_errors);
THROW_HANDLE(exception);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
// lookup exception klass
TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
if (ProfileTraps) {
if (s == vmSymbols::java_lang_ArithmeticException()) {
note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
} else if (s == vmSymbols::java_lang_NullPointerException()) {
note_trap(thread, Deoptimization::Reason_null_check, CHECK);
}
}
// create exception
Handle exception = Exceptions::new_exception(thread, s, message);
thread->set_vm_result(exception());
IRT_END
IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
ResourceMark rm(thread);
const char* klass_name = obj->klass()->external_name();
// lookup exception klass
TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
if (ProfileTraps) {
note_trap(thread, Deoptimization::Reason_class_check, CHECK);
}
// create exception, with klass name as detail message
Handle exception = Exceptions::new_exception(thread, s, klass_name);
thread->set_vm_result(exception());
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
char message[jintAsStringSize];
// lookup exception klass
TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
if (ProfileTraps) {
note_trap(thread, Deoptimization::Reason_range_check, CHECK);
}
// create exception
sprintf(message, "%d", index);
THROW_MSG(s, message);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
JavaThread* thread, oopDesc* obj))
ResourceMark rm(thread);
char* message = SharedRuntime::generate_class_cast_message(
thread, obj->klass());
if (ProfileTraps) {
note_trap(thread, Deoptimization::Reason_class_check, CHECK);
}
// create exception
THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
IRT_END
// exception_handler_for_exception(...) returns the continuation address,
// the exception oop (via TLS) and sets the bci/bcp for the continuation.
// The exception oop is returned to make sure it is preserved over GC (it
// is only on the stack if the exception was thrown explicitly via athrow).
// During this operation, the expression stack contains the values for the
// bci where the exception happened. If the exception was propagated back
// from a call, the expression stack contains the values for the bci at the
// invoke w/o arguments (i.e., as if one were inside the call).
IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
Handle h_exception(thread, exception);
methodHandle h_method (thread, method(thread));
constantPoolHandle h_constants(thread, h_method->constants());
bool should_repeat;
int handler_bci;
int current_bci = bci(thread);
if (thread->frames_to_pop_failed_realloc() > 0) {
// Allocation of scalar replaced object used in this frame
// failed. Unconditionally pop the frame.
thread->dec_frames_to_pop_failed_realloc();
thread->set_vm_result(h_exception());
// If the method is synchronized we already unlocked the monitor
// during deoptimization so the interpreter needs to skip it when
// the frame is popped.
thread->set_do_not_unlock_if_synchronized(true);
#ifdef CC_INTERP
return (address) -1;
#else
return Interpreter::remove_activation_entry();
#endif
}
// Need to do this check first since when _do_not_unlock_if_synchronized
// is set, we don't want to trigger any classloading which may make calls
// into java, or surprisingly find a matching exception handler for bci 0
// since at this moment the method hasn't been "officially" entered yet.
if (thread->do_not_unlock_if_synchronized()) {
ResourceMark rm;
assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized");
thread->set_vm_result(exception);
#ifdef CC_INTERP
return (address) -1;
#else
return Interpreter::remove_activation_entry();
#endif
}
do {
should_repeat = false;
// assertions
#ifdef ASSERT
assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
// Check that exception is a subclass of Throwable, otherwise we have a VerifyError
if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
if (ExitVMOnVerifyError) vm_exit(-1);
ShouldNotReachHere();
}
#endif
// tracing
if (log_is_enabled(Info, exceptions)) {
ResourceMark rm(thread);
stringStream tempst;
tempst.print("interpreter method <%s>\n"
" at bci %d for thread " INTPTR_FORMAT,
h_method->print_value_string(), current_bci, p2i(thread));
Exceptions::log_exception(h_exception, tempst);
}
// Don't go paging in something which won't be used.
// else if (extable->length() == 0) {
// // disabled for now - interpreter is not using shortcut yet
// // (shortcut is not to call runtime if we have no exception handlers)
// // warning("performance bug: should not call runtime if method has no exception handlers");
// }
// for AbortVMOnException flag
Exceptions::debug_check_abort(h_exception);
// exception handler lookup
Klass* klass = h_exception->klass();
handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
if (HAS_PENDING_EXCEPTION) {
// We threw an exception while trying to find the exception handler.
// Transfer the new exception to the exception handle which will
// be set into thread local storage, and do another lookup for an
// exception handler for this exception, this time starting at the
// BCI of the exception handler which caused the exception to be
// thrown (bug 4307310).
h_exception = Handle(THREAD, PENDING_EXCEPTION);
CLEAR_PENDING_EXCEPTION;
if (handler_bci >= 0) {
current_bci = handler_bci;
should_repeat = true;
}
}
} while (should_repeat == true);
#if INCLUDE_JVMCI
if (EnableJVMCI && h_method->method_data() != NULL) {
ResourceMark rm(thread);
ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
if (pdata != NULL && pdata->is_BitData()) {
BitData* bit_data = (BitData*) pdata;
bit_data->set_exception_seen();
}
}
#endif
// notify JVMTI of an exception throw; JVMTI will detect if this is a first
// time throw or a stack unwinding throw and accordingly notify the debugger
if (JvmtiExport::can_post_on_exceptions()) {
JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
}
#ifdef CC_INTERP
address continuation = (address)(intptr_t) handler_bci;
#else
address continuation = NULL;
#endif
address handler_pc = NULL;
if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
// Forward exception to callee (leaving bci/bcp untouched) because (a) no
// handler in this method, or (b) after a stack overflow there is not yet
// enough stack space available to reprotect the stack.
#ifndef CC_INTERP
continuation = Interpreter::remove_activation_entry();
#endif
#if COMPILER2_OR_JVMCI
// Count this for compilation purposes
h_method->interpreter_throwout_increment(THREAD);
#endif
} else {
// handler in this method => change bci/bcp to handler bci/bcp and continue there
handler_pc = h_method->code_base() + handler_bci;
#ifndef CC_INTERP
set_bcp_and_mdp(handler_pc, thread);
continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
#endif
}
// notify debugger of an exception catch
// (this is good for exceptions caught in native methods as well)
if (JvmtiExport::can_post_on_exceptions()) {
JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
}
thread->set_vm_result(h_exception());
return continuation;
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
// nothing to do - eventually we should remove this code entirely (see comments @ call sites)
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
THROW(vmSymbols::java_lang_AbstractMethodError());
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Fields
//
void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
Thread* THREAD = thread;
// resolve field
fieldDescriptor info;
constantPoolHandle pool(thread, method(thread)->constants());
methodHandle m(thread, method(thread));
bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_nofast_putfield ||
bytecode == Bytecodes::_putstatic);
bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
{
JvmtiHideSingleStepping jhss(thread);
LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
m, bytecode, CHECK);
} // end JvmtiHideSingleStepping
// check if link resolution caused cpCache to be updated
ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
if (cp_cache_entry->is_resolved(bytecode)) return;
// compute auxiliary field attributes
TosState state = as_TosState(info.field_type());
// Resolution of put instructions on final fields is delayed. That is required so that
// exceptions are thrown at the correct place (when the instruction is actually invoked).
// If we do not resolve an instruction in the current pass, leaving the put_code
// set to zero will cause the next put instruction to the same field to reresolve.
// Resolution of put instructions to final instance fields with invalid updates (i.e.,
// to final instance fields with updates originating from a method different than <init>)
// is inhibited. A putfield instruction targeting an instance final field must throw
// an IllegalAccessError if the instruction is not in an instance
// initializer method <init>. If resolution were not inhibited, a putfield
// in an initializer method could be resolved in the initializer. Subsequent
// putfield instructions to the same field would then use cached information.
// As a result, those instructions would not pass through the VM. That is,
// checks in resolve_field_access() would not be executed for those instructions
// and the required IllegalAccessError would not be thrown.
//
// Also, we need to delay resolving getstatic and putstatic instructions until the
// class is initialized. This is required so that access to the static
// field will call the initialization function every time until the class
// is completely initialized ala. in 2.17.5 in JVM Specification.
InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
bool uninitialized_static = is_static && !klass->is_initialized();
bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
info.has_initialized_final_update();
assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
Bytecodes::Code get_code = (Bytecodes::Code)0;
Bytecodes::Code put_code = (Bytecodes::Code)0;
if (!uninitialized_static) {
get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
}
}
cp_cache_entry->set_field(
get_code,
put_code,
info.field_holder(),
info.index(),
info.offset(),
state,
info.access_flags().is_final(),
info.access_flags().is_volatile(),
pool->pool_holder()
);
}
//------------------------------------------------------------------------------------------------------------------------
// Synchronization
//
// The interpreter's synchronization code is factored out so that it can
// be shared by method invocation and synchronized blocks.
//%note synchronization_3
//%note monitor_1
IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
#ifdef ASSERT
thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
if (PrintBiasedLockingStatistics) {
Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
}
Handle h_obj(thread, elem->obj());
assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
"must be NULL or an object");
if (UseBiasedLocking) {
// Retry fast entry if bias is revoked to avoid unnecessary inflation
ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
} else {
ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
}
assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
"must be NULL or an object");
#ifdef ASSERT
thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
IRT_END
//%note monitor_1
IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
#ifdef ASSERT
thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
Handle h_obj(thread, elem->obj());
assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
"must be NULL or an object");
if (elem == NULL || h_obj()->is_unlocked()) {
THROW(vmSymbols::java_lang_IllegalMonitorStateException());
}
ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
// Free entry. This must be done here, since a pending exception might be installed on
// exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
elem->set_obj(NULL);
#ifdef ASSERT
thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
THROW(vmSymbols::java_lang_IllegalMonitorStateException());
IRT_END
IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
// Returns an illegal exception to install into the current thread. The
// pending_exception flag is cleared so normal exception handling does not
// trigger. Any current installed exception will be overwritten. This
// method will be called during an exception unwind.
assert(!HAS_PENDING_EXCEPTION, "no pending exception");
Handle exception(thread, thread->vm_result());
assert(exception() != NULL, "vm result should be set");
thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
exception = get_preinitialized_exception(
SystemDictionary::IllegalMonitorStateException_klass(),
CATCH);
}
thread->set_vm_result(exception());
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Invokes
IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
return method->orig_bytecode_at(method->bci_from(bcp));
IRT_END
IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
JvmtiExport::post_raw_breakpoint(thread, method, bcp);
IRT_END
void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
Thread* THREAD = thread;
// extract receiver from the outgoing argument list if necessary
Handle receiver(thread, NULL);
if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
bytecode == Bytecodes::_invokespecial) {
ResourceMark rm(thread);
methodHandle m (thread, method(thread));
Bytecode_invoke call(m, bci(thread));
Symbol* signature = call.signature();
receiver = Handle(thread,
thread->last_frame().interpreter_callee_receiver(signature));
assert(Universe::heap()->is_in_reserved_or_null(receiver()),
"sanity check");
assert(receiver.is_null() ||
!Universe::heap()->is_in_reserved(receiver->klass()),
"sanity check");
}
// resolve method
CallInfo info;
constantPoolHandle pool(thread, method(thread)->constants());
{
JvmtiHideSingleStepping jhss(thread);
LinkResolver::resolve_invoke(info, receiver, pool,
get_index_u2_cpcache(thread, bytecode), bytecode,
CHECK);
if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
int retry_count = 0;
while (info.resolved_method()->is_old()) {
// It is very unlikely that method is redefined more than 100 times
// in the middle of resolve. If it is looping here more than 100 times
// means then there could be a bug here.
guarantee((retry_count++ < 100),
"Could not resolve to latest version of redefined method");
// method is redefined in the middle of resolve so re-try.
LinkResolver::resolve_invoke(info, receiver, pool,
get_index_u2_cpcache(thread, bytecode), bytecode,
CHECK);
}
}
} // end JvmtiHideSingleStepping
// check if link resolution caused cpCache to be updated
ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
if (cp_cache_entry->is_resolved(bytecode)) return;
#ifdef ASSERT
if (bytecode == Bytecodes::_invokeinterface) {
if (info.resolved_method()->method_holder() ==
SystemDictionary::Object_klass()) {
// NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
// (see also CallInfo::set_interface for details)
assert(info.call_kind() == CallInfo::vtable_call ||
info.call_kind() == CallInfo::direct_call, "");
methodHandle rm = info.resolved_method();
assert(rm->is_final() || info.has_vtable_index(),
"should have been set already");
} else if (!info.resolved_method()->has_itable_index()) {
// Resolved something like CharSequence.toString. Use vtable not itable.
assert(info.call_kind() != CallInfo::itable_call, "");
} else {
// Setup itable entry
assert(info.call_kind() == CallInfo::itable_call, "");
int index = info.resolved_method()->itable_index();
assert(info.itable_index() == index, "");
}
} else if (bytecode == Bytecodes::_invokespecial) {
assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
} else {
assert(info.call_kind() == CallInfo::direct_call ||
info.call_kind() == CallInfo::vtable_call, "");
}
#endif
// Get sender or sender's host_klass, and only set cpCache entry to resolved if
// it is not an interface. The receiver for invokespecial calls within interface
// methods must be checked for every call.
InstanceKlass* sender = pool->pool_holder();
sender = sender->is_anonymous() ? sender->host_klass() : sender;
switch (info.call_kind()) {
case CallInfo::direct_call:
cp_cache_entry->set_direct_call(
bytecode,
info.resolved_method(),
sender->is_interface());
break;
case CallInfo::vtable_call:
cp_cache_entry->set_vtable_call(
bytecode,
info.resolved_method(),
info.vtable_index());
break;
case CallInfo::itable_call:
cp_cache_entry->set_itable_call(
bytecode,
info.resolved_method(),
info.itable_index());
break;
default: ShouldNotReachHere();
}
}
// First time execution: Resolve symbols, create a permanent MethodType object.
void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
Thread* THREAD = thread;
const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
// resolve method
CallInfo info;
constantPoolHandle pool(thread, method(thread)->constants());
{
JvmtiHideSingleStepping jhss(thread);
LinkResolver::resolve_invoke(info, Handle(), pool,
get_index_u2_cpcache(thread, bytecode), bytecode,
CHECK);
} // end JvmtiHideSingleStepping
ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
cp_cache_entry->set_method_handle(pool, info);
}
// First time execution: Resolve symbols, create a permanent CallSite object.
void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
Thread* THREAD = thread;
const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
//TO DO: consider passing BCI to Java.
// int caller_bci = method(thread)->bci_from(bcp(thread));
// resolve method
CallInfo info;
constantPoolHandle pool(thread, method(thread)->constants());
int index = get_index_u4(thread, bytecode);
{
JvmtiHideSingleStepping jhss(thread);
LinkResolver::resolve_invoke(info, Handle(), pool,
index, bytecode, CHECK);
} // end JvmtiHideSingleStepping
ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
cp_cache_entry->set_dynamic_call(pool, info);
}
// This function is the interface to the assembly code. It returns the resolved
// cpCache entry. This doesn't safepoint, but the helper routines safepoint.
// This function will check for redefinition!
IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
switch (bytecode) {
case Bytecodes::_getstatic:
case Bytecodes::_putstatic:
case Bytecodes::_getfield:
case Bytecodes::_putfield:
resolve_get_put(thread, bytecode);
break;
case Bytecodes::_invokevirtual:
case Bytecodes::_invokespecial:
case Bytecodes::_invokestatic:
case Bytecodes::_invokeinterface:
resolve_invoke(thread, bytecode);
break;
case Bytecodes::_invokehandle:
resolve_invokehandle(thread);
break;
case Bytecodes::_invokedynamic:
resolve_invokedynamic(thread);
break;
default:
fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
break;
}
}
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Miscellaneous
nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
if (branch_bcp != NULL && nm != NULL) {
// This was a successful request for an OSR nmethod. Because
// frequency_counter_overflow_inner ends with a safepoint check,
// nm could have been unloaded so look it up again. It's unsafe
// to examine nm directly since it might have been freed and used
// for something else.
frame fr = thread->last_frame();
Method* method = fr.interpreter_frame_method();
int bci = method->bci_from(fr.interpreter_frame_bcp());
nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
}
#ifndef PRODUCT
if (TraceOnStackReplacement) {
if (nm != NULL) {
tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
nm->print();
}
}
#endif
return nm;
}
IRT_ENTRY(nmethod*,
InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
// use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
// flag, in case this method triggers classloading which will call into Java.
UnlockFlagSaver fs(thread);
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "must come from interpreter");
methodHandle method(thread, fr.interpreter_frame_method());
const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
if (osr_nm != NULL) {
// We may need to do on-stack replacement which requires that no
// monitors in the activation are biased because their
// BasicObjectLocks will need to migrate during OSR. Force
// unbiasing of all monitors in the activation now (even though
// the OSR nmethod might be invalidated) because we don't have a
// safepoint opportunity later once the migration begins.
if (UseBiasedLocking) {
ResourceMark rm;
GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
kptr < fr.interpreter_frame_monitor_begin();
kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
if( kptr->obj() != NULL ) {
objects_to_revoke->append(Handle(THREAD, kptr->obj()));
}
}
BiasedLocking::revoke(objects_to_revoke);
}
}
return osr_nm;
IRT_END
IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
assert(ProfileInterpreter, "must be profiling interpreter");
int bci = method->bci_from(cur_bcp);
MethodData* mdo = method->method_data();
if (mdo == NULL) return 0;
return mdo->bci_to_di(bci);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
// use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
// flag, in case this method triggers classloading which will call into Java.
UnlockFlagSaver fs(thread);
assert(ProfileInterpreter, "must be profiling interpreter");
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "must come from interpreter");
methodHandle method(thread, fr.interpreter_frame_method());
Method::build_interpreter_method_data(method, THREAD);
if (HAS_PENDING_EXCEPTION) {
assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
CLEAR_PENDING_EXCEPTION;
// and fall through...
}
IRT_END
#ifdef ASSERT
IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
assert(ProfileInterpreter, "must be profiling interpreter");
MethodData* mdo = method->method_data();
assert(mdo != NULL, "must not be null");
int bci = method->bci_from(bcp);
address mdp2 = mdo->bci_to_dp(bci);
if (mdp != mdp2) {
ResourceMark rm;
ResetNoHandleMark rnm; // In a LEAF entry.
HandleMark hm;
tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci);
int current_di = mdo->dp_to_di(mdp);
int expected_di = mdo->dp_to_di(mdp2);
tty->print_cr(" actual di %d expected di %d", current_di, expected_di);
int expected_approx_bci = mdo->data_at(expected_di)->bci();
int approx_bci = -1;
if (current_di >= 0) {
approx_bci = mdo->data_at(current_di)->bci();
}
tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci);
mdo->print_on(tty);
method->print_codes();
}
assert(mdp == mdp2, "wrong mdp");
IRT_END
#endif // ASSERT
IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
assert(ProfileInterpreter, "must be profiling interpreter");
ResourceMark rm(thread);
HandleMark hm(thread);
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "must come from interpreter");
MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
// Grab a lock to ensure atomic access to setting the return bci and
// the displacement. This can block and GC, invalidating all naked oops.
MutexLocker ml(RetData_lock);
// ProfileData is essentially a wrapper around a derived oop, so we
// need to take the lock before making any ProfileData structures.
ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
guarantee(data != NULL, "profile data must be valid");
RetData* rdata = data->as_RetData();
address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
fr.interpreter_frame_set_mdp(new_mdp);
IRT_END
IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
MethodCounters* mcs = Method::build_method_counters(m, thread);
if (HAS_PENDING_EXCEPTION) {
assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
CLEAR_PENDING_EXCEPTION;
}
return mcs;
IRT_END
IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
// We used to need an explict preserve_arguments here for invoke bytecodes. However,
// stack traversal automatically takes care of preserving arguments for invoke, so
// this is no longer needed.
// IRT_END does an implicit safepoint check, hence we are guaranteed to block
// if this is called during a safepoint
if (JvmtiExport::should_post_single_step()) {
// We are called during regular safepoints and when the VM is
// single stepping. If any thread is marked for single stepping,
// then we may have JVMTI work to do.
JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
}
IRT_END
IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
ConstantPoolCacheEntry *cp_entry))
// check the access_flags for the field in the klass
InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
int index = cp_entry->field_index();
if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
bool is_static = (obj == NULL);
HandleMark hm(thread);
Handle h_obj;
if (!is_static) {
// non-static field accessors have an object, but we need a handle
h_obj = Handle(thread, obj);
}
InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
JvmtiExport::post_field_access(thread, method(thread), bcp(thread), cp_entry_f1, h_obj, fid);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
Klass* k = cp_entry->f1_as_klass();
// check the access_flags for the field in the klass
InstanceKlass* ik = InstanceKlass::cast(k);
int index = cp_entry->field_index();
// bail out if field modifications are not watched
if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
char sig_type = '\0';
switch(cp_entry->flag_state()) {
case btos: sig_type = 'B'; break;
case ztos: sig_type = 'Z'; break;
case ctos: sig_type = 'C'; break;
case stos: sig_type = 'S'; break;
case itos: sig_type = 'I'; break;
case ftos: sig_type = 'F'; break;
case atos: sig_type = 'L'; break;
case ltos: sig_type = 'J'; break;
case dtos: sig_type = 'D'; break;
default: ShouldNotReachHere(); return;
}
bool is_static = (obj == NULL);
HandleMark hm(thread);
jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
jvalue fvalue;
#ifdef _LP64
fvalue = *value;
#else
// Long/double values are stored unaligned and also noncontiguously with
// tagged stacks. We can't just do a simple assignment even in the non-
// J/D cases because a C++ compiler is allowed to assume that a jvalue is
// 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
// We assume that the two halves of longs/doubles are stored in interpreter
// stack slots in platform-endian order.
jlong_accessor u;
jint* newval = (jint*)value;
u.words[0] = newval[0];
u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
fvalue.j = u.long_value;
#endif // _LP64
Handle h_obj;
if (!is_static) {
// non-static field accessors have an object, but we need a handle
h_obj = Handle(thread, obj);
}
JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), ik, h_obj,
fid, sig_type, &fvalue);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
IRT_END
IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
IRT_END
IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
{
return (Interpreter::contains(pc) ? 1 : 0);
}
IRT_END
// Implementation of SignatureHandlerLibrary
#ifndef SHARING_FAST_NATIVE_FINGERPRINTS
// Dummy definition (else normalization method is defined in CPU
// dependant code)
uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
return fingerprint;
}
#endif
address SignatureHandlerLibrary::set_handler_blob() {
BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
if (handler_blob == NULL) {
return NULL;
}
address handler = handler_blob->code_begin();
_handler_blob = handler_blob;
_handler = handler;
return handler;
}
void SignatureHandlerLibrary::initialize() {
if (_fingerprints != NULL) {
return;
}
if (set_handler_blob() == NULL) {
vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
}
BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
SignatureHandlerLibrary::buffer_size);
_buffer = bb->code_begin();
_fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
_handlers = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
}
address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
address handler = _handler;
int insts_size = buffer->pure_insts_size();
if (handler + insts_size > _handler_blob->code_end()) {
// get a new handler blob
handler = set_handler_blob();
}
if (handler != NULL) {
memcpy(handler, buffer->insts_begin(), insts_size);
pd_set_handler(handler);
ICache::invalidate_range(handler, insts_size);
_handler = handler + insts_size;
}
return handler;
}
void SignatureHandlerLibrary::add(const methodHandle& method) {
if (method->signature_handler() == NULL) {
// use slow signature handler if we can't do better
int handler_index = -1;
// check if we can use customized (fast) signature handler
if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
// use customized signature handler
MutexLocker mu(SignatureHandlerLibrary_lock);
// make sure data structure is initialized
initialize();
// lookup method signature's fingerprint
uint64_t fingerprint = Fingerprinter(method).fingerprint();
// allow CPU dependant code to optimize the fingerprints for the fast handler
fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
handler_index = _fingerprints->find(fingerprint);
// create handler if necessary
if (handler_index < 0) {
ResourceMark rm;
ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
CodeBuffer buffer((address)(_buffer + align_offset),
SignatureHandlerLibrary::buffer_size - align_offset);
InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
// copy into code heap
address handler = set_handler(&buffer);
if (handler == NULL) {
// use slow signature handler (without memorizing it in the fingerprints)
} else {
// debugging suppport
if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
ttyLocker ttyl;
tty->cr();
tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
_handlers->length(),
(method->is_static() ? "static" : "receiver"),
method->name_and_sig_as_C_string(),
fingerprint,
buffer.insts_size());
if (buffer.insts_size() > 0) {
Disassembler::decode(handler, handler + buffer.insts_size());
}
#ifndef PRODUCT
address rh_begin = Interpreter::result_handler(method()->result_type());
if (CodeCache::contains(rh_begin)) {
// else it might be special platform dependent values
tty->print_cr(" --- associated result handler ---");
address rh_end = rh_begin;
while (*(int*)rh_end != 0) {
rh_end += sizeof(int);
}
Disassembler::decode(rh_begin, rh_end);
} else {
tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
}
#endif
}
// add handler to library
_fingerprints->append(fingerprint);
_handlers->append(handler);
// set handler index
assert(_fingerprints->length() == _handlers->length(), "sanity check");
handler_index = _fingerprints->length() - 1;
}
}
// Set handler under SignatureHandlerLibrary_lock
if (handler_index < 0) {
// use generic signature handler
method->set_signature_handler(Interpreter::slow_signature_handler());
} else {
// set handler
method->set_signature_handler(_handlers->at(handler_index));
}
} else {
CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
// use generic signature handler
method->set_signature_handler(Interpreter::slow_signature_handler());
}
}
#ifdef ASSERT
int handler_index = -1;
int fingerprint_index = -2;
{
// '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
// in any way if accessed from multiple threads. To avoid races with another
// thread which may change the arrays in the above, mutex protected block, we
// have to protect this read access here with the same mutex as well!
MutexLocker mu(SignatureHandlerLibrary_lock);
if (_handlers != NULL) {
handler_index = _handlers->find(method->signature_handler());
uint64_t fingerprint = Fingerprinter(method).fingerprint();
fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
fingerprint_index = _fingerprints->find(fingerprint);
}
}
assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
handler_index == fingerprint_index, "sanity check");
#endif // ASSERT
}
void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
int handler_index = -1;
// use customized signature handler
MutexLocker mu(SignatureHandlerLibrary_lock);
// make sure data structure is initialized
initialize();
fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
handler_index = _fingerprints->find(fingerprint);
// create handler if necessary
if (handler_index < 0) {
if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
tty->cr();
tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
_handlers->length(),
p2i(handler),
fingerprint);
}
_fingerprints->append(fingerprint);
_handlers->append(handler);
} else {
if (PrintSignatureHandlers) {
tty->cr();
tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
_handlers->length(),
fingerprint,
p2i(_handlers->at(handler_index)),
p2i(handler));
}
}
}
BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL;
address SignatureHandlerLibrary::_handler = NULL;
GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL;
address SignatureHandlerLibrary::_buffer = NULL;
IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
methodHandle m(thread, method);
assert(m->is_native(), "sanity check");
// lookup native function entry point if it doesn't exist
bool in_base_library;
if (!m->has_native_function()) {
NativeLookup::lookup(m, in_base_library, CHECK);
}
// make sure signature handler is installed
SignatureHandlerLibrary::add(m);
// The interpreter entry point checks the signature handler first,
// before trying to fetch the native entry point and klass mirror.
// We must set the signature handler last, so that multiple processors
// preparing the same method will be sure to see non-null entry & mirror.
IRT_END
#if defined(IA32) || defined(AMD64) || defined(ARM)
IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
if (src_address == dest_address) {
return;
}
ResetNoHandleMark rnm; // In a LEAF entry.
HandleMark hm;
ResourceMark rm;
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "");
jint bci = fr.interpreter_frame_bci();
methodHandle mh(thread, fr.interpreter_frame_method());
Bytecode_invoke invoke(mh, bci);
ArgumentSizeComputer asc(invoke.signature());
int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
Copy::conjoint_jbytes(src_address, dest_address,
size_of_arguments * Interpreter::stackElementSize);
IRT_END
#endif
#if INCLUDE_JVMTI
// This is a support of the JVMTI PopFrame interface.
// Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
// and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
// The member_name argument is a saved reference (in local#0) to the member_name.
// For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
// FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
Method* method, address bcp))
Bytecodes::Code code = Bytecodes::code_at(method, bcp);
if (code != Bytecodes::_invokestatic) {
return;
}
ConstantPool* cpool = method->constants();
int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
Symbol* mname = cpool->name_ref_at(cp_index);
if (MethodHandles::has_member_arg(cname, mname)) {
oop member_name_oop = (oop) member_name;
if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
// FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
}
thread->set_vm_result(member_name_oop);
} else {
thread->set_vm_result(NULL);
}
IRT_END
#endif // INCLUDE_JVMTI
#ifndef PRODUCT
// This must be a IRT_LEAF function because the interpreter must save registers on x86 to
// call this, which changes rsp and makes the interpreter's expression stack not walkable.
// The generated code still uses call_VM because that will set up the frame pointer for
// bcp and method.
IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
const frame f = thread->last_frame();
assert(f.is_interpreted_frame(), "must be an interpreted frame");
methodHandle mh(thread, f.interpreter_frame_method());
BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
return preserve_this_value;
IRT_END
#endif // !PRODUCT