6787106: Hotspot 32 bit build fails on platforms having different definitions for intptr_t & int32_t
Summary: Avoid casting between int32_t and intptr_t specifically for MasmAssembler::movptr in 32 bit platforms.
Reviewed-by: jrose, kvn
//
// Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
// CA 95054 USA or visit www.sun.com if you need additional information or
// have any questions.
//
//
// AMD64 Architecture Description File
//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// archtecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def" name ( register save type, C convention save type,
// ideal register type, encoding );
// Register Save Types:
//
// NS = No-Save: The register allocator assumes that these registers
// can be used without saving upon entry to the method, &
// that they do not need to be saved at call sites.
//
// SOC = Save-On-Call: The register allocator assumes that these registers
// can be used without saving upon entry to the method,
// but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, but they do not need to be saved at call
// sites.
//
// AS = Always-Save: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
//
// The encoding number is the actual bit-pattern placed into the opcodes.
// General Registers
// R8-R15 must be encoded with REX. (RSP, RBP, RSI, RDI need REX when
// used as byte registers)
// Previously set RBX, RSI, and RDI as save-on-entry for java code
// Turn off SOE in java-code due to frequent use of uncommon-traps.
// Now that allocator is better, turn on RSI and RDI as SOE registers.
reg_def RAX (SOC, SOC, Op_RegI, 0, rax->as_VMReg());
reg_def RAX_H(SOC, SOC, Op_RegI, 0, rax->as_VMReg()->next());
reg_def RCX (SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
reg_def RCX_H(SOC, SOC, Op_RegI, 1, rcx->as_VMReg()->next());
reg_def RDX (SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
reg_def RDX_H(SOC, SOC, Op_RegI, 2, rdx->as_VMReg()->next());
reg_def RBX (SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
reg_def RBX_H(SOC, SOE, Op_RegI, 3, rbx->as_VMReg()->next());
reg_def RSP (NS, NS, Op_RegI, 4, rsp->as_VMReg());
reg_def RSP_H(NS, NS, Op_RegI, 4, rsp->as_VMReg()->next());
// now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
reg_def RBP (NS, SOE, Op_RegI, 5, rbp->as_VMReg());
reg_def RBP_H(NS, SOE, Op_RegI, 5, rbp->as_VMReg()->next());
#ifdef _WIN64
reg_def RSI (SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
reg_def RSI_H(SOC, SOE, Op_RegI, 6, rsi->as_VMReg()->next());
reg_def RDI (SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
reg_def RDI_H(SOC, SOE, Op_RegI, 7, rdi->as_VMReg()->next());
#else
reg_def RSI (SOC, SOC, Op_RegI, 6, rsi->as_VMReg());
reg_def RSI_H(SOC, SOC, Op_RegI, 6, rsi->as_VMReg()->next());
reg_def RDI (SOC, SOC, Op_RegI, 7, rdi->as_VMReg());
reg_def RDI_H(SOC, SOC, Op_RegI, 7, rdi->as_VMReg()->next());
#endif
reg_def R8 (SOC, SOC, Op_RegI, 8, r8->as_VMReg());
reg_def R8_H (SOC, SOC, Op_RegI, 8, r8->as_VMReg()->next());
reg_def R9 (SOC, SOC, Op_RegI, 9, r9->as_VMReg());
reg_def R9_H (SOC, SOC, Op_RegI, 9, r9->as_VMReg()->next());
reg_def R10 (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
reg_def R11 (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
reg_def R12 (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
reg_def R13 (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
reg_def R14 (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
reg_def R15 (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
// Floating Point Registers
// XMM registers. 128-bit registers or 4 words each, labeled (a)-d.
// Word a in each register holds a Float, words ab hold a Double. We
// currently do not use the SIMD capabilities, so registers cd are
// unused at the moment.
// XMM8-XMM15 must be encoded with REX.
// Linux ABI: No register preserved across function calls
// XMM0-XMM7 might hold parameters
// Windows ABI: XMM6-XMM15 preserved across function calls
// XMM0-XMM3 might hold parameters
reg_def XMM0 (SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
reg_def XMM0_H (SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
reg_def XMM1 (SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
reg_def XMM1_H (SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
reg_def XMM2 (SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
reg_def XMM2_H (SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
reg_def XMM3 (SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
reg_def XMM3_H (SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
reg_def XMM4 (SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
reg_def XMM4_H (SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
reg_def XMM5 (SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
reg_def XMM5_H (SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
#ifdef _WIN64
reg_def XMM6 (SOC, SOE, Op_RegF, 6, xmm6->as_VMReg());
reg_def XMM6_H (SOC, SOE, Op_RegF, 6, xmm6->as_VMReg()->next());
reg_def XMM7 (SOC, SOE, Op_RegF, 7, xmm7->as_VMReg());
reg_def XMM7_H (SOC, SOE, Op_RegF, 7, xmm7->as_VMReg()->next());
reg_def XMM8 (SOC, SOE, Op_RegF, 8, xmm8->as_VMReg());
reg_def XMM8_H (SOC, SOE, Op_RegF, 8, xmm8->as_VMReg()->next());
reg_def XMM9 (SOC, SOE, Op_RegF, 9, xmm9->as_VMReg());
reg_def XMM9_H (SOC, SOE, Op_RegF, 9, xmm9->as_VMReg()->next());
reg_def XMM10 (SOC, SOE, Op_RegF, 10, xmm10->as_VMReg());
reg_def XMM10_H(SOC, SOE, Op_RegF, 10, xmm10->as_VMReg()->next());
reg_def XMM11 (SOC, SOE, Op_RegF, 11, xmm11->as_VMReg());
reg_def XMM11_H(SOC, SOE, Op_RegF, 11, xmm11->as_VMReg()->next());
reg_def XMM12 (SOC, SOE, Op_RegF, 12, xmm12->as_VMReg());
reg_def XMM12_H(SOC, SOE, Op_RegF, 12, xmm12->as_VMReg()->next());
reg_def XMM13 (SOC, SOE, Op_RegF, 13, xmm13->as_VMReg());
reg_def XMM13_H(SOC, SOE, Op_RegF, 13, xmm13->as_VMReg()->next());
reg_def XMM14 (SOC, SOE, Op_RegF, 14, xmm14->as_VMReg());
reg_def XMM14_H(SOC, SOE, Op_RegF, 14, xmm14->as_VMReg()->next());
reg_def XMM15 (SOC, SOE, Op_RegF, 15, xmm15->as_VMReg());
reg_def XMM15_H(SOC, SOE, Op_RegF, 15, xmm15->as_VMReg()->next());
#else
reg_def XMM6 (SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
reg_def XMM6_H (SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
reg_def XMM7 (SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
reg_def XMM7_H (SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
reg_def XMM8 (SOC, SOC, Op_RegF, 8, xmm8->as_VMReg());
reg_def XMM8_H (SOC, SOC, Op_RegF, 8, xmm8->as_VMReg()->next());
reg_def XMM9 (SOC, SOC, Op_RegF, 9, xmm9->as_VMReg());
reg_def XMM9_H (SOC, SOC, Op_RegF, 9, xmm9->as_VMReg()->next());
reg_def XMM10 (SOC, SOC, Op_RegF, 10, xmm10->as_VMReg());
reg_def XMM10_H(SOC, SOC, Op_RegF, 10, xmm10->as_VMReg()->next());
reg_def XMM11 (SOC, SOC, Op_RegF, 11, xmm11->as_VMReg());
reg_def XMM11_H(SOC, SOC, Op_RegF, 11, xmm11->as_VMReg()->next());
reg_def XMM12 (SOC, SOC, Op_RegF, 12, xmm12->as_VMReg());
reg_def XMM12_H(SOC, SOC, Op_RegF, 12, xmm12->as_VMReg()->next());
reg_def XMM13 (SOC, SOC, Op_RegF, 13, xmm13->as_VMReg());
reg_def XMM13_H(SOC, SOC, Op_RegF, 13, xmm13->as_VMReg()->next());
reg_def XMM14 (SOC, SOC, Op_RegF, 14, xmm14->as_VMReg());
reg_def XMM14_H(SOC, SOC, Op_RegF, 14, xmm14->as_VMReg()->next());
reg_def XMM15 (SOC, SOC, Op_RegF, 15, xmm15->as_VMReg());
reg_def XMM15_H(SOC, SOC, Op_RegF, 15, xmm15->as_VMReg()->next());
#endif // _WIN64
reg_def RFLAGS(SOC, SOC, 0, 16, VMRegImpl::Bad());
// Specify priority of register selection within phases of register
// allocation. Highest priority is first. A useful heuristic is to
// give registers a low priority when they are required by machine
// instructions, like EAX and EDX on I486, and choose no-save registers
// before save-on-call, & save-on-call before save-on-entry. Registers
// which participate in fixed calling sequences should come last.
// Registers which are used as pairs must fall on an even boundary.
alloc_class chunk0(R10, R10_H,
R11, R11_H,
R8, R8_H,
R9, R9_H,
R12, R12_H,
RCX, RCX_H,
RBX, RBX_H,
RDI, RDI_H,
RDX, RDX_H,
RSI, RSI_H,
RAX, RAX_H,
RBP, RBP_H,
R13, R13_H,
R14, R14_H,
R15, R15_H,
RSP, RSP_H);
// XXX probably use 8-15 first on Linux
alloc_class chunk1(XMM0, XMM0_H,
XMM1, XMM1_H,
XMM2, XMM2_H,
XMM3, XMM3_H,
XMM4, XMM4_H,
XMM5, XMM5_H,
XMM6, XMM6_H,
XMM7, XMM7_H,
XMM8, XMM8_H,
XMM9, XMM9_H,
XMM10, XMM10_H,
XMM11, XMM11_H,
XMM12, XMM12_H,
XMM13, XMM13_H,
XMM14, XMM14_H,
XMM15, XMM15_H);
alloc_class chunk2(RFLAGS);
//----------Architecture Description Register Classes--------------------------
// Several register classes are automatically defined based upon information in
// this architecture description.
// 1) reg_class inline_cache_reg ( /* as def'd in frame section */ )
// 2) reg_class compiler_method_oop_reg ( /* as def'd in frame section */ )
// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//
// Class for all pointer registers (including RSP)
reg_class any_reg(RAX, RAX_H,
RDX, RDX_H,
RBP, RBP_H,
RDI, RDI_H,
RSI, RSI_H,
RCX, RCX_H,
RBX, RBX_H,
RSP, RSP_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R12, R12_H,
R13, R13_H,
R14, R14_H,
R15, R15_H);
// Class for all pointer registers except RSP
reg_class ptr_reg(RAX, RAX_H,
RDX, RDX_H,
RBP, RBP_H,
RDI, RDI_H,
RSI, RSI_H,
RCX, RCX_H,
RBX, RBX_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R13, R13_H,
R14, R14_H);
// Class for all pointer registers except RAX and RSP
reg_class ptr_no_rax_reg(RDX, RDX_H,
RBP, RBP_H,
RDI, RDI_H,
RSI, RSI_H,
RCX, RCX_H,
RBX, RBX_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R12, R12_H,
R13, R13_H,
R14, R14_H);
reg_class ptr_no_rbp_reg(RDX, RDX_H,
RAX, RAX_H,
RDI, RDI_H,
RSI, RSI_H,
RCX, RCX_H,
RBX, RBX_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R12, R12_H,
R13, R13_H,
R14, R14_H);
// Class for all pointer registers except RAX, RBX and RSP
reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
RBP, RBP_H,
RDI, RDI_H,
RSI, RSI_H,
RCX, RCX_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R12, R12_H,
R13, R13_H,
R14, R14_H);
// Singleton class for RAX pointer register
reg_class ptr_rax_reg(RAX, RAX_H);
// Singleton class for RBX pointer register
reg_class ptr_rbx_reg(RBX, RBX_H);
// Singleton class for RSI pointer register
reg_class ptr_rsi_reg(RSI, RSI_H);
// Singleton class for RDI pointer register
reg_class ptr_rdi_reg(RDI, RDI_H);
// Singleton class for RBP pointer register
reg_class ptr_rbp_reg(RBP, RBP_H);
// Singleton class for stack pointer
reg_class ptr_rsp_reg(RSP, RSP_H);
// Singleton class for TLS pointer
reg_class ptr_r15_reg(R15, R15_H);
// Class for all long registers (except RSP)
reg_class long_reg(RAX, RAX_H,
RDX, RDX_H,
RBP, RBP_H,
RDI, RDI_H,
RSI, RSI_H,
RCX, RCX_H,
RBX, RBX_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R13, R13_H,
R14, R14_H);
// Class for all long registers except RAX, RDX (and RSP)
reg_class long_no_rax_rdx_reg(RBP, RBP_H,
RDI, RDI_H,
RSI, RSI_H,
RCX, RCX_H,
RBX, RBX_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R13, R13_H,
R14, R14_H);
// Class for all long registers except RCX (and RSP)
reg_class long_no_rcx_reg(RBP, RBP_H,
RDI, RDI_H,
RSI, RSI_H,
RAX, RAX_H,
RDX, RDX_H,
RBX, RBX_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R13, R13_H,
R14, R14_H);
// Class for all long registers except RAX (and RSP)
reg_class long_no_rax_reg(RBP, RBP_H,
RDX, RDX_H,
RDI, RDI_H,
RSI, RSI_H,
RCX, RCX_H,
RBX, RBX_H,
R8, R8_H,
R9, R9_H,
R10, R10_H,
R11, R11_H,
R13, R13_H,
R14, R14_H);
// Singleton class for RAX long register
reg_class long_rax_reg(RAX, RAX_H);
// Singleton class for RCX long register
reg_class long_rcx_reg(RCX, RCX_H);
// Singleton class for RDX long register
reg_class long_rdx_reg(RDX, RDX_H);
// Singleton class for R12 long register
reg_class long_r12_reg(R12, R12_H);
// Class for all int registers (except RSP)
reg_class int_reg(RAX,
RDX,
RBP,
RDI,
RSI,
RCX,
RBX,
R8,
R9,
R10,
R11,
R13,
R14);
// Class for all int registers except RCX (and RSP)
reg_class int_no_rcx_reg(RAX,
RDX,
RBP,
RDI,
RSI,
RBX,
R8,
R9,
R10,
R11,
R13,
R14);
// Class for all int registers except RAX, RDX (and RSP)
reg_class int_no_rax_rdx_reg(RBP,
RDI,
RSI,
RCX,
RBX,
R8,
R9,
R10,
R11,
R13,
R14);
// Singleton class for RAX int register
reg_class int_rax_reg(RAX);
// Singleton class for RBX int register
reg_class int_rbx_reg(RBX);
// Singleton class for RCX int register
reg_class int_rcx_reg(RCX);
// Singleton class for RCX int register
reg_class int_rdx_reg(RDX);
// Singleton class for RCX int register
reg_class int_rdi_reg(RDI);
// Singleton class for instruction pointer
// reg_class ip_reg(RIP);
// Singleton class for condition codes
reg_class int_flags(RFLAGS);
// Class for all float registers
reg_class float_reg(XMM0,
XMM1,
XMM2,
XMM3,
XMM4,
XMM5,
XMM6,
XMM7,
XMM8,
XMM9,
XMM10,
XMM11,
XMM12,
XMM13,
XMM14,
XMM15);
// Class for all double registers
reg_class double_reg(XMM0, XMM0_H,
XMM1, XMM1_H,
XMM2, XMM2_H,
XMM3, XMM3_H,
XMM4, XMM4_H,
XMM5, XMM5_H,
XMM6, XMM6_H,
XMM7, XMM7_H,
XMM8, XMM8_H,
XMM9, XMM9_H,
XMM10, XMM10_H,
XMM11, XMM11_H,
XMM12, XMM12_H,
XMM13, XMM13_H,
XMM14, XMM14_H,
XMM15, XMM15_H);
%}
//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source %{
#define RELOC_IMM64 Assembler::imm_operand
#define RELOC_DISP32 Assembler::disp32_operand
#define __ _masm.
// !!!!! Special hack to get all types of calls to specify the byte offset
// from the start of the call to the point where the return address
// will point.
int MachCallStaticJavaNode::ret_addr_offset()
{
return 5; // 5 bytes from start of call to where return address points
}
int MachCallDynamicJavaNode::ret_addr_offset()
{
return 15; // 15 bytes from start of call to where return address points
}
// In os_cpu .ad file
// int MachCallRuntimeNode::ret_addr_offset()
// Indicate if the safepoint node needs the polling page as an input.
// Since amd64 does not have absolute addressing but RIP-relative
// addressing and the polling page is within 2G, it doesn't.
bool SafePointNode::needs_polling_address_input()
{
return false;
}
//
// Compute padding required for nodes which need alignment
//
// The address of the call instruction needs to be 4-byte aligned to
// ensure that it does not span a cache line so that it can be patched.
int CallStaticJavaDirectNode::compute_padding(int current_offset) const
{
current_offset += 1; // skip call opcode byte
return round_to(current_offset, alignment_required()) - current_offset;
}
// The address of the call instruction needs to be 4-byte aligned to
// ensure that it does not span a cache line so that it can be patched.
int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
{
current_offset += 11; // skip movq instruction + call opcode byte
return round_to(current_offset, alignment_required()) - current_offset;
}
#ifndef PRODUCT
void MachBreakpointNode::format(PhaseRegAlloc*, outputStream* st) const
{
st->print("INT3");
}
#endif
// EMIT_RM()
void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3)
{
unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
*(cbuf.code_end()) = c;
cbuf.set_code_end(cbuf.code_end() + 1);
}
// EMIT_CC()
void emit_cc(CodeBuffer &cbuf, int f1, int f2)
{
unsigned char c = (unsigned char) (f1 | f2);
*(cbuf.code_end()) = c;
cbuf.set_code_end(cbuf.code_end() + 1);
}
// EMIT_OPCODE()
void emit_opcode(CodeBuffer &cbuf, int code)
{
*(cbuf.code_end()) = (unsigned char) code;
cbuf.set_code_end(cbuf.code_end() + 1);
}
// EMIT_OPCODE() w/ relocation information
void emit_opcode(CodeBuffer &cbuf,
int code, relocInfo::relocType reloc, int offset, int format)
{
cbuf.relocate(cbuf.inst_mark() + offset, reloc, format);
emit_opcode(cbuf, code);
}
// EMIT_D8()
void emit_d8(CodeBuffer &cbuf, int d8)
{
*(cbuf.code_end()) = (unsigned char) d8;
cbuf.set_code_end(cbuf.code_end() + 1);
}
// EMIT_D16()
void emit_d16(CodeBuffer &cbuf, int d16)
{
*((short *)(cbuf.code_end())) = d16;
cbuf.set_code_end(cbuf.code_end() + 2);
}
// EMIT_D32()
void emit_d32(CodeBuffer &cbuf, int d32)
{
*((int *)(cbuf.code_end())) = d32;
cbuf.set_code_end(cbuf.code_end() + 4);
}
// EMIT_D64()
void emit_d64(CodeBuffer &cbuf, int64_t d64)
{
*((int64_t*) (cbuf.code_end())) = d64;
cbuf.set_code_end(cbuf.code_end() + 8);
}
// emit 32 bit value and construct relocation entry from relocInfo::relocType
void emit_d32_reloc(CodeBuffer& cbuf,
int d32,
relocInfo::relocType reloc,
int format)
{
assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
cbuf.relocate(cbuf.inst_mark(), reloc, format);
*((int*) (cbuf.code_end())) = d32;
cbuf.set_code_end(cbuf.code_end() + 4);
}
// emit 32 bit value and construct relocation entry from RelocationHolder
void emit_d32_reloc(CodeBuffer& cbuf,
int d32,
RelocationHolder const& rspec,
int format)
{
#ifdef ASSERT
if (rspec.reloc()->type() == relocInfo::oop_type &&
d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
assert(oop((intptr_t)d32)->is_oop() && oop((intptr_t)d32)->is_perm(), "cannot embed non-perm oops in code");
}
#endif
cbuf.relocate(cbuf.inst_mark(), rspec, format);
*((int* )(cbuf.code_end())) = d32;
cbuf.set_code_end(cbuf.code_end() + 4);
}
void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
address next_ip = cbuf.code_end() + 4;
emit_d32_reloc(cbuf, (int) (addr - next_ip),
external_word_Relocation::spec(addr),
RELOC_DISP32);
}
// emit 64 bit value and construct relocation entry from relocInfo::relocType
void emit_d64_reloc(CodeBuffer& cbuf,
int64_t d64,
relocInfo::relocType reloc,
int format)
{
cbuf.relocate(cbuf.inst_mark(), reloc, format);
*((int64_t*) (cbuf.code_end())) = d64;
cbuf.set_code_end(cbuf.code_end() + 8);
}
// emit 64 bit value and construct relocation entry from RelocationHolder
void emit_d64_reloc(CodeBuffer& cbuf,
int64_t d64,
RelocationHolder const& rspec,
int format)
{
#ifdef ASSERT
if (rspec.reloc()->type() == relocInfo::oop_type &&
d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
assert(oop(d64)->is_oop() && oop(d64)->is_perm(),
"cannot embed non-perm oops in code");
}
#endif
cbuf.relocate(cbuf.inst_mark(), rspec, format);
*((int64_t*) (cbuf.code_end())) = d64;
cbuf.set_code_end(cbuf.code_end() + 8);
}
// Access stack slot for load or store
void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
{
emit_opcode(cbuf, opcode); // (e.g., FILD [RSP+src])
if (-0x80 <= disp && disp < 0x80) {
emit_rm(cbuf, 0x01, rm_field, RSP_enc); // R/M byte
emit_rm(cbuf, 0x00, RSP_enc, RSP_enc); // SIB byte
emit_d8(cbuf, disp); // Displacement // R/M byte
} else {
emit_rm(cbuf, 0x02, rm_field, RSP_enc); // R/M byte
emit_rm(cbuf, 0x00, RSP_enc, RSP_enc); // SIB byte
emit_d32(cbuf, disp); // Displacement // R/M byte
}
}
// rRegI ereg, memory mem) %{ // emit_reg_mem
void encode_RegMem(CodeBuffer &cbuf,
int reg,
int base, int index, int scale, int disp, bool disp_is_oop)
{
assert(!disp_is_oop, "cannot have disp");
int regenc = reg & 7;
int baseenc = base & 7;
int indexenc = index & 7;
// There is no index & no scale, use form without SIB byte
if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
// If no displacement, mode is 0x0; unless base is [RBP] or [R13]
if (disp == 0 && base != RBP_enc && base != R13_enc) {
emit_rm(cbuf, 0x0, regenc, baseenc); // *
} else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
// If 8-bit displacement, mode 0x1
emit_rm(cbuf, 0x1, regenc, baseenc); // *
emit_d8(cbuf, disp);
} else {
// If 32-bit displacement
if (base == -1) { // Special flag for absolute address
emit_rm(cbuf, 0x0, regenc, 0x5); // *
if (disp_is_oop) {
emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
} else {
emit_d32(cbuf, disp);
}
} else {
// Normal base + offset
emit_rm(cbuf, 0x2, regenc, baseenc); // *
if (disp_is_oop) {
emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
} else {
emit_d32(cbuf, disp);
}
}
}
} else {
// Else, encode with the SIB byte
// If no displacement, mode is 0x0; unless base is [RBP] or [R13]
if (disp == 0 && base != RBP_enc && base != R13_enc) {
// If no displacement
emit_rm(cbuf, 0x0, regenc, 0x4); // *
emit_rm(cbuf, scale, indexenc, baseenc);
} else {
if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
// If 8-bit displacement, mode 0x1
emit_rm(cbuf, 0x1, regenc, 0x4); // *
emit_rm(cbuf, scale, indexenc, baseenc);
emit_d8(cbuf, disp);
} else {
// If 32-bit displacement
if (base == 0x04 ) {
emit_rm(cbuf, 0x2, regenc, 0x4);
emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
} else {
emit_rm(cbuf, 0x2, regenc, 0x4);
emit_rm(cbuf, scale, indexenc, baseenc); // *
}
if (disp_is_oop) {
emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
} else {
emit_d32(cbuf, disp);
}
}
}
}
}
void encode_copy(CodeBuffer &cbuf, int dstenc, int srcenc)
{
if (dstenc != srcenc) {
if (dstenc < 8) {
if (srcenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
srcenc -= 8;
}
} else {
if (srcenc < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RB);
srcenc -= 8;
}
dstenc -= 8;
}
emit_opcode(cbuf, 0x8B);
emit_rm(cbuf, 0x3, dstenc, srcenc);
}
}
void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
if( dst_encoding == src_encoding ) {
// reg-reg copy, use an empty encoding
} else {
MacroAssembler _masm(&cbuf);
__ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
}
}
//=============================================================================
#ifndef PRODUCT
void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const
{
Compile* C = ra_->C;
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove wordSize for return adr already pushed
// and another for the RBP we are going to save
framesize -= 2*wordSize;
bool need_nop = true;
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be
// careful, because some VM calls (such as call site linkage) can
// use several kilobytes of stack. But the stack safety zone should
// account for that. See bugs 4446381, 4468289, 4497237.
if (C->need_stack_bang(framesize)) {
st->print_cr("# stack bang"); st->print("\t");
need_nop = false;
}
st->print_cr("pushq rbp"); st->print("\t");
if (VerifyStackAtCalls) {
// Majik cookie to verify stack depth
st->print_cr("pushq 0xffffffffbadb100d"
"\t# Majik cookie for stack depth check");
st->print("\t");
framesize -= wordSize; // Remove 2 for cookie
need_nop = false;
}
if (framesize) {
st->print("subq rsp, #%d\t# Create frame", framesize);
if (framesize < 0x80 && need_nop) {
st->print("\n\tnop\t# nop for patch_verified_entry");
}
}
}
#endif
void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
{
Compile* C = ra_->C;
// WARNING: Initial instruction MUST be 5 bytes or longer so that
// NativeJump::patch_verified_entry will be able to patch out the entry
// code safely. The fldcw is ok at 6 bytes, the push to verify stack
// depth is ok at 5 bytes, the frame allocation can be either 3 or
// 6 bytes. So if we don't do the fldcw or the push then we must
// use the 6 byte frame allocation even if we have no frame. :-(
// If method sets FPU control word do it now
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove wordSize for return adr already pushed
// and another for the RBP we are going to save
framesize -= 2*wordSize;
bool need_nop = true;
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be
// careful, because some VM calls (such as call site linkage) can
// use several kilobytes of stack. But the stack safety zone should
// account for that. See bugs 4446381, 4468289, 4497237.
if (C->need_stack_bang(framesize)) {
MacroAssembler masm(&cbuf);
masm.generate_stack_overflow_check(framesize);
need_nop = false;
}
// We always push rbp so that on return to interpreter rbp will be
// restored correctly and we can correct the stack.
emit_opcode(cbuf, 0x50 | RBP_enc);
if (VerifyStackAtCalls) {
// Majik cookie to verify stack depth
emit_opcode(cbuf, 0x68); // pushq (sign-extended) 0xbadb100d
emit_d32(cbuf, 0xbadb100d);
framesize -= wordSize; // Remove 2 for cookie
need_nop = false;
}
if (framesize) {
emit_opcode(cbuf, Assembler::REX_W);
if (framesize < 0x80) {
emit_opcode(cbuf, 0x83); // sub SP,#framesize
emit_rm(cbuf, 0x3, 0x05, RSP_enc);
emit_d8(cbuf, framesize);
if (need_nop) {
emit_opcode(cbuf, 0x90); // nop
}
} else {
emit_opcode(cbuf, 0x81); // sub SP,#framesize
emit_rm(cbuf, 0x3, 0x05, RSP_enc);
emit_d32(cbuf, framesize);
}
}
C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
#ifdef ASSERT
if (VerifyStackAtCalls) {
Label L;
MacroAssembler masm(&cbuf);
masm.push(rax);
masm.mov(rax, rsp);
masm.andptr(rax, StackAlignmentInBytes-1);
masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
masm.pop(rax);
masm.jcc(Assembler::equal, L);
masm.stop("Stack is not properly aligned!");
masm.bind(L);
}
#endif
}
uint MachPrologNode::size(PhaseRegAlloc* ra_) const
{
return MachNode::size(ra_); // too many variables; just compute it
// the hard way
}
int MachPrologNode::reloc() const
{
return 0; // a large enough number
}
//=============================================================================
#ifndef PRODUCT
void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
{
Compile* C = ra_->C;
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove word for return adr already pushed
// and RBP
framesize -= 2*wordSize;
if (framesize) {
st->print_cr("addq\trsp, %d\t# Destroy frame", framesize);
st->print("\t");
}
st->print_cr("popq\trbp");
if (do_polling() && C->is_method_compilation()) {
st->print_cr("\ttestl\trax, [rip + #offset_to_poll_page]\t"
"# Safepoint: poll for GC");
st->print("\t");
}
}
#endif
void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
{
Compile* C = ra_->C;
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove word for return adr already pushed
// and RBP
framesize -= 2*wordSize;
// Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
if (framesize) {
emit_opcode(cbuf, Assembler::REX_W);
if (framesize < 0x80) {
emit_opcode(cbuf, 0x83); // addq rsp, #framesize
emit_rm(cbuf, 0x3, 0x00, RSP_enc);
emit_d8(cbuf, framesize);
} else {
emit_opcode(cbuf, 0x81); // addq rsp, #framesize
emit_rm(cbuf, 0x3, 0x00, RSP_enc);
emit_d32(cbuf, framesize);
}
}
// popq rbp
emit_opcode(cbuf, 0x58 | RBP_enc);
if (do_polling() && C->is_method_compilation()) {
// testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
// XXX reg_mem doesn't support RIP-relative addressing yet
cbuf.set_inst_mark();
cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_return_type, 0); // XXX
emit_opcode(cbuf, 0x85); // testl
emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
// cbuf.inst_mark() is beginning of instruction
emit_d32_reloc(cbuf, os::get_polling_page());
// relocInfo::poll_return_type,
}
}
uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
{
Compile* C = ra_->C;
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove word for return adr already pushed
// and RBP
framesize -= 2*wordSize;
uint size = 0;
if (do_polling() && C->is_method_compilation()) {
size += 6;
}
// count popq rbp
size++;
if (framesize) {
if (framesize < 0x80) {
size += 4;
} else if (framesize) {
size += 7;
}
}
return size;
}
int MachEpilogNode::reloc() const
{
return 2; // a large enough number
}
const Pipeline* MachEpilogNode::pipeline() const
{
return MachNode::pipeline_class();
}
int MachEpilogNode::safepoint_offset() const
{
return 0;
}
//=============================================================================
enum RC {
rc_bad,
rc_int,
rc_float,
rc_stack
};
static enum RC rc_class(OptoReg::Name reg)
{
if( !OptoReg::is_valid(reg) ) return rc_bad;
if (OptoReg::is_stack(reg)) return rc_stack;
VMReg r = OptoReg::as_VMReg(reg);
if (r->is_Register()) return rc_int;
assert(r->is_XMMRegister(), "must be");
return rc_float;
}
uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
PhaseRegAlloc* ra_,
bool do_size,
outputStream* st) const
{
// Get registers to move
OptoReg::Name src_second = ra_->get_reg_second(in(1));
OptoReg::Name src_first = ra_->get_reg_first(in(1));
OptoReg::Name dst_second = ra_->get_reg_second(this);
OptoReg::Name dst_first = ra_->get_reg_first(this);
enum RC src_second_rc = rc_class(src_second);
enum RC src_first_rc = rc_class(src_first);
enum RC dst_second_rc = rc_class(dst_second);
enum RC dst_first_rc = rc_class(dst_first);
assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
"must move at least 1 register" );
if (src_first == dst_first && src_second == dst_second) {
// Self copy, no move
return 0;
} else if (src_first_rc == rc_stack) {
// mem ->
if (dst_first_rc == rc_stack) {
// mem -> mem
assert(src_second != dst_first, "overlap");
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
int src_offset = ra_->reg2offset(src_first);
int dst_offset = ra_->reg2offset(dst_first);
if (cbuf) {
emit_opcode(*cbuf, 0xFF);
encode_RegMem(*cbuf, RSI_enc, RSP_enc, 0x4, 0, src_offset, false);
emit_opcode(*cbuf, 0x8F);
encode_RegMem(*cbuf, RAX_enc, RSP_enc, 0x4, 0, dst_offset, false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("pushq [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
"popq [rsp + #%d]",
src_offset,
dst_offset);
#endif
}
return
3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) +
3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4));
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
// No pushl/popl, so:
int src_offset = ra_->reg2offset(src_first);
int dst_offset = ra_->reg2offset(dst_first);
if (cbuf) {
emit_opcode(*cbuf, Assembler::REX_W);
emit_opcode(*cbuf, 0x89);
emit_opcode(*cbuf, 0x44);
emit_opcode(*cbuf, 0x24);
emit_opcode(*cbuf, 0xF8);
emit_opcode(*cbuf, 0x8B);
encode_RegMem(*cbuf,
RAX_enc,
RSP_enc, 0x4, 0, src_offset,
false);
emit_opcode(*cbuf, 0x89);
encode_RegMem(*cbuf,
RAX_enc,
RSP_enc, 0x4, 0, dst_offset,
false);
emit_opcode(*cbuf, Assembler::REX_W);
emit_opcode(*cbuf, 0x8B);
emit_opcode(*cbuf, 0x44);
emit_opcode(*cbuf, 0x24);
emit_opcode(*cbuf, 0xF8);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movq [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
"movl rax, [rsp + #%d]\n\t"
"movl [rsp + #%d], rax\n\t"
"movq rax, [rsp - #8]",
src_offset,
dst_offset);
#endif
}
return
5 + // movq
3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) + // movl
3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4)) + // movl
5; // movq
}
} else if (dst_first_rc == rc_int) {
// mem -> gpr
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
int offset = ra_->reg2offset(src_first);
if (cbuf) {
if (Matcher::_regEncode[dst_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_W);
} else {
emit_opcode(*cbuf, Assembler::REX_WR);
}
emit_opcode(*cbuf, 0x8B);
encode_RegMem(*cbuf,
Matcher::_regEncode[dst_first],
RSP_enc, 0x4, 0, offset,
false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movq %s, [rsp + #%d]\t# spill",
Matcher::regName[dst_first],
offset);
#endif
}
return
((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
int offset = ra_->reg2offset(src_first);
if (cbuf) {
if (Matcher::_regEncode[dst_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_R);
}
emit_opcode(*cbuf, 0x8B);
encode_RegMem(*cbuf,
Matcher::_regEncode[dst_first],
RSP_enc, 0x4, 0, offset,
false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movl %s, [rsp + #%d]\t# spill",
Matcher::regName[dst_first],
offset);
#endif
}
return
((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
((Matcher::_regEncode[dst_first] < 8)
? 3
: 4); // REX
}
} else if (dst_first_rc == rc_float) {
// mem-> xmm
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
int offset = ra_->reg2offset(src_first);
if (cbuf) {
emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
if (Matcher::_regEncode[dst_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_R);
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
encode_RegMem(*cbuf,
Matcher::_regEncode[dst_first],
RSP_enc, 0x4, 0, offset,
false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("%s %s, [rsp + #%d]\t# spill",
UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
Matcher::regName[dst_first],
offset);
#endif
}
return
((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
((Matcher::_regEncode[dst_first] < 8)
? 5
: 6); // REX
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
int offset = ra_->reg2offset(src_first);
if (cbuf) {
emit_opcode(*cbuf, 0xF3);
if (Matcher::_regEncode[dst_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_R);
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, 0x10);
encode_RegMem(*cbuf,
Matcher::_regEncode[dst_first],
RSP_enc, 0x4, 0, offset,
false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movss %s, [rsp + #%d]\t# spill",
Matcher::regName[dst_first],
offset);
#endif
}
return
((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
((Matcher::_regEncode[dst_first] < 8)
? 5
: 6); // REX
}
}
} else if (src_first_rc == rc_int) {
// gpr ->
if (dst_first_rc == rc_stack) {
// gpr -> mem
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
int offset = ra_->reg2offset(dst_first);
if (cbuf) {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_W);
} else {
emit_opcode(*cbuf, Assembler::REX_WR);
}
emit_opcode(*cbuf, 0x89);
encode_RegMem(*cbuf,
Matcher::_regEncode[src_first],
RSP_enc, 0x4, 0, offset,
false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movq [rsp + #%d], %s\t# spill",
offset,
Matcher::regName[src_first]);
#endif
}
return ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
int offset = ra_->reg2offset(dst_first);
if (cbuf) {
if (Matcher::_regEncode[src_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_R);
}
emit_opcode(*cbuf, 0x89);
encode_RegMem(*cbuf,
Matcher::_regEncode[src_first],
RSP_enc, 0x4, 0, offset,
false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movl [rsp + #%d], %s\t# spill",
offset,
Matcher::regName[src_first]);
#endif
}
return
((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
((Matcher::_regEncode[src_first] < 8)
? 3
: 4); // REX
}
} else if (dst_first_rc == rc_int) {
// gpr -> gpr
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
if (cbuf) {
if (Matcher::_regEncode[dst_first] < 8) {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_W);
} else {
emit_opcode(*cbuf, Assembler::REX_WB);
}
} else {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_WR);
} else {
emit_opcode(*cbuf, Assembler::REX_WRB);
}
}
emit_opcode(*cbuf, 0x8B);
emit_rm(*cbuf, 0x3,
Matcher::_regEncode[dst_first] & 7,
Matcher::_regEncode[src_first] & 7);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movq %s, %s\t# spill",
Matcher::regName[dst_first],
Matcher::regName[src_first]);
#endif
}
return 3; // REX
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
if (cbuf) {
if (Matcher::_regEncode[dst_first] < 8) {
if (Matcher::_regEncode[src_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_B);
}
} else {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_R);
} else {
emit_opcode(*cbuf, Assembler::REX_RB);
}
}
emit_opcode(*cbuf, 0x8B);
emit_rm(*cbuf, 0x3,
Matcher::_regEncode[dst_first] & 7,
Matcher::_regEncode[src_first] & 7);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movl %s, %s\t# spill",
Matcher::regName[dst_first],
Matcher::regName[src_first]);
#endif
}
return
(Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
? 2
: 3; // REX
}
} else if (dst_first_rc == rc_float) {
// gpr -> xmm
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
if (cbuf) {
emit_opcode(*cbuf, 0x66);
if (Matcher::_regEncode[dst_first] < 8) {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_W);
} else {
emit_opcode(*cbuf, Assembler::REX_WB);
}
} else {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_WR);
} else {
emit_opcode(*cbuf, Assembler::REX_WRB);
}
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, 0x6E);
emit_rm(*cbuf, 0x3,
Matcher::_regEncode[dst_first] & 7,
Matcher::_regEncode[src_first] & 7);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movdq %s, %s\t# spill",
Matcher::regName[dst_first],
Matcher::regName[src_first]);
#endif
}
return 5; // REX
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
if (cbuf) {
emit_opcode(*cbuf, 0x66);
if (Matcher::_regEncode[dst_first] < 8) {
if (Matcher::_regEncode[src_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_B);
}
} else {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_R);
} else {
emit_opcode(*cbuf, Assembler::REX_RB);
}
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, 0x6E);
emit_rm(*cbuf, 0x3,
Matcher::_regEncode[dst_first] & 7,
Matcher::_regEncode[src_first] & 7);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movdl %s, %s\t# spill",
Matcher::regName[dst_first],
Matcher::regName[src_first]);
#endif
}
return
(Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
? 4
: 5; // REX
}
}
} else if (src_first_rc == rc_float) {
// xmm ->
if (dst_first_rc == rc_stack) {
// xmm -> mem
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
int offset = ra_->reg2offset(dst_first);
if (cbuf) {
emit_opcode(*cbuf, 0xF2);
if (Matcher::_regEncode[src_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_R);
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, 0x11);
encode_RegMem(*cbuf,
Matcher::_regEncode[src_first],
RSP_enc, 0x4, 0, offset,
false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movsd [rsp + #%d], %s\t# spill",
offset,
Matcher::regName[src_first]);
#endif
}
return
((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
((Matcher::_regEncode[src_first] < 8)
? 5
: 6); // REX
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
int offset = ra_->reg2offset(dst_first);
if (cbuf) {
emit_opcode(*cbuf, 0xF3);
if (Matcher::_regEncode[src_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_R);
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, 0x11);
encode_RegMem(*cbuf,
Matcher::_regEncode[src_first],
RSP_enc, 0x4, 0, offset,
false);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movss [rsp + #%d], %s\t# spill",
offset,
Matcher::regName[src_first]);
#endif
}
return
((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
((Matcher::_regEncode[src_first] < 8)
? 5
: 6); // REX
}
} else if (dst_first_rc == rc_int) {
// xmm -> gpr
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
if (cbuf) {
emit_opcode(*cbuf, 0x66);
if (Matcher::_regEncode[dst_first] < 8) {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_W);
} else {
emit_opcode(*cbuf, Assembler::REX_WR); // attention!
}
} else {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_WB); // attention!
} else {
emit_opcode(*cbuf, Assembler::REX_WRB);
}
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, 0x7E);
emit_rm(*cbuf, 0x3,
Matcher::_regEncode[dst_first] & 7,
Matcher::_regEncode[src_first] & 7);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movdq %s, %s\t# spill",
Matcher::regName[dst_first],
Matcher::regName[src_first]);
#endif
}
return 5; // REX
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
if (cbuf) {
emit_opcode(*cbuf, 0x66);
if (Matcher::_regEncode[dst_first] < 8) {
if (Matcher::_regEncode[src_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_R); // attention!
}
} else {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_B); // attention!
} else {
emit_opcode(*cbuf, Assembler::REX_RB);
}
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, 0x7E);
emit_rm(*cbuf, 0x3,
Matcher::_regEncode[dst_first] & 7,
Matcher::_regEncode[src_first] & 7);
#ifndef PRODUCT
} else if (!do_size) {
st->print("movdl %s, %s\t# spill",
Matcher::regName[dst_first],
Matcher::regName[src_first]);
#endif
}
return
(Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
? 4
: 5; // REX
}
} else if (dst_first_rc == rc_float) {
// xmm -> xmm
if ((src_first & 1) == 0 && src_first + 1 == src_second &&
(dst_first & 1) == 0 && dst_first + 1 == dst_second) {
// 64-bit
if (cbuf) {
emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
if (Matcher::_regEncode[dst_first] < 8) {
if (Matcher::_regEncode[src_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_B);
}
} else {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_R);
} else {
emit_opcode(*cbuf, Assembler::REX_RB);
}
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
emit_rm(*cbuf, 0x3,
Matcher::_regEncode[dst_first] & 7,
Matcher::_regEncode[src_first] & 7);
#ifndef PRODUCT
} else if (!do_size) {
st->print("%s %s, %s\t# spill",
UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
Matcher::regName[dst_first],
Matcher::regName[src_first]);
#endif
}
return
(Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
? 4
: 5; // REX
} else {
// 32-bit
assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
if (cbuf) {
if (!UseXmmRegToRegMoveAll)
emit_opcode(*cbuf, 0xF3);
if (Matcher::_regEncode[dst_first] < 8) {
if (Matcher::_regEncode[src_first] >= 8) {
emit_opcode(*cbuf, Assembler::REX_B);
}
} else {
if (Matcher::_regEncode[src_first] < 8) {
emit_opcode(*cbuf, Assembler::REX_R);
} else {
emit_opcode(*cbuf, Assembler::REX_RB);
}
}
emit_opcode(*cbuf, 0x0F);
emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
emit_rm(*cbuf, 0x3,
Matcher::_regEncode[dst_first] & 7,
Matcher::_regEncode[src_first] & 7);
#ifndef PRODUCT
} else if (!do_size) {
st->print("%s %s, %s\t# spill",
UseXmmRegToRegMoveAll ? "movaps" : "movss ",
Matcher::regName[dst_first],
Matcher::regName[src_first]);
#endif
}
return
(Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
? (UseXmmRegToRegMoveAll ? 3 : 4)
: (UseXmmRegToRegMoveAll ? 4 : 5); // REX
}
}
}
assert(0," foo ");
Unimplemented();
return 0;
}
#ifndef PRODUCT
void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const
{
implementation(NULL, ra_, false, st);
}
#endif
void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
{
implementation(&cbuf, ra_, false, NULL);
}
uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const
{
return implementation(NULL, ra_, true, NULL);
}
//=============================================================================
#ifndef PRODUCT
void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const
{
st->print("nop \t# %d bytes pad for loops and calls", _count);
}
#endif
void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const
{
MacroAssembler _masm(&cbuf);
__ nop(_count);
}
uint MachNopNode::size(PhaseRegAlloc*) const
{
return _count;
}
//=============================================================================
#ifndef PRODUCT
void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
{
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
int reg = ra_->get_reg_first(this);
st->print("leaq %s, [rsp + #%d]\t# box lock",
Matcher::regName[reg], offset);
}
#endif
void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
{
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
int reg = ra_->get_encode(this);
if (offset >= 0x80) {
emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset]
emit_rm(cbuf, 0x2, reg & 7, 0x04);
emit_rm(cbuf, 0x0, 0x04, RSP_enc);
emit_d32(cbuf, offset);
} else {
emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset]
emit_rm(cbuf, 0x1, reg & 7, 0x04);
emit_rm(cbuf, 0x0, 0x04, RSP_enc);
emit_d8(cbuf, offset);
}
}
uint BoxLockNode::size(PhaseRegAlloc *ra_) const
{
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
return (offset < 0x80) ? 5 : 8; // REX
}
//=============================================================================
// emit call stub, compiled java to interpreter
void emit_java_to_interp(CodeBuffer& cbuf)
{
// Stub is fixed up when the corresponding call is converted from
// calling compiled code to calling interpreted code.
// movq rbx, 0
// jmp -5 # to self
address mark = cbuf.inst_mark(); // get mark within main instrs section
// Note that the code buffer's inst_mark is always relative to insts.
// That's why we must use the macroassembler to generate a stub.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(Compile::MAX_stubs_size);
if (base == NULL) return; // CodeBuffer::expand failed
// static stub relocation stores the instruction address of the call
__ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
// static stub relocation also tags the methodOop in the code-stream.
__ movoop(rbx, (jobject) NULL); // method is zapped till fixup time
// This is recognized as unresolved by relocs/nativeinst/ic code
__ jump(RuntimeAddress(__ pc()));
// Update current stubs pointer and restore code_end.
__ end_a_stub();
}
// size of call stub, compiled java to interpretor
uint size_java_to_interp()
{
return 15; // movq (1+1+8); jmp (1+4)
}
// relocation entries for call stub, compiled java to interpretor
uint reloc_java_to_interp()
{
return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
}
//=============================================================================
#ifndef PRODUCT
void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
{
if (UseCompressedOops) {
st->print_cr("movl rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t", oopDesc::klass_offset_in_bytes());
st->print_cr("leaq rscratch1, [r12_heapbase, r, Address::times_8, 0]");
st->print_cr("cmpq rax, rscratch1\t # Inline cache check");
} else {
st->print_cr("cmpq rax, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t"
"# Inline cache check", oopDesc::klass_offset_in_bytes());
}
st->print_cr("\tjne SharedRuntime::_ic_miss_stub");
st->print_cr("\tnop");
if (!OptoBreakpoint) {
st->print_cr("\tnop");
}
}
#endif
void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
{
MacroAssembler masm(&cbuf);
#ifdef ASSERT
uint code_size = cbuf.code_size();
#endif
if (UseCompressedOops) {
masm.load_klass(rscratch1, j_rarg0);
masm.cmpptr(rax, rscratch1);
} else {
masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
}
masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
/* WARNING these NOPs are critical so that verified entry point is properly
aligned for patching by NativeJump::patch_verified_entry() */
int nops_cnt = 1;
if (!OptoBreakpoint) {
// Leave space for int3
nops_cnt += 1;
}
if (UseCompressedOops) {
// ??? divisible by 4 is aligned?
nops_cnt += 1;
}
masm.nop(nops_cnt);
assert(cbuf.code_size() - code_size == size(ra_),
"checking code size of inline cache node");
}
uint MachUEPNode::size(PhaseRegAlloc* ra_) const
{
if (UseCompressedOops) {
return OptoBreakpoint ? 19 : 20;
} else {
return OptoBreakpoint ? 11 : 12;
}
}
//=============================================================================
uint size_exception_handler()
{
// NativeCall instruction size is the same as NativeJump.
// Note that this value is also credited (in output.cpp) to
// the size of the code section.
return NativeJump::instruction_size;
}
// Emit exception handler code.
int emit_exception_handler(CodeBuffer& cbuf)
{
// Note that the code buffer's inst_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_exception_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
__ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
__ end_a_stub();
return offset;
}
uint size_deopt_handler()
{
// three 5 byte instructions
return 15;
}
// Emit deopt handler code.
int emit_deopt_handler(CodeBuffer& cbuf)
{
// Note that the code buffer's inst_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_deopt_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
address the_pc = (address) __ pc();
Label next;
// push a "the_pc" on the stack without destroying any registers
// as they all may be live.
// push address of "next"
__ call(next, relocInfo::none); // reloc none is fine since it is a disp32
__ bind(next);
// adjust it so it matches "the_pc"
__ subptr(Address(rsp, 0), __ offset() - offset);
__ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
__ end_a_stub();
return offset;
}
static void emit_double_constant(CodeBuffer& cbuf, double x) {
int mark = cbuf.insts()->mark_off();
MacroAssembler _masm(&cbuf);
address double_address = __ double_constant(x);
cbuf.insts()->set_mark_off(mark); // preserve mark across masm shift
emit_d32_reloc(cbuf,
(int) (double_address - cbuf.code_end() - 4),
internal_word_Relocation::spec(double_address),
RELOC_DISP32);
}
static void emit_float_constant(CodeBuffer& cbuf, float x) {
int mark = cbuf.insts()->mark_off();
MacroAssembler _masm(&cbuf);
address float_address = __ float_constant(x);
cbuf.insts()->set_mark_off(mark); // preserve mark across masm shift
emit_d32_reloc(cbuf,
(int) (float_address - cbuf.code_end() - 4),
internal_word_Relocation::spec(float_address),
RELOC_DISP32);
}
int Matcher::regnum_to_fpu_offset(int regnum)
{
return regnum - 32; // The FP registers are in the second chunk
}
// This is UltraSparc specific, true just means we have fast l2f conversion
const bool Matcher::convL2FSupported(void) {
return true;
}
// Vector width in bytes
const uint Matcher::vector_width_in_bytes(void) {
return 8;
}
// Vector ideal reg
const uint Matcher::vector_ideal_reg(void) {
return Op_RegD;
}
// Is this branch offset short enough that a short branch can be used?
//
// NOTE: If the platform does not provide any short branch variants, then
// this method should return false for offset 0.
bool Matcher::is_short_branch_offset(int rule, int offset) {
// the short version of jmpConUCF2 contains multiple branches,
// making the reach slightly less
if (rule == jmpConUCF2_rule)
return (-126 <= offset && offset <= 125);
return (-128 <= offset && offset <= 127);
}
const bool Matcher::isSimpleConstant64(jlong value) {
// Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
//return value == (int) value; // Cf. storeImmL and immL32.
// Probably always true, even if a temp register is required.
return true;
}
// The ecx parameter to rep stosq for the ClearArray node is in words.
const bool Matcher::init_array_count_is_in_bytes = false;
// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;
// Should the Matcher clone shifts on addressing modes, expecting them
// to be subsumed into complex addressing expressions or compute them
// into registers? True for Intel but false for most RISCs
const bool Matcher::clone_shift_expressions = true;
// Is it better to copy float constants, or load them directly from
// memory? Intel can load a float constant from a direct address,
// requiring no extra registers. Most RISCs will have to materialize
// an address into a register first, so they would do better to copy
// the constant from stack.
const bool Matcher::rematerialize_float_constants = true; // XXX
// If CPU can load and store mis-aligned doubles directly then no
// fixup is needed. Else we split the double into 2 integer pieces
// and move it piece-by-piece. Only happens when passing doubles into
// C code as the Java calling convention forces doubles to be aligned.
const bool Matcher::misaligned_doubles_ok = true;
// No-op on amd64
void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
// Advertise here if the CPU requires explicit rounding operations to
// implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = true;
// Do floats take an entire double register or just half?
const bool Matcher::float_in_double = true;
// Do ints take an entire long register or just half?
const bool Matcher::int_in_long = true;
// Return whether or not this register is ever used as an argument.
// This function is used on startup to build the trampoline stubs in
// generateOptoStub. Registers not mentioned will be killed by the VM
// call in the trampoline, and arguments in those registers not be
// available to the callee.
bool Matcher::can_be_java_arg(int reg)
{
return
reg == RDI_num || reg == RDI_H_num ||
reg == RSI_num || reg == RSI_H_num ||
reg == RDX_num || reg == RDX_H_num ||
reg == RCX_num || reg == RCX_H_num ||
reg == R8_num || reg == R8_H_num ||
reg == R9_num || reg == R9_H_num ||
reg == R12_num || reg == R12_H_num ||
reg == XMM0_num || reg == XMM0_H_num ||
reg == XMM1_num || reg == XMM1_H_num ||
reg == XMM2_num || reg == XMM2_H_num ||
reg == XMM3_num || reg == XMM3_H_num ||
reg == XMM4_num || reg == XMM4_H_num ||
reg == XMM5_num || reg == XMM5_H_num ||
reg == XMM6_num || reg == XMM6_H_num ||
reg == XMM7_num || reg == XMM7_H_num;
}
bool Matcher::is_spillable_arg(int reg)
{
return can_be_java_arg(reg);
}
// Register for DIVI projection of divmodI
RegMask Matcher::divI_proj_mask() {
return INT_RAX_REG_mask;
}
// Register for MODI projection of divmodI
RegMask Matcher::modI_proj_mask() {
return INT_RDX_REG_mask;
}
// Register for DIVL projection of divmodL
RegMask Matcher::divL_proj_mask() {
return LONG_RAX_REG_mask;
}
// Register for MODL projection of divmodL
RegMask Matcher::modL_proj_mask() {
return LONG_RDX_REG_mask;
}
static Address build_address(int b, int i, int s, int d) {
Register index = as_Register(i);
Address::ScaleFactor scale = (Address::ScaleFactor)s;
if (index == rsp) {
index = noreg;
scale = Address::no_scale;
}
Address addr(as_Register(b), index, scale, d);
return addr;
}
%}
//----------ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to
// output byte streams. Encoding classes are parameterized macros
// used by Machine Instruction Nodes in order to generate the bit
// encoding of the instruction. Operands specify their base encoding
// interface with the interface keyword. There are currently
// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
// COND_INTER. REG_INTER causes an operand to generate a function
// which returns its register number when queried. CONST_INTER causes
// an operand to generate a function which returns the value of the
// constant when queried. MEMORY_INTER causes an operand to generate
// four functions which return the Base Register, the Index Register,
// the Scale Value, and the Offset Value of the operand when queried.
// COND_INTER causes an operand to generate six functions which return
// the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional
// instruction.
//
// Instructions specify two basic values for encoding. Again, a
// function is available to check if the constant displacement is an
// oop. They use the ins_encode keyword to specify their encoding
// classes (which must be a sequence of enc_class names, and their
// parameters, specified in the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode. Only the opcode sections which a particular
// instruction needs for encoding need to be specified.
encode %{
// Build emit functions for each basic byte or larger field in the
// intel encoding scheme (opcode, rm, sib, immediate), and call them
// from C++ code in the enc_class source block. Emit functions will
// live in the main source block for now. In future, we can
// generalize this by adding a syntax that specifies the sizes of
// fields in an order, so that the adlc can build the emit functions
// automagically
// Emit primary opcode
enc_class OpcP
%{
emit_opcode(cbuf, $primary);
%}
// Emit secondary opcode
enc_class OpcS
%{
emit_opcode(cbuf, $secondary);
%}
// Emit tertiary opcode
enc_class OpcT
%{
emit_opcode(cbuf, $tertiary);
%}
// Emit opcode directly
enc_class Opcode(immI d8)
%{
emit_opcode(cbuf, $d8$$constant);
%}
// Emit size prefix
enc_class SizePrefix
%{
emit_opcode(cbuf, 0x66);
%}
enc_class reg(rRegI reg)
%{
emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
%}
enc_class reg_reg(rRegI dst, rRegI src)
%{
emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
%}
enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
%{
emit_opcode(cbuf, $opcode$$constant);
emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
%}
enc_class cmpfp_fixup()
%{
// jnp,s exit
emit_opcode(cbuf, 0x7B);
emit_d8(cbuf, 0x0A);
// pushfq
emit_opcode(cbuf, 0x9C);
// andq $0xffffff2b, (%rsp)
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0x81);
emit_opcode(cbuf, 0x24);
emit_opcode(cbuf, 0x24);
emit_d32(cbuf, 0xffffff2b);
// popfq
emit_opcode(cbuf, 0x9D);
// nop (target for branch to avoid branch to branch)
emit_opcode(cbuf, 0x90);
%}
enc_class cmpfp3(rRegI dst)
%{
int dstenc = $dst$$reg;
// movl $dst, -1
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0xB8 | (dstenc & 7));
emit_d32(cbuf, -1);
// jp,s done
emit_opcode(cbuf, 0x7A);
emit_d8(cbuf, dstenc < 4 ? 0x08 : 0x0A);
// jb,s done
emit_opcode(cbuf, 0x72);
emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
// setne $dst
if (dstenc >= 4) {
emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x95);
emit_opcode(cbuf, 0xC0 | (dstenc & 7));
// movzbl $dst, $dst
if (dstenc >= 4) {
emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0xB6);
emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
%}
enc_class cdql_enc(no_rax_rdx_RegI div)
%{
// Full implementation of Java idiv and irem; checks for
// special case as described in JVM spec., p.243 & p.271.
//
// normal case special case
//
// input : rax: dividend min_int
// reg: divisor -1
//
// output: rax: quotient (= rax idiv reg) min_int
// rdx: remainder (= rax irem reg) 0
//
// Code sequnce:
//
// 0: 3d 00 00 00 80 cmp $0x80000000,%eax
// 5: 75 07/08 jne e <normal>
// 7: 33 d2 xor %edx,%edx
// [div >= 8 -> offset + 1]
// [REX_B]
// 9: 83 f9 ff cmp $0xffffffffffffffff,$div
// c: 74 03/04 je 11 <done>
// 000000000000000e <normal>:
// e: 99 cltd
// [div >= 8 -> offset + 1]
// [REX_B]
// f: f7 f9 idiv $div
// 0000000000000011 <done>:
// cmp $0x80000000,%eax
emit_opcode(cbuf, 0x3d);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x80);
// jne e <normal>
emit_opcode(cbuf, 0x75);
emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
// xor %edx,%edx
emit_opcode(cbuf, 0x33);
emit_d8(cbuf, 0xD2);
// cmp $0xffffffffffffffff,%ecx
if ($div$$reg >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0x83);
emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
emit_d8(cbuf, 0xFF);
// je 11 <done>
emit_opcode(cbuf, 0x74);
emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
// <normal>
// cltd
emit_opcode(cbuf, 0x99);
// idivl (note: must be emitted by the user of this rule)
// <done>
%}
enc_class cdqq_enc(no_rax_rdx_RegL div)
%{
// Full implementation of Java ldiv and lrem; checks for
// special case as described in JVM spec., p.243 & p.271.
//
// normal case special case
//
// input : rax: dividend min_long
// reg: divisor -1
//
// output: rax: quotient (= rax idiv reg) min_long
// rdx: remainder (= rax irem reg) 0
//
// Code sequnce:
//
// 0: 48 ba 00 00 00 00 00 mov $0x8000000000000000,%rdx
// 7: 00 00 80
// a: 48 39 d0 cmp %rdx,%rax
// d: 75 08 jne 17 <normal>
// f: 33 d2 xor %edx,%edx
// 11: 48 83 f9 ff cmp $0xffffffffffffffff,$div
// 15: 74 05 je 1c <done>
// 0000000000000017 <normal>:
// 17: 48 99 cqto
// 19: 48 f7 f9 idiv $div
// 000000000000001c <done>:
// mov $0x8000000000000000,%rdx
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0xBA);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x00);
emit_d8(cbuf, 0x80);
// cmp %rdx,%rax
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0x39);
emit_d8(cbuf, 0xD0);
// jne 17 <normal>
emit_opcode(cbuf, 0x75);
emit_d8(cbuf, 0x08);
// xor %edx,%edx
emit_opcode(cbuf, 0x33);
emit_d8(cbuf, 0xD2);
// cmp $0xffffffffffffffff,$div
emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
emit_opcode(cbuf, 0x83);
emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
emit_d8(cbuf, 0xFF);
// je 1e <done>
emit_opcode(cbuf, 0x74);
emit_d8(cbuf, 0x05);
// <normal>
// cqto
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0x99);
// idivq (note: must be emitted by the user of this rule)
// <done>
%}
// Opcde enc_class for 8/32 bit immediate instructions with sign-extension
enc_class OpcSE(immI imm)
%{
// Emit primary opcode and set sign-extend bit
// Check for 8-bit immediate, and set sign extend bit in opcode
if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
emit_opcode(cbuf, $primary | 0x02);
} else {
// 32-bit immediate
emit_opcode(cbuf, $primary);
}
%}
enc_class OpcSErm(rRegI dst, immI imm)
%{
// OpcSEr/m
int dstenc = $dst$$reg;
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
dstenc -= 8;
}
// Emit primary opcode and set sign-extend bit
// Check for 8-bit immediate, and set sign extend bit in opcode
if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
emit_opcode(cbuf, $primary | 0x02);
} else {
// 32-bit immediate
emit_opcode(cbuf, $primary);
}
// Emit r/m byte with secondary opcode, after primary opcode.
emit_rm(cbuf, 0x3, $secondary, dstenc);
%}
enc_class OpcSErm_wide(rRegL dst, immI imm)
%{
// OpcSEr/m
int dstenc = $dst$$reg;
if (dstenc < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
dstenc -= 8;
}
// Emit primary opcode and set sign-extend bit
// Check for 8-bit immediate, and set sign extend bit in opcode
if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
emit_opcode(cbuf, $primary | 0x02);
} else {
// 32-bit immediate
emit_opcode(cbuf, $primary);
}
// Emit r/m byte with secondary opcode, after primary opcode.
emit_rm(cbuf, 0x3, $secondary, dstenc);
%}
enc_class Con8or32(immI imm)
%{
// Check for 8-bit immediate, and set sign extend bit in opcode
if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
$$$emit8$imm$$constant;
} else {
// 32-bit immediate
$$$emit32$imm$$constant;
}
%}
enc_class Lbl(label labl)
%{
// JMP, CALL
Label* l = $labl$$label;
emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
%}
enc_class LblShort(label labl)
%{
// JMP, CALL
Label* l = $labl$$label;
int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
emit_d8(cbuf, disp);
%}
enc_class opc2_reg(rRegI dst)
%{
// BSWAP
emit_cc(cbuf, $secondary, $dst$$reg);
%}
enc_class opc3_reg(rRegI dst)
%{
// BSWAP
emit_cc(cbuf, $tertiary, $dst$$reg);
%}
enc_class reg_opc(rRegI div)
%{
// INC, DEC, IDIV, IMOD, JMP indirect, ...
emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
%}
enc_class Jcc(cmpOp cop, label labl)
%{
// JCC
Label* l = $labl$$label;
$$$emit8$primary;
emit_cc(cbuf, $secondary, $cop$$cmpcode);
emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
%}
enc_class JccShort (cmpOp cop, label labl)
%{
// JCC
Label *l = $labl$$label;
emit_cc(cbuf, $primary, $cop$$cmpcode);
int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
emit_d8(cbuf, disp);
%}
enc_class enc_cmov(cmpOp cop)
%{
// CMOV
$$$emit8$primary;
emit_cc(cbuf, $secondary, $cop$$cmpcode);
%}
enc_class enc_cmovf_branch(cmpOp cop, regF dst, regF src)
%{
// Invert sense of branch from sense of cmov
emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
emit_d8(cbuf, ($dst$$reg < 8 && $src$$reg < 8)
? (UseXmmRegToRegMoveAll ? 3 : 4)
: (UseXmmRegToRegMoveAll ? 4 : 5) ); // REX
// UseXmmRegToRegMoveAll ? movaps(dst, src) : movss(dst, src)
if (!UseXmmRegToRegMoveAll) emit_opcode(cbuf, 0xF3);
if ($dst$$reg < 8) {
if ($src$$reg >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
} else {
if ($src$$reg < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RB);
}
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
%}
enc_class enc_cmovd_branch(cmpOp cop, regD dst, regD src)
%{
// Invert sense of branch from sense of cmov
emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
emit_d8(cbuf, $dst$$reg < 8 && $src$$reg < 8 ? 4 : 5); // REX
// UseXmmRegToRegMoveAll ? movapd(dst, src) : movsd(dst, src)
emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
if ($dst$$reg < 8) {
if ($src$$reg >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
} else {
if ($src$$reg < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RB);
}
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
%}
enc_class enc_PartialSubtypeCheck()
%{
Register Rrdi = as_Register(RDI_enc); // result register
Register Rrax = as_Register(RAX_enc); // super class
Register Rrcx = as_Register(RCX_enc); // killed
Register Rrsi = as_Register(RSI_enc); // sub class
Label hit, miss, cmiss;
MacroAssembler _masm(&cbuf);
// Compare super with sub directly, since super is not in its own SSA.
// The compiler used to emit this test, but we fold it in here,
// to allow platform-specific tweaking on sparc.
__ cmpptr(Rrax, Rrsi);
__ jcc(Assembler::equal, hit);
#ifndef PRODUCT
__ lea(Rrcx, ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
__ incrementl(Address(Rrcx, 0));
#endif //PRODUCT
__ movptr(Rrdi, Address(Rrsi,
sizeof(oopDesc) +
Klass::secondary_supers_offset_in_bytes()));
__ movl(Rrcx, Address(Rrdi, arrayOopDesc::length_offset_in_bytes()));
__ addptr(Rrdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
if (UseCompressedOops) {
__ encode_heap_oop(Rrax);
__ repne_scanl();
__ jcc(Assembler::notEqual, cmiss);
__ decode_heap_oop(Rrax);
__ movptr(Address(Rrsi,
sizeof(oopDesc) +
Klass::secondary_super_cache_offset_in_bytes()),
Rrax);
__ jmp(hit);
__ bind(cmiss);
__ decode_heap_oop(Rrax);
__ jmp(miss);
} else {
__ repne_scan();
__ jcc(Assembler::notEqual, miss);
__ movptr(Address(Rrsi,
sizeof(oopDesc) +
Klass::secondary_super_cache_offset_in_bytes()),
Rrax);
}
__ bind(hit);
if ($primary) {
__ xorptr(Rrdi, Rrdi);
}
__ bind(miss);
%}
enc_class Java_To_Interpreter(method meth)
%{
// CALL Java_To_Interpreter
// This is the instruction starting address for relocation info.
cbuf.set_inst_mark();
$$$emit8$primary;
// CALL directly to the runtime
emit_d32_reloc(cbuf,
(int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
runtime_call_Relocation::spec(),
RELOC_DISP32);
%}
enc_class Java_Static_Call(method meth)
%{
// JAVA STATIC CALL
// CALL to fixup routine. Fixup routine uses ScopeDesc info to
// determine who we intended to call.
cbuf.set_inst_mark();
$$$emit8$primary;
if (!_method) {
emit_d32_reloc(cbuf,
(int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
runtime_call_Relocation::spec(),
RELOC_DISP32);
} else if (_optimized_virtual) {
emit_d32_reloc(cbuf,
(int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
opt_virtual_call_Relocation::spec(),
RELOC_DISP32);
} else {
emit_d32_reloc(cbuf,
(int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
static_call_Relocation::spec(),
RELOC_DISP32);
}
if (_method) {
// Emit stub for static call
emit_java_to_interp(cbuf);
}
%}
enc_class Java_Dynamic_Call(method meth)
%{
// JAVA DYNAMIC CALL
// !!!!!
// Generate "movq rax, -1", placeholder instruction to load oop-info
// emit_call_dynamic_prologue( cbuf );
cbuf.set_inst_mark();
// movq rax, -1
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0xB8 | RAX_enc);
emit_d64_reloc(cbuf,
(int64_t) Universe::non_oop_word(),
oop_Relocation::spec_for_immediate(), RELOC_IMM64);
address virtual_call_oop_addr = cbuf.inst_mark();
// CALL to fixup routine. Fixup routine uses ScopeDesc info to determine
// who we intended to call.
cbuf.set_inst_mark();
$$$emit8$primary;
emit_d32_reloc(cbuf,
(int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
virtual_call_Relocation::spec(virtual_call_oop_addr),
RELOC_DISP32);
%}
enc_class Java_Compiled_Call(method meth)
%{
// JAVA COMPILED CALL
int disp = in_bytes(methodOopDesc:: from_compiled_offset());
// XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
// assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
// callq *disp(%rax)
cbuf.set_inst_mark();
$$$emit8$primary;
if (disp < 0x80) {
emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
emit_d8(cbuf, disp); // Displacement
} else {
emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
emit_d32(cbuf, disp); // Displacement
}
%}
enc_class reg_opc_imm(rRegI dst, immI8 shift)
%{
// SAL, SAR, SHR
int dstenc = $dst$$reg;
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
dstenc -= 8;
}
$$$emit8$primary;
emit_rm(cbuf, 0x3, $secondary, dstenc);
$$$emit8$shift$$constant;
%}
enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
%{
// SAL, SAR, SHR
int dstenc = $dst$$reg;
if (dstenc < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
dstenc -= 8;
}
$$$emit8$primary;
emit_rm(cbuf, 0x3, $secondary, dstenc);
$$$emit8$shift$$constant;
%}
enc_class load_immI(rRegI dst, immI src)
%{
int dstenc = $dst$$reg;
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
dstenc -= 8;
}
emit_opcode(cbuf, 0xB8 | dstenc);
$$$emit32$src$$constant;
%}
enc_class load_immL(rRegL dst, immL src)
%{
int dstenc = $dst$$reg;
if (dstenc < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
dstenc -= 8;
}
emit_opcode(cbuf, 0xB8 | dstenc);
emit_d64(cbuf, $src$$constant);
%}
enc_class load_immUL32(rRegL dst, immUL32 src)
%{
// same as load_immI, but this time we care about zeroes in the high word
int dstenc = $dst$$reg;
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
dstenc -= 8;
}
emit_opcode(cbuf, 0xB8 | dstenc);
$$$emit32$src$$constant;
%}
enc_class load_immL32(rRegL dst, immL32 src)
%{
int dstenc = $dst$$reg;
if (dstenc < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
dstenc -= 8;
}
emit_opcode(cbuf, 0xC7);
emit_rm(cbuf, 0x03, 0x00, dstenc);
$$$emit32$src$$constant;
%}
enc_class load_immP31(rRegP dst, immP32 src)
%{
// same as load_immI, but this time we care about zeroes in the high word
int dstenc = $dst$$reg;
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
dstenc -= 8;
}
emit_opcode(cbuf, 0xB8 | dstenc);
$$$emit32$src$$constant;
%}
enc_class load_immP(rRegP dst, immP src)
%{
int dstenc = $dst$$reg;
if (dstenc < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
dstenc -= 8;
}
emit_opcode(cbuf, 0xB8 | dstenc);
// This next line should be generated from ADLC
if ($src->constant_is_oop()) {
emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
} else {
emit_d64(cbuf, $src$$constant);
}
%}
enc_class load_immF(regF dst, immF con)
%{
// XXX reg_mem doesn't support RIP-relative addressing yet
emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
emit_float_constant(cbuf, $con$$constant);
%}
enc_class load_immD(regD dst, immD con)
%{
// XXX reg_mem doesn't support RIP-relative addressing yet
emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
emit_double_constant(cbuf, $con$$constant);
%}
enc_class load_conF (regF dst, immF con) %{ // Load float constant
emit_opcode(cbuf, 0xF3);
if ($dst$$reg >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x10);
emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
emit_float_constant(cbuf, $con$$constant);
%}
enc_class load_conD (regD dst, immD con) %{ // Load double constant
// UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
if ($dst$$reg >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
emit_double_constant(cbuf, $con$$constant);
%}
// Encode a reg-reg copy. If it is useless, then empty encoding.
enc_class enc_copy(rRegI dst, rRegI src)
%{
encode_copy(cbuf, $dst$$reg, $src$$reg);
%}
// Encode xmm reg-reg copy. If it is useless, then empty encoding.
enc_class enc_CopyXD( RegD dst, RegD src ) %{
encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
%}
enc_class enc_copy_always(rRegI dst, rRegI src)
%{
int srcenc = $src$$reg;
int dstenc = $dst$$reg;
if (dstenc < 8) {
if (srcenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
srcenc -= 8;
}
} else {
if (srcenc < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RB);
srcenc -= 8;
}
dstenc -= 8;
}
emit_opcode(cbuf, 0x8B);
emit_rm(cbuf, 0x3, dstenc, srcenc);
%}
enc_class enc_copy_wide(rRegL dst, rRegL src)
%{
int srcenc = $src$$reg;
int dstenc = $dst$$reg;
if (dstenc != srcenc) {
if (dstenc < 8) {
if (srcenc < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
srcenc -= 8;
}
} else {
if (srcenc < 8) {
emit_opcode(cbuf, Assembler::REX_WR);
} else {
emit_opcode(cbuf, Assembler::REX_WRB);
srcenc -= 8;
}
dstenc -= 8;
}
emit_opcode(cbuf, 0x8B);
emit_rm(cbuf, 0x3, dstenc, srcenc);
}
%}
enc_class Con32(immI src)
%{
// Output immediate
$$$emit32$src$$constant;
%}
enc_class Con64(immL src)
%{
// Output immediate
emit_d64($src$$constant);
%}
enc_class Con32F_as_bits(immF src)
%{
// Output Float immediate bits
jfloat jf = $src$$constant;
jint jf_as_bits = jint_cast(jf);
emit_d32(cbuf, jf_as_bits);
%}
enc_class Con16(immI src)
%{
// Output immediate
$$$emit16$src$$constant;
%}
// How is this different from Con32??? XXX
enc_class Con_d32(immI src)
%{
emit_d32(cbuf,$src$$constant);
%}
enc_class conmemref (rRegP t1) %{ // Con32(storeImmI)
// Output immediate memory reference
emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
emit_d32(cbuf, 0x00);
%}
enc_class jump_enc(rRegL switch_val, rRegI dest) %{
MacroAssembler masm(&cbuf);
Register switch_reg = as_Register($switch_val$$reg);
Register dest_reg = as_Register($dest$$reg);
address table_base = masm.address_table_constant(_index2label);
// We could use jump(ArrayAddress) except that the macro assembler needs to use r10
// to do that and the compiler is using that register as one it can allocate.
// So we build it all by hand.
// Address index(noreg, switch_reg, Address::times_1);
// ArrayAddress dispatch(table, index);
Address dispatch(dest_reg, switch_reg, Address::times_1);
masm.lea(dest_reg, InternalAddress(table_base));
masm.jmp(dispatch);
%}
enc_class jump_enc_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
MacroAssembler masm(&cbuf);
Register switch_reg = as_Register($switch_val$$reg);
Register dest_reg = as_Register($dest$$reg);
address table_base = masm.address_table_constant(_index2label);
// We could use jump(ArrayAddress) except that the macro assembler needs to use r10
// to do that and the compiler is using that register as one it can allocate.
// So we build it all by hand.
// Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
// ArrayAddress dispatch(table, index);
Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
masm.lea(dest_reg, InternalAddress(table_base));
masm.jmp(dispatch);
%}
enc_class jump_enc_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
MacroAssembler masm(&cbuf);
Register switch_reg = as_Register($switch_val$$reg);
Register dest_reg = as_Register($dest$$reg);
address table_base = masm.address_table_constant(_index2label);
// We could use jump(ArrayAddress) except that the macro assembler needs to use r10
// to do that and the compiler is using that register as one it can allocate.
// So we build it all by hand.
// Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
// ArrayAddress dispatch(table, index);
Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant);
masm.lea(dest_reg, InternalAddress(table_base));
masm.jmp(dispatch);
%}
enc_class lock_prefix()
%{
if (os::is_MP()) {
emit_opcode(cbuf, 0xF0); // lock
}
%}
enc_class REX_mem(memory mem)
%{
if ($mem$$base >= 8) {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_B);
} else {
emit_opcode(cbuf, Assembler::REX_XB);
}
} else {
if ($mem$$index >= 8) {
emit_opcode(cbuf, Assembler::REX_X);
}
}
%}
enc_class REX_mem_wide(memory mem)
%{
if ($mem$$base >= 8) {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_WB);
} else {
emit_opcode(cbuf, Assembler::REX_WXB);
}
} else {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WX);
}
}
%}
// for byte regs
enc_class REX_breg(rRegI reg)
%{
if ($reg$$reg >= 4) {
emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
}
%}
// for byte regs
enc_class REX_reg_breg(rRegI dst, rRegI src)
%{
if ($dst$$reg < 8) {
if ($src$$reg >= 4) {
emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
}
} else {
if ($src$$reg < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RB);
}
}
%}
// for byte regs
enc_class REX_breg_mem(rRegI reg, memory mem)
%{
if ($reg$$reg < 8) {
if ($mem$$base < 8) {
if ($mem$$index >= 8) {
emit_opcode(cbuf, Assembler::REX_X);
} else if ($reg$$reg >= 4) {
emit_opcode(cbuf, Assembler::REX);
}
} else {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_B);
} else {
emit_opcode(cbuf, Assembler::REX_XB);
}
}
} else {
if ($mem$$base < 8) {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RX);
}
} else {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_RB);
} else {
emit_opcode(cbuf, Assembler::REX_RXB);
}
}
}
%}
enc_class REX_reg(rRegI reg)
%{
if ($reg$$reg >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
%}
enc_class REX_reg_wide(rRegI reg)
%{
if ($reg$$reg < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
}
%}
enc_class REX_reg_reg(rRegI dst, rRegI src)
%{
if ($dst$$reg < 8) {
if ($src$$reg >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
} else {
if ($src$$reg < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RB);
}
}
%}
enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
%{
if ($dst$$reg < 8) {
if ($src$$reg < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
}
} else {
if ($src$$reg < 8) {
emit_opcode(cbuf, Assembler::REX_WR);
} else {
emit_opcode(cbuf, Assembler::REX_WRB);
}
}
%}
enc_class REX_reg_mem(rRegI reg, memory mem)
%{
if ($reg$$reg < 8) {
if ($mem$$base < 8) {
if ($mem$$index >= 8) {
emit_opcode(cbuf, Assembler::REX_X);
}
} else {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_B);
} else {
emit_opcode(cbuf, Assembler::REX_XB);
}
}
} else {
if ($mem$$base < 8) {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RX);
}
} else {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_RB);
} else {
emit_opcode(cbuf, Assembler::REX_RXB);
}
}
}
%}
enc_class REX_reg_mem_wide(rRegL reg, memory mem)
%{
if ($reg$$reg < 8) {
if ($mem$$base < 8) {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WX);
}
} else {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_WB);
} else {
emit_opcode(cbuf, Assembler::REX_WXB);
}
}
} else {
if ($mem$$base < 8) {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_WR);
} else {
emit_opcode(cbuf, Assembler::REX_WRX);
}
} else {
if ($mem$$index < 8) {
emit_opcode(cbuf, Assembler::REX_WRB);
} else {
emit_opcode(cbuf, Assembler::REX_WRXB);
}
}
}
%}
enc_class reg_mem(rRegI ereg, memory mem)
%{
// High registers handle in encode_RegMem
int reg = $ereg$$reg;
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int disp = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop();
encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
%}
enc_class RM_opc_mem(immI rm_opcode, memory mem)
%{
int rm_byte_opcode = $rm_opcode$$constant;
// High registers handle in encode_RegMem
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
// working with static
// globals
encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
disp_is_oop);
%}
enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
%{
int reg_encoding = $dst$$reg;
int base = $src0$$reg; // 0xFFFFFFFF indicates no base
int index = 0x04; // 0x04 indicates no index
int scale = 0x00; // 0x00 indicates no scale
int displace = $src1$$constant; // 0x00 indicates no displacement
bool disp_is_oop = false;
encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
disp_is_oop);
%}
enc_class neg_reg(rRegI dst)
%{
int dstenc = $dst$$reg;
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
dstenc -= 8;
}
// NEG $dst
emit_opcode(cbuf, 0xF7);
emit_rm(cbuf, 0x3, 0x03, dstenc);
%}
enc_class neg_reg_wide(rRegI dst)
%{
int dstenc = $dst$$reg;
if (dstenc < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
dstenc -= 8;
}
// NEG $dst
emit_opcode(cbuf, 0xF7);
emit_rm(cbuf, 0x3, 0x03, dstenc);
%}
enc_class setLT_reg(rRegI dst)
%{
int dstenc = $dst$$reg;
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
dstenc -= 8;
} else if (dstenc >= 4) {
emit_opcode(cbuf, Assembler::REX);
}
// SETLT $dst
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x9C);
emit_rm(cbuf, 0x3, 0x0, dstenc);
%}
enc_class setNZ_reg(rRegI dst)
%{
int dstenc = $dst$$reg;
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
dstenc -= 8;
} else if (dstenc >= 4) {
emit_opcode(cbuf, Assembler::REX);
}
// SETNZ $dst
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x95);
emit_rm(cbuf, 0x3, 0x0, dstenc);
%}
enc_class enc_cmpLTP(no_rcx_RegI p, no_rcx_RegI q, no_rcx_RegI y,
rcx_RegI tmp)
%{
// cadd_cmpLT
int tmpReg = $tmp$$reg;
int penc = $p$$reg;
int qenc = $q$$reg;
int yenc = $y$$reg;
// subl $p,$q
if (penc < 8) {
if (qenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
} else {
if (qenc < 8) {
emit_opcode(cbuf, Assembler::REX_R);
} else {
emit_opcode(cbuf, Assembler::REX_RB);
}
}
emit_opcode(cbuf, 0x2B);
emit_rm(cbuf, 0x3, penc & 7, qenc & 7);
// sbbl $tmp, $tmp
emit_opcode(cbuf, 0x1B);
emit_rm(cbuf, 0x3, tmpReg, tmpReg);
// andl $tmp, $y
if (yenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0x23);
emit_rm(cbuf, 0x3, tmpReg, yenc & 7);
// addl $p,$tmp
if (penc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode(cbuf, 0x03);
emit_rm(cbuf, 0x3, penc & 7, tmpReg);
%}
// Compare the lonogs and set -1, 0, or 1 into dst
enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
%{
int src1enc = $src1$$reg;
int src2enc = $src2$$reg;
int dstenc = $dst$$reg;
// cmpq $src1, $src2
if (src1enc < 8) {
if (src2enc < 8) {
emit_opcode(cbuf, Assembler::REX_W);
} else {
emit_opcode(cbuf, Assembler::REX_WB);
}
} else {
if (src2enc < 8) {
emit_opcode(cbuf, Assembler::REX_WR);
} else {
emit_opcode(cbuf, Assembler::REX_WRB);
}
}
emit_opcode(cbuf, 0x3B);
emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
// movl $dst, -1
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0xB8 | (dstenc & 7));
emit_d32(cbuf, -1);
// jl,s done
emit_opcode(cbuf, 0x7C);
emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
// setne $dst
if (dstenc >= 4) {
emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x95);
emit_opcode(cbuf, 0xC0 | (dstenc & 7));
// movzbl $dst, $dst
if (dstenc >= 4) {
emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0xB6);
emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
%}
enc_class Push_ResultXD(regD dst) %{
int dstenc = $dst$$reg;
store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [RSP]
// UseXmmLoadAndClearUpper ? movsd dst,[rsp] : movlpd dst,[rsp]
emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12 );
encode_RegMem(cbuf, dstenc, RSP_enc, 0x4, 0, 0, false);
// add rsp,8
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf,0x83);
emit_rm(cbuf,0x3, 0x0, RSP_enc);
emit_d8(cbuf,0x08);
%}
enc_class Push_SrcXD(regD src) %{
int srcenc = $src$$reg;
// subq rsp,#8
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0x83);
emit_rm(cbuf, 0x3, 0x5, RSP_enc);
emit_d8(cbuf, 0x8);
// movsd [rsp],src
emit_opcode(cbuf, 0xF2);
if (srcenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x11);
encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false);
// fldd [rsp]
emit_opcode(cbuf, 0x66);
emit_opcode(cbuf, 0xDD);
encode_RegMem(cbuf, 0x0, RSP_enc, 0x4, 0, 0, false);
%}
enc_class movq_ld(regD dst, memory mem) %{
MacroAssembler _masm(&cbuf);
Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
__ movq(as_XMMRegister($dst$$reg), madr);
%}
enc_class movq_st(memory mem, regD src) %{
MacroAssembler _masm(&cbuf);
Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
__ movq(madr, as_XMMRegister($src$$reg));
%}
enc_class pshufd_8x8(regF dst, regF src) %{
MacroAssembler _masm(&cbuf);
encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
__ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
__ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
%}
enc_class pshufd_4x16(regF dst, regF src) %{
MacroAssembler _masm(&cbuf);
__ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
%}
enc_class pshufd(regD dst, regD src, int mode) %{
MacroAssembler _masm(&cbuf);
__ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
%}
enc_class pxor(regD dst, regD src) %{
MacroAssembler _masm(&cbuf);
__ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
%}
enc_class mov_i2x(regD dst, rRegI src) %{
MacroAssembler _masm(&cbuf);
__ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
%}
// obj: object to lock
// box: box address (header location) -- killed
// tmp: rax -- killed
// scr: rbx -- killed
//
// What follows is a direct transliteration of fast_lock() and fast_unlock()
// from i486.ad. See that file for comments.
// TODO: where possible switch from movq (r, 0) to movl(r,0) and
// use the shorter encoding. (Movl clears the high-order 32-bits).
enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
%{
Register objReg = as_Register((int)$obj$$reg);
Register boxReg = as_Register((int)$box$$reg);
Register tmpReg = as_Register($tmp$$reg);
Register scrReg = as_Register($scr$$reg);
MacroAssembler masm(&cbuf);
// Verify uniqueness of register assignments -- necessary but not sufficient
assert (objReg != boxReg && objReg != tmpReg &&
objReg != scrReg && tmpReg != scrReg, "invariant") ;
if (_counters != NULL) {
masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
}
if (EmitSync & 1) {
// Without cast to int32_t a movptr will destroy r10 which is typically obj
masm.movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ;
masm.cmpptr(rsp, (int32_t)NULL_WORD) ;
} else
if (EmitSync & 2) {
Label DONE_LABEL;
if (UseBiasedLocking) {
// Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
}
// QQQ was movl...
masm.movptr(tmpReg, 0x1);
masm.orptr(tmpReg, Address(objReg, 0));
masm.movptr(Address(boxReg, 0), tmpReg);
if (os::is_MP()) {
masm.lock();
}
masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
masm.jcc(Assembler::equal, DONE_LABEL);
// Recursive locking
masm.subptr(tmpReg, rsp);
masm.andptr(tmpReg, 7 - os::vm_page_size());
masm.movptr(Address(boxReg, 0), tmpReg);
masm.bind(DONE_LABEL);
masm.nop(); // avoid branch to branch
} else {
Label DONE_LABEL, IsInflated, Egress;
masm.movptr(tmpReg, Address(objReg, 0)) ;
masm.testl (tmpReg, 0x02) ; // inflated vs stack-locked|neutral|biased
masm.jcc (Assembler::notZero, IsInflated) ;
// it's stack-locked, biased or neutral
// TODO: optimize markword triage order to reduce the number of
// conditional branches in the most common cases.
// Beware -- there's a subtle invariant that fetch of the markword
// at [FETCH], below, will never observe a biased encoding (*101b).
// If this invariant is not held we'll suffer exclusion (safety) failure.
if (UseBiasedLocking && !UseOptoBiasInlining) {
masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
masm.movptr(tmpReg, Address(objReg, 0)) ; // [FETCH]
}
// was q will it destroy high?
masm.orl (tmpReg, 1) ;
masm.movptr(Address(boxReg, 0), tmpReg) ;
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
if (_counters != NULL) {
masm.cond_inc32(Assembler::equal,
ExternalAddress((address) _counters->fast_path_entry_count_addr()));
}
masm.jcc (Assembler::equal, DONE_LABEL);
// Recursive locking
masm.subptr(tmpReg, rsp);
masm.andptr(tmpReg, 7 - os::vm_page_size());
masm.movptr(Address(boxReg, 0), tmpReg);
if (_counters != NULL) {
masm.cond_inc32(Assembler::equal,
ExternalAddress((address) _counters->fast_path_entry_count_addr()));
}
masm.jmp (DONE_LABEL) ;
masm.bind (IsInflated) ;
// It's inflated
// TODO: someday avoid the ST-before-CAS penalty by
// relocating (deferring) the following ST.
// We should also think about trying a CAS without having
// fetched _owner. If the CAS is successful we may
// avoid an RTO->RTS upgrade on the $line.
// Without cast to int32_t a movptr will destroy r10 which is typically obj
masm.movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ;
masm.mov (boxReg, tmpReg) ;
masm.movptr (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
masm.testptr(tmpReg, tmpReg) ;
masm.jcc (Assembler::notZero, DONE_LABEL) ;
// It's inflated and appears unlocked
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
// Intentional fall-through into DONE_LABEL ...
masm.bind (DONE_LABEL) ;
masm.nop () ; // avoid jmp to jmp
}
%}
// obj: object to unlock
// box: box address (displaced header location), killed
// RBX: killed tmp; cannot be obj nor box
enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
%{
Register objReg = as_Register($obj$$reg);
Register boxReg = as_Register($box$$reg);
Register tmpReg = as_Register($tmp$$reg);
MacroAssembler masm(&cbuf);
if (EmitSync & 4) {
masm.cmpptr(rsp, 0) ;
} else
if (EmitSync & 8) {
Label DONE_LABEL;
if (UseBiasedLocking) {
masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
}
// Check whether the displaced header is 0
//(=> recursive unlock)
masm.movptr(tmpReg, Address(boxReg, 0));
masm.testptr(tmpReg, tmpReg);
masm.jcc(Assembler::zero, DONE_LABEL);
// If not recursive lock, reset the header to displaced header
if (os::is_MP()) {
masm.lock();
}
masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
masm.bind(DONE_LABEL);
masm.nop(); // avoid branch to branch
} else {
Label DONE_LABEL, Stacked, CheckSucc ;
if (UseBiasedLocking && !UseOptoBiasInlining) {
masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
}
masm.movptr(tmpReg, Address(objReg, 0)) ;
masm.cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD) ;
masm.jcc (Assembler::zero, DONE_LABEL) ;
masm.testl (tmpReg, 0x02) ;
masm.jcc (Assembler::zero, Stacked) ;
// It's inflated
masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
masm.xorptr(boxReg, r15_thread) ;
masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
masm.jcc (Assembler::notZero, DONE_LABEL) ;
masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
masm.jcc (Assembler::notZero, CheckSucc) ;
masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
masm.jmp (DONE_LABEL) ;
if ((EmitSync & 65536) == 0) {
Label LSuccess, LGoSlowPath ;
masm.bind (CheckSucc) ;
masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
masm.jcc (Assembler::zero, LGoSlowPath) ;
// I'd much rather use lock:andl m->_owner, 0 as it's faster than the
// the explicit ST;MEMBAR combination, but masm doesn't currently support
// "ANDQ M,IMM". Don't use MFENCE here. lock:add to TOS, xchg, etc
// are all faster when the write buffer is populated.
masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
if (os::is_MP()) {
masm.lock () ; masm.addl (Address(rsp, 0), 0) ;
}
masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
masm.jcc (Assembler::notZero, LSuccess) ;
masm.movptr (boxReg, (int32_t)NULL_WORD) ; // box is really EAX
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
masm.jcc (Assembler::notEqual, LSuccess) ;
// Intentional fall-through into slow-path
masm.bind (LGoSlowPath) ;
masm.orl (boxReg, 1) ; // set ICC.ZF=0 to indicate failure
masm.jmp (DONE_LABEL) ;
masm.bind (LSuccess) ;
masm.testl (boxReg, 0) ; // set ICC.ZF=1 to indicate success
masm.jmp (DONE_LABEL) ;
}
masm.bind (Stacked) ;
masm.movptr(tmpReg, Address (boxReg, 0)) ; // re-fetch
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
if (EmitSync & 65536) {
masm.bind (CheckSucc) ;
}
masm.bind(DONE_LABEL);
if (EmitSync & 32768) {
masm.nop(); // avoid branch to branch
}
}
%}
enc_class enc_String_Compare()
%{
Label RCX_GOOD_LABEL, LENGTH_DIFF_LABEL,
POP_LABEL, DONE_LABEL, CONT_LABEL,
WHILE_HEAD_LABEL;
MacroAssembler masm(&cbuf);
// Get the first character position in both strings
// [8] char array, [12] offset, [16] count
int value_offset = java_lang_String::value_offset_in_bytes();
int offset_offset = java_lang_String::offset_offset_in_bytes();
int count_offset = java_lang_String::count_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
masm.load_heap_oop(rax, Address(rsi, value_offset));
masm.movl(rcx, Address(rsi, offset_offset));
masm.lea(rax, Address(rax, rcx, Address::times_2, base_offset));
masm.load_heap_oop(rbx, Address(rdi, value_offset));
masm.movl(rcx, Address(rdi, offset_offset));
masm.lea(rbx, Address(rbx, rcx, Address::times_2, base_offset));
// Compute the minimum of the string lengths(rsi) and the
// difference of the string lengths (stack)
masm.movl(rdi, Address(rdi, count_offset));
masm.movl(rsi, Address(rsi, count_offset));
masm.movl(rcx, rdi);
masm.subl(rdi, rsi);
masm.push(rdi);
masm.cmov(Assembler::lessEqual, rsi, rcx);
// Is the minimum length zero?
masm.bind(RCX_GOOD_LABEL);
masm.testl(rsi, rsi);
masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
// Load first characters
masm.load_unsigned_word(rcx, Address(rbx, 0));
masm.load_unsigned_word(rdi, Address(rax, 0));
// Compare first characters
masm.subl(rcx, rdi);
masm.jcc(Assembler::notZero, POP_LABEL);
masm.decrementl(rsi);
masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
{
// Check after comparing first character to see if strings are equivalent
Label LSkip2;
// Check if the strings start at same location
masm.cmpptr(rbx, rax);
masm.jcc(Assembler::notEqual, LSkip2);
// Check if the length difference is zero (from stack)
masm.cmpl(Address(rsp, 0), 0x0);
masm.jcc(Assembler::equal, LENGTH_DIFF_LABEL);
// Strings might not be equivalent
masm.bind(LSkip2);
}
// Shift RAX and RBX to the end of the arrays, negate min
masm.lea(rax, Address(rax, rsi, Address::times_2, 2));
masm.lea(rbx, Address(rbx, rsi, Address::times_2, 2));
masm.negptr(rsi);
// Compare the rest of the characters
masm.bind(WHILE_HEAD_LABEL);
masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
masm.subl(rcx, rdi);
masm.jcc(Assembler::notZero, POP_LABEL);
masm.increment(rsi);
masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
// Strings are equal up to min length. Return the length difference.
masm.bind(LENGTH_DIFF_LABEL);
masm.pop(rcx);
masm.jmp(DONE_LABEL);
// Discard the stored length difference
masm.bind(POP_LABEL);
masm.addptr(rsp, 8);
// That's it
masm.bind(DONE_LABEL);
%}
enc_class enc_Array_Equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI tmp1, rbx_RegI tmp2, rcx_RegI result) %{
Label TRUE_LABEL, FALSE_LABEL, DONE_LABEL, COMPARE_LOOP_HDR, COMPARE_LOOP;
MacroAssembler masm(&cbuf);
Register ary1Reg = as_Register($ary1$$reg);
Register ary2Reg = as_Register($ary2$$reg);
Register tmp1Reg = as_Register($tmp1$$reg);
Register tmp2Reg = as_Register($tmp2$$reg);
Register resultReg = as_Register($result$$reg);
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
// Check the input args
masm.cmpq(ary1Reg, ary2Reg);
masm.jcc(Assembler::equal, TRUE_LABEL);
masm.testq(ary1Reg, ary1Reg);
masm.jcc(Assembler::zero, FALSE_LABEL);
masm.testq(ary2Reg, ary2Reg);
masm.jcc(Assembler::zero, FALSE_LABEL);
// Check the lengths
masm.movl(tmp2Reg, Address(ary1Reg, length_offset));
masm.movl(resultReg, Address(ary2Reg, length_offset));
masm.cmpl(tmp2Reg, resultReg);
masm.jcc(Assembler::notEqual, FALSE_LABEL);
masm.testl(resultReg, resultReg);
masm.jcc(Assembler::zero, TRUE_LABEL);
// Get the number of 4 byte vectors to compare
masm.shrl(resultReg, 1);
// Check for odd-length arrays
masm.andl(tmp2Reg, 1);
masm.testl(tmp2Reg, tmp2Reg);
masm.jcc(Assembler::zero, COMPARE_LOOP_HDR);
// Compare 2-byte "tail" at end of arrays
masm.load_unsigned_word(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
masm.load_unsigned_word(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
masm.cmpl(tmp1Reg, tmp2Reg);
masm.jcc(Assembler::notEqual, FALSE_LABEL);
masm.testl(resultReg, resultReg);
masm.jcc(Assembler::zero, TRUE_LABEL);
// Setup compare loop
masm.bind(COMPARE_LOOP_HDR);
// Shift tmp1Reg and tmp2Reg to the last 4-byte boundary of the arrays
masm.leaq(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
masm.leaq(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
masm.negq(resultReg);
// 4-byte-wide compare loop
masm.bind(COMPARE_LOOP);
masm.movl(ary1Reg, Address(tmp1Reg, resultReg, Address::times_4, 0));
masm.movl(ary2Reg, Address(tmp2Reg, resultReg, Address::times_4, 0));
masm.cmpl(ary1Reg, ary2Reg);
masm.jcc(Assembler::notEqual, FALSE_LABEL);
masm.incrementq(resultReg);
masm.jcc(Assembler::notZero, COMPARE_LOOP);
masm.bind(TRUE_LABEL);
masm.movl(resultReg, 1); // return true
masm.jmp(DONE_LABEL);
masm.bind(FALSE_LABEL);
masm.xorl(resultReg, resultReg); // return false
// That's it
masm.bind(DONE_LABEL);
%}
enc_class enc_rethrow()
%{
cbuf.set_inst_mark();
emit_opcode(cbuf, 0xE9); // jmp entry
emit_d32_reloc(cbuf,
(int) (OptoRuntime::rethrow_stub() - cbuf.code_end() - 4),
runtime_call_Relocation::spec(),
RELOC_DISP32);
%}
enc_class absF_encoding(regF dst)
%{
int dstenc = $dst$$reg;
address signmask_address = (address) StubRoutines::x86::float_sign_mask();
cbuf.set_inst_mark();
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
dstenc -= 8;
}
// XXX reg_mem doesn't support RIP-relative addressing yet
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x54);
emit_rm(cbuf, 0x0, dstenc, 0x5); // 00 reg 101
emit_d32_reloc(cbuf, signmask_address);
%}
enc_class absD_encoding(regD dst)
%{
int dstenc = $dst$$reg;
address signmask_address = (address) StubRoutines::x86::double_sign_mask();
cbuf.set_inst_mark();
emit_opcode(cbuf, 0x66);
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
dstenc -= 8;
}
// XXX reg_mem doesn't support RIP-relative addressing yet
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x54);
emit_rm(cbuf, 0x0, dstenc, 0x5); // 00 reg 101
emit_d32_reloc(cbuf, signmask_address);
%}
enc_class negF_encoding(regF dst)
%{
int dstenc = $dst$$reg;
address signflip_address = (address) StubRoutines::x86::float_sign_flip();
cbuf.set_inst_mark();
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
dstenc -= 8;
}
// XXX reg_mem doesn't support RIP-relative addressing yet
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x57);
emit_rm(cbuf, 0x0, dstenc, 0x5); // 00 reg 101
emit_d32_reloc(cbuf, signflip_address);
%}
enc_class negD_encoding(regD dst)
%{
int dstenc = $dst$$reg;
address signflip_address = (address) StubRoutines::x86::double_sign_flip();
cbuf.set_inst_mark();
emit_opcode(cbuf, 0x66);
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
dstenc -= 8;
}
// XXX reg_mem doesn't support RIP-relative addressing yet
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x57);
emit_rm(cbuf, 0x0, dstenc, 0x5); // 00 reg 101
emit_d32_reloc(cbuf, signflip_address);
%}
enc_class f2i_fixup(rRegI dst, regF src)
%{
int dstenc = $dst$$reg;
int srcenc = $src$$reg;
// cmpl $dst, #0x80000000
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0x81);
emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
emit_d32(cbuf, 0x80000000);
// jne,s done
emit_opcode(cbuf, 0x75);
if (srcenc < 8 && dstenc < 8) {
emit_d8(cbuf, 0xF);
} else if (srcenc >= 8 && dstenc >= 8) {
emit_d8(cbuf, 0x11);
} else {
emit_d8(cbuf, 0x10);
}
// subq rsp, #8
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0x83);
emit_rm(cbuf, 0x3, 0x5, RSP_enc);
emit_d8(cbuf, 8);
// movss [rsp], $src
emit_opcode(cbuf, 0xF3);
if (srcenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x11);
encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
// call f2i_fixup
cbuf.set_inst_mark();
emit_opcode(cbuf, 0xE8);
emit_d32_reloc(cbuf,
(int)
(StubRoutines::x86::f2i_fixup() - cbuf.code_end() - 4),
runtime_call_Relocation::spec(),
RELOC_DISP32);
// popq $dst
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0x58 | (dstenc & 7));
// done:
%}
enc_class f2l_fixup(rRegL dst, regF src)
%{
int dstenc = $dst$$reg;
int srcenc = $src$$reg;
address const_address = (address) StubRoutines::x86::double_sign_flip();
// cmpq $dst, [0x8000000000000000]
cbuf.set_inst_mark();
emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
emit_opcode(cbuf, 0x39);
// XXX reg_mem doesn't support RIP-relative addressing yet
emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
emit_d32_reloc(cbuf, const_address);
// jne,s done
emit_opcode(cbuf, 0x75);
if (srcenc < 8 && dstenc < 8) {
emit_d8(cbuf, 0xF);
} else if (srcenc >= 8 && dstenc >= 8) {
emit_d8(cbuf, 0x11);
} else {
emit_d8(cbuf, 0x10);
}
// subq rsp, #8
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0x83);
emit_rm(cbuf, 0x3, 0x5, RSP_enc);
emit_d8(cbuf, 8);
// movss [rsp], $src
emit_opcode(cbuf, 0xF3);
if (srcenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x11);
encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
// call f2l_fixup
cbuf.set_inst_mark();
emit_opcode(cbuf, 0xE8);
emit_d32_reloc(cbuf,
(int)
(StubRoutines::x86::f2l_fixup() - cbuf.code_end() - 4),
runtime_call_Relocation::spec(),
RELOC_DISP32);
// popq $dst
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0x58 | (dstenc & 7));
// done:
%}
enc_class d2i_fixup(rRegI dst, regD src)
%{
int dstenc = $dst$$reg;
int srcenc = $src$$reg;
// cmpl $dst, #0x80000000
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0x81);
emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
emit_d32(cbuf, 0x80000000);
// jne,s done
emit_opcode(cbuf, 0x75);
if (srcenc < 8 && dstenc < 8) {
emit_d8(cbuf, 0xF);
} else if (srcenc >= 8 && dstenc >= 8) {
emit_d8(cbuf, 0x11);
} else {
emit_d8(cbuf, 0x10);
}
// subq rsp, #8
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0x83);
emit_rm(cbuf, 0x3, 0x5, RSP_enc);
emit_d8(cbuf, 8);
// movsd [rsp], $src
emit_opcode(cbuf, 0xF2);
if (srcenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x11);
encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
// call d2i_fixup
cbuf.set_inst_mark();
emit_opcode(cbuf, 0xE8);
emit_d32_reloc(cbuf,
(int)
(StubRoutines::x86::d2i_fixup() - cbuf.code_end() - 4),
runtime_call_Relocation::spec(),
RELOC_DISP32);
// popq $dst
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0x58 | (dstenc & 7));
// done:
%}
enc_class d2l_fixup(rRegL dst, regD src)
%{
int dstenc = $dst$$reg;
int srcenc = $src$$reg;
address const_address = (address) StubRoutines::x86::double_sign_flip();
// cmpq $dst, [0x8000000000000000]
cbuf.set_inst_mark();
emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
emit_opcode(cbuf, 0x39);
// XXX reg_mem doesn't support RIP-relative addressing yet
emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
emit_d32_reloc(cbuf, const_address);
// jne,s done
emit_opcode(cbuf, 0x75);
if (srcenc < 8 && dstenc < 8) {
emit_d8(cbuf, 0xF);
} else if (srcenc >= 8 && dstenc >= 8) {
emit_d8(cbuf, 0x11);
} else {
emit_d8(cbuf, 0x10);
}
// subq rsp, #8
emit_opcode(cbuf, Assembler::REX_W);
emit_opcode(cbuf, 0x83);
emit_rm(cbuf, 0x3, 0x5, RSP_enc);
emit_d8(cbuf, 8);
// movsd [rsp], $src
emit_opcode(cbuf, 0xF2);
if (srcenc >= 8) {
emit_opcode(cbuf, Assembler::REX_R);
}
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x11);
encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
// call d2l_fixup
cbuf.set_inst_mark();
emit_opcode(cbuf, 0xE8);
emit_d32_reloc(cbuf,
(int)
(StubRoutines::x86::d2l_fixup() - cbuf.code_end() - 4),
runtime_call_Relocation::spec(),
RELOC_DISP32);
// popq $dst
if (dstenc >= 8) {
emit_opcode(cbuf, Assembler::REX_B);
}
emit_opcode(cbuf, 0x58 | (dstenc & 7));
// done:
%}
enc_class enc_membar_acquire
%{
// [jk] not needed currently, if you enable this and it really
// emits code don't forget to the remove the "size(0)" line in
// membar_acquire()
// MacroAssembler masm(&cbuf);
// masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
// Assembler::LoadLoad));
%}
enc_class enc_membar_release
%{
// [jk] not needed currently, if you enable this and it really
// emits code don't forget to the remove the "size(0)" line in
// membar_release()
// MacroAssembler masm(&cbuf);
// masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
// Assembler::StoreStore));
%}
enc_class enc_membar_volatile
%{
MacroAssembler masm(&cbuf);
masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
Assembler::StoreStore));
%}
// Safepoint Poll. This polls the safepoint page, and causes an
// exception if it is not readable. Unfortunately, it kills
// RFLAGS in the process.
enc_class enc_safepoint_poll
%{
// testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
// XXX reg_mem doesn't support RIP-relative addressing yet
cbuf.set_inst_mark();
cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0); // XXX
emit_opcode(cbuf, 0x85); // testl
emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
// cbuf.inst_mark() is beginning of instruction
emit_d32_reloc(cbuf, os::get_polling_page());
// relocInfo::poll_type,
%}
%}
//----------FRAME--------------------------------------------------------------
// Definition of frame structure and management information.
//
// S T A C K L A Y O U T Allocators stack-slot number
// | (to get allocators register number
// G Owned by | | v add OptoReg::stack0())
// r CALLER | |
// o | +--------+ pad to even-align allocators stack-slot
// w V | pad0 | numbers; owned by CALLER
// t -----------+--------+----> Matcher::_in_arg_limit, unaligned
// h ^ | in | 5
// | | args | 4 Holes in incoming args owned by SELF
// | | | | 3
// | | +--------+
// V | | old out| Empty on Intel, window on Sparc
// | old |preserve| Must be even aligned.
// | SP-+--------+----> Matcher::_old_SP, even aligned
// | | in | 3 area for Intel ret address
// Owned by |preserve| Empty on Sparc.
// SELF +--------+
// | | pad2 | 2 pad to align old SP
// | +--------+ 1
// | | locks | 0
// | +--------+----> OptoReg::stack0(), even aligned
// | | pad1 | 11 pad to align new SP
// | +--------+
// | | | 10
// | | spills | 9 spills
// V | | 8 (pad0 slot for callee)
// -----------+--------+----> Matcher::_out_arg_limit, unaligned
// ^ | out | 7
// | | args | 6 Holes in outgoing args owned by CALLEE
// Owned by +--------+
// CALLEE | new out| 6 Empty on Intel, window on Sparc
// | new |preserve| Must be even-aligned.
// | SP-+--------+----> Matcher::_new_SP, even aligned
// | | |
//
// Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is
// known from SELF's arguments and the Java calling convention.
// Region 6-7 is determined per call site.
// Note 2: If the calling convention leaves holes in the incoming argument
// area, those holes are owned by SELF. Holes in the outgoing area
// are owned by the CALLEE. Holes should not be nessecary in the
// incoming area, as the Java calling convention is completely under
// the control of the AD file. Doubles can be sorted and packed to
// avoid holes. Holes in the outgoing arguments may be nessecary for
// varargs C calling conventions.
// Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is
// even aligned with pad0 as needed.
// Region 6 is even aligned. Region 6-7 is NOT even aligned;
// region 6-11 is even aligned; it may be padded out more so that
// the region from SP to FP meets the minimum stack alignment.
// Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
// alignment. Region 11, pad1, may be dynamically extended so that
// SP meets the minimum alignment.
frame
%{
// What direction does stack grow in (assumed to be same for C & Java)
stack_direction(TOWARDS_LOW);
// These three registers define part of the calling convention
// between compiled code and the interpreter.
inline_cache_reg(RAX); // Inline Cache Register
interpreter_method_oop_reg(RBX); // Method Oop Register when
// calling interpreter
// Optional: name the operand used by cisc-spilling to access
// [stack_pointer + offset]
cisc_spilling_operand_name(indOffset32);
// Number of stack slots consumed by locking an object
sync_stack_slots(2);
// Compiled code's Frame Pointer
frame_pointer(RSP);
// Interpreter stores its frame pointer in a register which is
// stored to the stack by I2CAdaptors.
// I2CAdaptors convert from interpreted java to compiled java.
interpreter_frame_pointer(RBP);
// Stack alignment requirement
stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
// Number of stack slots between incoming argument block and the start of
// a new frame. The PROLOG must add this many slots to the stack. The
// EPILOG must remove this many slots. amd64 needs two slots for
// return address.
in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
// Number of outgoing stack slots killed above the out_preserve_stack_slots
// for calls to C. Supports the var-args backing area for register parms.
varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
// The after-PROLOG location of the return address. Location of
// return address specifies a type (REG or STACK) and a number
// representing the register number (i.e. - use a register name) or
// stack slot.
// Ret Addr is on stack in slot 0 if no locks or verification or alignment.
// Otherwise, it is above the locks and verification slot and alignment word
return_addr(STACK - 2 +
round_to(2 + 2 * VerifyStackAtCalls +
Compile::current()->fixed_slots(),
WordsPerLong * 2));
// Body of function which returns an integer array locating
// arguments either in registers or in stack slots. Passed an array
// of ideal registers called "sig" and a "length" count. Stack-slot
// offsets are based on outgoing arguments, i.e. a CALLER setting up
// arguments for a CALLEE. Incoming stack arguments are
// automatically biased by the preserve_stack_slots field above.
calling_convention
%{
// No difference between ingoing/outgoing just pass false
SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
%}
c_calling_convention
%{
// This is obviously always outgoing
(void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
%}
// Location of compiled Java return values. Same as C for now.
return_value
%{
assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
"only return normal values");
static const int lo[Op_RegL + 1] = {
0,
0,
RAX_num, // Op_RegN
RAX_num, // Op_RegI
RAX_num, // Op_RegP
XMM0_num, // Op_RegF
XMM0_num, // Op_RegD
RAX_num // Op_RegL
};
static const int hi[Op_RegL + 1] = {
0,
0,
OptoReg::Bad, // Op_RegN
OptoReg::Bad, // Op_RegI
RAX_H_num, // Op_RegP
OptoReg::Bad, // Op_RegF
XMM0_H_num, // Op_RegD
RAX_H_num // Op_RegL
};
assert(ARRAY_SIZE(hi) == _last_machine_leaf - 1, "missing type");
return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
%}
%}
//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(0); // Required cost attribute
//----------Instruction Attributes---------------------------------------------
ins_attrib ins_cost(100); // Required cost attribute
ins_attrib ins_size(8); // Required size attribute (in bits)
ins_attrib ins_pc_relative(0); // Required PC Relative flag
ins_attrib ins_short_branch(0); // Required flag: is this instruction
// a non-matching short branch variant
// of some long branch?
ins_attrib ins_alignment(1); // Required alignment attribute (must
// be a power of 2) specifies the
// alignment that some part of the
// instruction (not necessarily the
// start) requires. If > 1, a
// compute_padding() function must be
// provided for the instruction
//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct parsing
// in the ADLC because operands constitute user defined types which are used in
// instruction definitions.
//----------Simple Operands----------------------------------------------------
// Immediate Operands
// Integer Immediate
operand immI()
%{
match(ConI);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// Constant for test vs zero
operand immI0()
%{
predicate(n->get_int() == 0);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Constant for increment
operand immI1()
%{
predicate(n->get_int() == 1);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Constant for decrement
operand immI_M1()
%{
predicate(n->get_int() == -1);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Valid scale values for addressing modes
operand immI2()
%{
predicate(0 <= n->get_int() && (n->get_int() <= 3));
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
operand immI8()
%{
predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
match(ConI);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
operand immI16()
%{
predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
match(ConI);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// Constant for long shifts
operand immI_32()
%{
predicate( n->get_int() == 32 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Constant for long shifts
operand immI_64()
%{
predicate( n->get_int() == 64 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate
operand immP()
%{
match(ConP);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// NULL Pointer Immediate
operand immP0()
%{
predicate(n->get_ptr() == 0);
match(ConP);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate
operand immN() %{
match(ConN);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// NULL Pointer Immediate
operand immN0() %{
predicate(n->get_narrowcon() == 0);
match(ConN);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
operand immP31()
%{
predicate(!n->as_Type()->type()->isa_oopptr()
&& (n->get_ptr() >> 31) == 0);
match(ConP);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate
operand immL()
%{
match(ConL);
op_cost(20);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate 8-bit
operand immL8()
%{
predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
match(ConL);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate 32-bit unsigned
operand immUL32()
%{
predicate(n->get_long() == (unsigned int) (n->get_long()));
match(ConL);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate 32-bit signed
operand immL32()
%{
predicate(n->get_long() == (int) (n->get_long()));
match(ConL);
op_cost(15);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate zero
operand immL0()
%{
predicate(n->get_long() == 0L);
match(ConL);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// Constant for increment
operand immL1()
%{
predicate(n->get_long() == 1);
match(ConL);
format %{ %}
interface(CONST_INTER);
%}
// Constant for decrement
operand immL_M1()
%{
predicate(n->get_long() == -1);
match(ConL);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: the value 10
operand immL10()
%{
predicate(n->get_long() == 10);
match(ConL);
format %{ %}
interface(CONST_INTER);
%}
// Long immediate from 0 to 127.
// Used for a shorter form of long mul by 10.
operand immL_127()
%{
predicate(0 <= n->get_long() && n->get_long() < 0x80);
match(ConL);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: low 32-bit mask
operand immL_32bits()
%{
predicate(n->get_long() == 0xFFFFFFFFL);
match(ConL);
op_cost(20);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate zero
operand immF0()
%{
predicate(jint_cast(n->getf()) == 0);
match(ConF);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate
operand immF()
%{
match(ConF);
op_cost(15);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate zero
operand immD0()
%{
predicate(jlong_cast(n->getd()) == 0);
match(ConD);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate
operand immD()
%{
match(ConD);
op_cost(15);
format %{ %}
interface(CONST_INTER);
%}
// Immediates for special shifts (sign extend)
// Constants for increment
operand immI_16()
%{
predicate(n->get_int() == 16);
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
operand immI_24()
%{
predicate(n->get_int() == 24);
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
// Constant for byte-wide masking
operand immI_255()
%{
predicate(n->get_int() == 255);
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
// Constant for short-wide masking
operand immI_65535()
%{
predicate(n->get_int() == 65535);
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
// Constant for byte-wide masking
operand immL_255()
%{
predicate(n->get_long() == 255);
match(ConL);
format %{ %}
interface(CONST_INTER);
%}
// Constant for short-wide masking
operand immL_65535()
%{
predicate(n->get_long() == 65535);
match(ConL);
format %{ %}
interface(CONST_INTER);
%}
// Register Operands
// Integer Register
operand rRegI()
%{
constraint(ALLOC_IN_RC(int_reg));
match(RegI);
match(rax_RegI);
match(rbx_RegI);
match(rcx_RegI);
match(rdx_RegI);
match(rdi_RegI);
format %{ %}
interface(REG_INTER);
%}
// Special Registers
operand rax_RegI()
%{
constraint(ALLOC_IN_RC(int_rax_reg));
match(RegI);
match(rRegI);
format %{ "RAX" %}
interface(REG_INTER);
%}
// Special Registers
operand rbx_RegI()
%{
constraint(ALLOC_IN_RC(int_rbx_reg));
match(RegI);
match(rRegI);
format %{ "RBX" %}
interface(REG_INTER);
%}
operand rcx_RegI()
%{
constraint(ALLOC_IN_RC(int_rcx_reg));
match(RegI);
match(rRegI);
format %{ "RCX" %}
interface(REG_INTER);
%}
operand rdx_RegI()
%{
constraint(ALLOC_IN_RC(int_rdx_reg));
match(RegI);
match(rRegI);
format %{ "RDX" %}
interface(REG_INTER);
%}
operand rdi_RegI()
%{
constraint(ALLOC_IN_RC(int_rdi_reg));
match(RegI);
match(rRegI);
format %{ "RDI" %}
interface(REG_INTER);
%}
operand no_rcx_RegI()
%{
constraint(ALLOC_IN_RC(int_no_rcx_reg));
match(RegI);
match(rax_RegI);
match(rbx_RegI);
match(rdx_RegI);
match(rdi_RegI);
format %{ %}
interface(REG_INTER);
%}
operand no_rax_rdx_RegI()
%{
constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
match(RegI);
match(rbx_RegI);
match(rcx_RegI);
match(rdi_RegI);
format %{ %}
interface(REG_INTER);
%}
// Pointer Register
operand any_RegP()
%{
constraint(ALLOC_IN_RC(any_reg));
match(RegP);
match(rax_RegP);
match(rbx_RegP);
match(rdi_RegP);
match(rsi_RegP);
match(rbp_RegP);
match(r15_RegP);
match(rRegP);
format %{ %}
interface(REG_INTER);
%}
operand rRegP()
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(RegP);
match(rax_RegP);
match(rbx_RegP);
match(rdi_RegP);
match(rsi_RegP);
match(rbp_RegP);
match(r15_RegP); // See Q&A below about r15_RegP.
format %{ %}
interface(REG_INTER);
%}
operand r12RegL() %{
constraint(ALLOC_IN_RC(long_r12_reg));
match(RegL);
format %{ %}
interface(REG_INTER);
%}
operand rRegN() %{
constraint(ALLOC_IN_RC(int_reg));
match(RegN);
format %{ %}
interface(REG_INTER);
%}
// Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
// Answer: Operand match rules govern the DFA as it processes instruction inputs.
// It's fine for an instruction input which expects rRegP to match a r15_RegP.
// The output of an instruction is controlled by the allocator, which respects
// register class masks, not match rules. Unless an instruction mentions
// r15_RegP or any_RegP explicitly as its output, r15 will not be considered
// by the allocator as an input.
operand no_rax_RegP()
%{
constraint(ALLOC_IN_RC(ptr_no_rax_reg));
match(RegP);
match(rbx_RegP);
match(rsi_RegP);
match(rdi_RegP);
format %{ %}
interface(REG_INTER);
%}
operand no_rbp_RegP()
%{
constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
match(RegP);
match(rbx_RegP);
match(rsi_RegP);
match(rdi_RegP);
format %{ %}
interface(REG_INTER);
%}
operand no_rax_rbx_RegP()
%{
constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
match(RegP);
match(rsi_RegP);
match(rdi_RegP);
format %{ %}
interface(REG_INTER);
%}
// Special Registers
// Return a pointer value
operand rax_RegP()
%{
constraint(ALLOC_IN_RC(ptr_rax_reg));
match(RegP);
match(rRegP);
format %{ %}
interface(REG_INTER);
%}
// Special Registers
// Return a compressed pointer value
operand rax_RegN()
%{
constraint(ALLOC_IN_RC(int_rax_reg));
match(RegN);
match(rRegN);
format %{ %}
interface(REG_INTER);
%}
// Used in AtomicAdd
operand rbx_RegP()
%{
constraint(ALLOC_IN_RC(ptr_rbx_reg));
match(RegP);
match(rRegP);
format %{ %}
interface(REG_INTER);
%}
operand rsi_RegP()
%{
constraint(ALLOC_IN_RC(ptr_rsi_reg));
match(RegP);
match(rRegP);
format %{ %}
interface(REG_INTER);
%}
// Used in rep stosq
operand rdi_RegP()
%{
constraint(ALLOC_IN_RC(ptr_rdi_reg));
match(RegP);
match(rRegP);
format %{ %}
interface(REG_INTER);
%}
operand rbp_RegP()
%{
constraint(ALLOC_IN_RC(ptr_rbp_reg));
match(RegP);
match(rRegP);
format %{ %}
interface(REG_INTER);
%}
operand r15_RegP()
%{
constraint(ALLOC_IN_RC(ptr_r15_reg));
match(RegP);
match(rRegP);
format %{ %}
interface(REG_INTER);
%}
operand rRegL()
%{
constraint(ALLOC_IN_RC(long_reg));
match(RegL);
match(rax_RegL);
match(rdx_RegL);
format %{ %}
interface(REG_INTER);
%}
// Special Registers
operand no_rax_rdx_RegL()
%{
constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
match(RegL);
match(rRegL);
format %{ %}
interface(REG_INTER);
%}
operand no_rax_RegL()
%{
constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
match(RegL);
match(rRegL);
match(rdx_RegL);
format %{ %}
interface(REG_INTER);
%}
operand no_rcx_RegL()
%{
constraint(ALLOC_IN_RC(long_no_rcx_reg));
match(RegL);
match(rRegL);
format %{ %}
interface(REG_INTER);
%}
operand rax_RegL()
%{
constraint(ALLOC_IN_RC(long_rax_reg));
match(RegL);
match(rRegL);
format %{ "RAX" %}
interface(REG_INTER);
%}
operand rcx_RegL()
%{
constraint(ALLOC_IN_RC(long_rcx_reg));
match(RegL);
match(rRegL);
format %{ %}
interface(REG_INTER);
%}
operand rdx_RegL()
%{
constraint(ALLOC_IN_RC(long_rdx_reg));
match(RegL);
match(rRegL);
format %{ %}
interface(REG_INTER);
%}
// Flags register, used as output of compare instructions
operand rFlagsReg()
%{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "RFLAGS" %}
interface(REG_INTER);
%}
// Flags register, used as output of FLOATING POINT compare instructions
operand rFlagsRegU()
%{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "RFLAGS_U" %}
interface(REG_INTER);
%}
operand rFlagsRegUCF() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
predicate(false);
format %{ "RFLAGS_U_CF" %}
interface(REG_INTER);
%}
// Float register operands
operand regF()
%{
constraint(ALLOC_IN_RC(float_reg));
match(RegF);
format %{ %}
interface(REG_INTER);
%}
// Double register operands
operand regD()
%{
constraint(ALLOC_IN_RC(double_reg));
match(RegD);
format %{ %}
interface(REG_INTER);
%}
//----------Memory Operands----------------------------------------------------
// Direct Memory Operand
// operand direct(immP addr)
// %{
// match(addr);
// format %{ "[$addr]" %}
// interface(MEMORY_INTER) %{
// base(0xFFFFFFFF);
// index(0x4);
// scale(0x0);
// disp($addr);
// %}
// %}
// Indirect Memory Operand
operand indirect(any_RegP reg)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(reg);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp(0x0);
%}
%}
// Indirect Memory Plus Short Offset Operand
operand indOffset8(any_RegP reg, immL8 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
format %{ "[$reg + $off (8-bit)]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Long Offset Operand
operand indOffset32(any_RegP reg, immL32 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg off);
format %{ "[$reg + $off (32-bit)]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Index Register Plus Offset Operand
operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (AddP reg lreg) off);
op_cost(10);
format %{"[$reg + $off + $lreg]" %}
interface(MEMORY_INTER) %{
base($reg);
index($lreg);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Index Register Plus Offset Operand
operand indIndex(any_RegP reg, rRegL lreg)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg lreg);
op_cost(10);
format %{"[$reg + $lreg]" %}
interface(MEMORY_INTER) %{
base($reg);
index($lreg);
scale(0x0);
disp(0x0);
%}
%}
// Indirect Memory Times Scale Plus Index Register
operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP reg (LShiftL lreg scale));
op_cost(10);
format %{"[$reg + $lreg << $scale]" %}
interface(MEMORY_INTER) %{
base($reg);
index($lreg);
scale($scale);
disp(0x0);
%}
%}
// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
%{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (AddP reg (LShiftL lreg scale)) off);
op_cost(10);
format %{"[$reg + $off + $lreg << $scale]" %}
interface(MEMORY_INTER) %{
base($reg);
index($lreg);
scale($scale);
disp($off);
%}
%}
// Indirect Narrow Oop Plus Offset Operand
operand indNarrowOopOffset(rRegN src, immL32 off) %{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP (DecodeN src) off);
op_cost(10);
format %{"[R12 + $src << 3 + $off] (compressed oop addressing)" %}
interface(MEMORY_INTER) %{
base(0xc); // R12
index($src);
scale(0x3);
disp($off);
%}
%}
// Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
%{
constraint(ALLOC_IN_RC(ptr_reg));
predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
op_cost(10);
format %{"[$reg + $off + $idx << $scale]" %}
interface(MEMORY_INTER) %{
base($reg);
index($idx);
scale($scale);
disp($off);
%}
%}
//----------Special Memory Operands--------------------------------------------
// Stack Slot Operand - This operand is used for loading and storing temporary
// values on the stack where a match requires a value to
// flow through memory.
operand stackSlotP(sRegP reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // RSP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotI(sRegI reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // RSP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotF(sRegF reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // RSP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotD(sRegD reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // RSP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotL(sRegL reg)
%{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // RSP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
//----------Conditional Branch Operands----------------------------------------
// Comparison Op - This is the operation of the comparison, and is limited to
// the following set of codes:
// L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
//
// Other attributes of the comparison, such as unsignedness, are specified
// by the comparison instruction that sets a condition code flags register.
// That result is represented by a flags operand whose subtype is appropriate
// to the unsignedness (etc.) of the comparison.
//
// Later, the instruction which matches both the Comparison Op (a Bool) and
// the flags (produced by the Cmp) specifies the coding of the comparison op
// by matching a specific subtype of Bool operand below, such as cmpOpU.
// Comparision Code
operand cmpOp()
%{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x4, "e");
not_equal(0x5, "ne");
less(0xC, "l");
greater_equal(0xD, "ge");
less_equal(0xE, "le");
greater(0xF, "g");
%}
%}
// Comparison Code, unsigned compare. Used by FP also, with
// C2 (unordered) turned into GT or LT already. The other bits
// C0 and C3 are turned into Carry & Zero flags.
operand cmpOpU()
%{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x4, "e");
not_equal(0x5, "ne");
less(0x2, "b");
greater_equal(0x3, "nb");
less_equal(0x6, "be");
greater(0x7, "nbe");
%}
%}
// Floating comparisons that don't require any fixup for the unordered case
operand cmpOpUCF() %{
match(Bool);
predicate(n->as_Bool()->_test._test == BoolTest::lt ||
n->as_Bool()->_test._test == BoolTest::ge ||
n->as_Bool()->_test._test == BoolTest::le ||
n->as_Bool()->_test._test == BoolTest::gt);
format %{ "" %}
interface(COND_INTER) %{
equal(0x4, "e");
not_equal(0x5, "ne");
less(0x2, "b");
greater_equal(0x3, "nb");
less_equal(0x6, "be");
greater(0x7, "nbe");
%}
%}
// Floating comparisons that can be fixed up with extra conditional jumps
operand cmpOpUCF2() %{
match(Bool);
predicate(n->as_Bool()->_test._test == BoolTest::ne ||
n->as_Bool()->_test._test == BoolTest::eq);
format %{ "" %}
interface(COND_INTER) %{
equal(0x4, "e");
not_equal(0x5, "ne");
less(0x2, "b");
greater_equal(0x3, "nb");
less_equal(0x6, "be");
greater(0x7, "nbe");
%}
%}
//----------OPERAND CLASSES----------------------------------------------------
// Operand Classes are groups of operands that are used as to simplify
// instruction definitions by not requiring the AD writer to specify seperate
// instructions for every form of operand when the instruction accepts
// multiple operand types with the same basic encoding and format. The classic
// case of this is memory operands.
opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset,
indNarrowOopOffset);
//----------PIPELINE-----------------------------------------------------------
// Rules which define the behavior of the target architectures pipeline.
pipeline %{
//----------ATTRIBUTES---------------------------------------------------------
attributes %{
variable_size_instructions; // Fixed size instructions
max_instructions_per_bundle = 3; // Up to 3 instructions per bundle
instruction_unit_size = 1; // An instruction is 1 bytes long
instruction_fetch_unit_size = 16; // The processor fetches one line
instruction_fetch_units = 1; // of 16 bytes
// List of nop instructions
nops( MachNop );
%}
//----------RESOURCES----------------------------------------------------------
// Resources are the functional units available to the machine
// Generic P2/P3 pipeline
// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
// 3 instructions decoded per cycle.
// 2 load/store ops per cycle, 1 branch, 1 FPU,
// 3 ALU op, only ALU0 handles mul instructions.
resources( D0, D1, D2, DECODE = D0 | D1 | D2,
MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
BR, FPU,
ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
//----------PIPELINE DESCRIPTION-----------------------------------------------
// Pipeline Description specifies the stages in the machine's pipeline
// Generic P2/P3 pipeline
pipe_desc(S0, S1, S2, S3, S4, S5);
//----------PIPELINE CLASSES---------------------------------------------------
// Pipeline Classes describe the stages in which input and output are
// referenced by the hardware pipeline.
// Naming convention: ialu or fpu
// Then: _reg
// Then: _reg if there is a 2nd register
// Then: _long if it's a pair of instructions implementing a long
// Then: _fat if it requires the big decoder
// Or: _mem if it requires the big decoder and a memory unit.
// Integer ALU reg operation
pipe_class ialu_reg(rRegI dst)
%{
single_instruction;
dst : S4(write);
dst : S3(read);
DECODE : S0; // any decoder
ALU : S3; // any alu
%}
// Long ALU reg operation
pipe_class ialu_reg_long(rRegL dst)
%{
instruction_count(2);
dst : S4(write);
dst : S3(read);
DECODE : S0(2); // any 2 decoders
ALU : S3(2); // both alus
%}
// Integer ALU reg operation using big decoder
pipe_class ialu_reg_fat(rRegI dst)
%{
single_instruction;
dst : S4(write);
dst : S3(read);
D0 : S0; // big decoder only
ALU : S3; // any alu
%}
// Long ALU reg operation using big decoder
pipe_class ialu_reg_long_fat(rRegL dst)
%{
instruction_count(2);
dst : S4(write);
dst : S3(read);
D0 : S0(2); // big decoder only; twice
ALU : S3(2); // any 2 alus
%}
// Integer ALU reg-reg operation
pipe_class ialu_reg_reg(rRegI dst, rRegI src)
%{
single_instruction;
dst : S4(write);
src : S3(read);
DECODE : S0; // any decoder
ALU : S3; // any alu
%}
// Long ALU reg-reg operation
pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
%{
instruction_count(2);
dst : S4(write);
src : S3(read);
DECODE : S0(2); // any 2 decoders
ALU : S3(2); // both alus
%}
// Integer ALU reg-reg operation
pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
%{
single_instruction;
dst : S4(write);
src : S3(read);
D0 : S0; // big decoder only
ALU : S3; // any alu
%}
// Long ALU reg-reg operation
pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
%{
instruction_count(2);
dst : S4(write);
src : S3(read);
D0 : S0(2); // big decoder only; twice
ALU : S3(2); // both alus
%}
// Integer ALU reg-mem operation
pipe_class ialu_reg_mem(rRegI dst, memory mem)
%{
single_instruction;
dst : S5(write);
mem : S3(read);
D0 : S0; // big decoder only
ALU : S4; // any alu
MEM : S3; // any mem
%}
// Integer mem operation (prefetch)
pipe_class ialu_mem(memory mem)
%{
single_instruction;
mem : S3(read);
D0 : S0; // big decoder only
MEM : S3; // any mem
%}
// Integer Store to Memory
pipe_class ialu_mem_reg(memory mem, rRegI src)
%{
single_instruction;
mem : S3(read);
src : S5(read);
D0 : S0; // big decoder only
ALU : S4; // any alu
MEM : S3;
%}
// // Long Store to Memory
// pipe_class ialu_mem_long_reg(memory mem, rRegL src)
// %{
// instruction_count(2);
// mem : S3(read);
// src : S5(read);
// D0 : S0(2); // big decoder only; twice
// ALU : S4(2); // any 2 alus
// MEM : S3(2); // Both mems
// %}
// Integer Store to Memory
pipe_class ialu_mem_imm(memory mem)
%{
single_instruction;
mem : S3(read);
D0 : S0; // big decoder only
ALU : S4; // any alu
MEM : S3;
%}
// Integer ALU0 reg-reg operation
pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
%{
single_instruction;
dst : S4(write);
src : S3(read);
D0 : S0; // Big decoder only
ALU0 : S3; // only alu0
%}
// Integer ALU0 reg-mem operation
pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
%{
single_instruction;
dst : S5(write);
mem : S3(read);
D0 : S0; // big decoder only
ALU0 : S4; // ALU0 only
MEM : S3; // any mem
%}
// Integer ALU reg-reg operation
pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
%{
single_instruction;
cr : S4(write);
src1 : S3(read);
src2 : S3(read);
DECODE : S0; // any decoder
ALU : S3; // any alu
%}
// Integer ALU reg-imm operation
pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
%{
single_instruction;
cr : S4(write);
src1 : S3(read);
DECODE : S0; // any decoder
ALU : S3; // any alu
%}
// Integer ALU reg-mem operation
pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
%{
single_instruction;
cr : S4(write);
src1 : S3(read);
src2 : S3(read);
D0 : S0; // big decoder only
ALU : S4; // any alu
MEM : S3;
%}
// Conditional move reg-reg
pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
%{
instruction_count(4);
y : S4(read);
q : S3(read);
p : S3(read);
DECODE : S0(4); // any decoder
%}
// Conditional move reg-reg
pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
%{
single_instruction;
dst : S4(write);
src : S3(read);
cr : S3(read);
DECODE : S0; // any decoder
%}
// Conditional move reg-mem
pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
%{
single_instruction;
dst : S4(write);
src : S3(read);
cr : S3(read);
DECODE : S0; // any decoder
MEM : S3;
%}
// Conditional move reg-reg long
pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
%{
single_instruction;
dst : S4(write);
src : S3(read);
cr : S3(read);
DECODE : S0(2); // any 2 decoders
%}
// XXX
// // Conditional move double reg-reg
// pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
// %{
// single_instruction;
// dst : S4(write);
// src : S3(read);
// cr : S3(read);
// DECODE : S0; // any decoder
// %}
// Float reg-reg operation
pipe_class fpu_reg(regD dst)
%{
instruction_count(2);
dst : S3(read);
DECODE : S0(2); // any 2 decoders
FPU : S3;
%}
// Float reg-reg operation
pipe_class fpu_reg_reg(regD dst, regD src)
%{
instruction_count(2);
dst : S4(write);
src : S3(read);
DECODE : S0(2); // any 2 decoders
FPU : S3;
%}
// Float reg-reg operation
pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
%{
instruction_count(3);
dst : S4(write);
src1 : S3(read);
src2 : S3(read);
DECODE : S0(3); // any 3 decoders
FPU : S3(2);
%}
// Float reg-reg operation
pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
%{
instruction_count(4);
dst : S4(write);
src1 : S3(read);
src2 : S3(read);
src3 : S3(read);
DECODE : S0(4); // any 3 decoders
FPU : S3(2);
%}
// Float reg-reg operation
pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
%{
instruction_count(4);
dst : S4(write);
src1 : S3(read);
src2 : S3(read);
src3 : S3(read);
DECODE : S1(3); // any 3 decoders
D0 : S0; // Big decoder only
FPU : S3(2);
MEM : S3;
%}
// Float reg-mem operation
pipe_class fpu_reg_mem(regD dst, memory mem)
%{
instruction_count(2);
dst : S5(write);
mem : S3(read);
D0 : S0; // big decoder only
DECODE : S1; // any decoder for FPU POP
FPU : S4;
MEM : S3; // any mem
%}
// Float reg-mem operation
pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
%{
instruction_count(3);
dst : S5(write);
src1 : S3(read);
mem : S3(read);
D0 : S0; // big decoder only
DECODE : S1(2); // any decoder for FPU POP
FPU : S4;
MEM : S3; // any mem
%}
// Float mem-reg operation
pipe_class fpu_mem_reg(memory mem, regD src)
%{
instruction_count(2);
src : S5(read);
mem : S3(read);
DECODE : S0; // any decoder for FPU PUSH
D0 : S1; // big decoder only
FPU : S4;
MEM : S3; // any mem
%}
pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
%{
instruction_count(3);
src1 : S3(read);
src2 : S3(read);
mem : S3(read);
DECODE : S0(2); // any decoder for FPU PUSH
D0 : S1; // big decoder only
FPU : S4;
MEM : S3; // any mem
%}
pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
%{
instruction_count(3);
src1 : S3(read);
src2 : S3(read);
mem : S4(read);
DECODE : S0; // any decoder for FPU PUSH
D0 : S0(2); // big decoder only
FPU : S4;
MEM : S3(2); // any mem
%}
pipe_class fpu_mem_mem(memory dst, memory src1)
%{
instruction_count(2);
src1 : S3(read);
dst : S4(read);
D0 : S0(2); // big decoder only
MEM : S3(2); // any mem
%}
pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
%{
instruction_count(3);
src1 : S3(read);
src2 : S3(read);
dst : S4(read);
D0 : S0(3); // big decoder only
FPU : S4;
MEM : S3(3); // any mem
%}
pipe_class fpu_mem_reg_con(memory mem, regD src1)
%{
instruction_count(3);
src1 : S4(read);
mem : S4(read);
DECODE : S0; // any decoder for FPU PUSH
D0 : S0(2); // big decoder only
FPU : S4;
MEM : S3(2); // any mem
%}
// Float load constant
pipe_class fpu_reg_con(regD dst)
%{
instruction_count(2);
dst : S5(write);
D0 : S0; // big decoder only for the load
DECODE : S1; // any decoder for FPU POP
FPU : S4;
MEM : S3; // any mem
%}
// Float load constant
pipe_class fpu_reg_reg_con(regD dst, regD src)
%{
instruction_count(3);
dst : S5(write);
src : S3(read);
D0 : S0; // big decoder only for the load
DECODE : S1(2); // any decoder for FPU POP
FPU : S4;
MEM : S3; // any mem
%}
// UnConditional branch
pipe_class pipe_jmp(label labl)
%{
single_instruction;
BR : S3;
%}
// Conditional branch
pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
%{
single_instruction;
cr : S1(read);
BR : S3;
%}
// Allocation idiom
pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
%{
instruction_count(1); force_serialization;
fixed_latency(6);
heap_ptr : S3(read);
DECODE : S0(3);
D0 : S2;
MEM : S3;
ALU : S3(2);
dst : S5(write);
BR : S5;
%}
// Generic big/slow expanded idiom
pipe_class pipe_slow()
%{
instruction_count(10); multiple_bundles; force_serialization;
fixed_latency(100);
D0 : S0(2);
MEM : S3(2);
%}
// The real do-nothing guy
pipe_class empty()
%{
instruction_count(0);
%}
// Define the class for the Nop node
define
%{
MachNop = empty;
%}
%}
//----------INSTRUCTIONS-------------------------------------------------------
//
// match -- States which machine-independent subtree may be replaced
// by this instruction.
// ins_cost -- The estimated cost of this instruction is used by instruction
// selection to identify a minimum cost tree of machine
// instructions that matches a tree of machine-independent
// instructions.
// format -- A string providing the disassembly for this instruction.
// The value of an instruction's operand may be inserted
// by referring to it with a '$' prefix.
// opcode -- Three instruction opcodes may be provided. These are referred
// to within an encode class as $primary, $secondary, and $tertiary
// rrspectively. The primary opcode is commonly used to
// indicate the type of machine instruction, while secondary
// and tertiary are often used for prefix options or addressing
// modes.
// ins_encode -- A list of encode classes with parameters. The encode class
// name must have been defined in an 'enc_class' specification
// in the encode section of the architecture description.
//----------Load/Store/Move Instructions---------------------------------------
//----------Load Instructions--------------------------------------------------
// Load Byte (8 bit signed)
instruct loadB(rRegI dst, memory mem)
%{
match(Set dst (LoadB mem));
ins_cost(125);
format %{ "movsbl $dst, $mem\t# byte" %}
opcode(0x0F, 0xBE);
ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem);
%}
// Load Byte (8 bit signed) into long
// instruct loadB2L(rRegL dst, memory mem)
// %{
// match(Set dst (ConvI2L (LoadB mem)));
// ins_cost(125);
// format %{ "movsbq $dst, $mem\t# byte -> long" %}
// opcode(0x0F, 0xBE);
// ins_encode(REX_reg_mem_wide(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
// ins_pipe(ialu_reg_mem);
// %}
// Load Byte (8 bit UNsigned)
instruct loadUB(rRegI dst, memory mem, immI_255 bytemask)
%{
match(Set dst (AndI (LoadB mem) bytemask));
ins_cost(125);
format %{ "movzbl $dst, $mem\t# ubyte" %}
opcode(0x0F, 0xB6);
ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem);
%}
// Load Byte (8 bit UNsigned) into long
// instruct loadUB2L(rRegL dst, memory mem, immI_255 bytemask)
// %{
// match(Set dst (ConvI2L (AndI (LoadB mem) bytemask)));
// ins_cost(125);
// format %{ "movzbl $dst, $mem\t# ubyte -> long" %}
// opcode(0x0F, 0xB6);
// ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
// ins_pipe(ialu_reg_mem);
// %}
// Load Short (16 bit signed)
instruct loadS(rRegI dst, memory mem)
%{
match(Set dst (LoadS mem));
ins_cost(125); // XXX
format %{ "movswl $dst, $mem\t# short" %}
opcode(0x0F, 0xBF);
ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem);
%}
// Load Short (16 bit signed) into long
// instruct loadS2L(rRegL dst, memory mem)
// %{
// match(Set dst (ConvI2L (LoadS mem)));
// ins_cost(125); // XXX
// format %{ "movswq $dst, $mem\t# short -> long" %}
// opcode(0x0F, 0xBF);
// ins_encode(REX_reg_mem_wide(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
// ins_pipe(ialu_reg_mem);
// %}
// Load Char (16 bit UNsigned)
instruct loadC(rRegI dst, memory mem)
%{
match(Set dst (LoadC mem));
ins_cost(125);
format %{ "movzwl $dst, $mem\t# char" %}
opcode(0x0F, 0xB7);
ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem);
%}
// Load Char (16 bit UNsigned) into long
// instruct loadC2L(rRegL dst, memory mem)
// %{
// match(Set dst (ConvI2L (LoadC mem)));
// ins_cost(125);
// format %{ "movzwl $dst, $mem\t# char -> long" %}
// opcode(0x0F, 0xB7);
// ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
// ins_pipe(ialu_reg_mem);
// %}
// Load Integer
instruct loadI(rRegI dst, memory mem)
%{
match(Set dst (LoadI mem));
ins_cost(125); // XXX
format %{ "movl $dst, $mem\t# int" %}
opcode(0x8B);
ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem);
%}
// Load Long
instruct loadL(rRegL dst, memory mem)
%{
match(Set dst (LoadL mem));
ins_cost(125); // XXX
format %{ "movq $dst, $mem\t# long" %}
opcode(0x8B);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem); // XXX
%}
// Load Range
instruct loadRange(rRegI dst, memory mem)
%{
match(Set dst (LoadRange mem));
ins_cost(125); // XXX
format %{ "movl $dst, $mem\t# range" %}
opcode(0x8B);
ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem);
%}
// Load Pointer
instruct loadP(rRegP dst, memory mem)
%{
match(Set dst (LoadP mem));
ins_cost(125); // XXX
format %{ "movq $dst, $mem\t# ptr" %}
opcode(0x8B);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem); // XXX
%}
// Load Compressed Pointer
instruct loadN(rRegN dst, memory mem)
%{
match(Set dst (LoadN mem));
ins_cost(125); // XXX
format %{ "movl $dst, $mem\t# compressed ptr" %}
ins_encode %{
Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
Register dst = as_Register($dst$$reg);
__ movl(dst, addr);
%}
ins_pipe(ialu_reg_mem); // XXX
%}
// Load Klass Pointer
instruct loadKlass(rRegP dst, memory mem)
%{
match(Set dst (LoadKlass mem));
ins_cost(125); // XXX
format %{ "movq $dst, $mem\t# class" %}
opcode(0x8B);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem); // XXX
%}
// Load narrow Klass Pointer
instruct loadNKlass(rRegN dst, memory mem)
%{
match(Set dst (LoadNKlass mem));
ins_cost(125); // XXX
format %{ "movl $dst, $mem\t# compressed klass ptr" %}
ins_encode %{
Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
Register dst = as_Register($dst$$reg);
__ movl(dst, addr);
%}
ins_pipe(ialu_reg_mem); // XXX
%}
// Load Float
instruct loadF(regF dst, memory mem)
%{
match(Set dst (LoadF mem));
ins_cost(145); // XXX
format %{ "movss $dst, $mem\t# float" %}
opcode(0xF3, 0x0F, 0x10);
ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
ins_pipe(pipe_slow); // XXX
%}
// Load Double
instruct loadD_partial(regD dst, memory mem)
%{
predicate(!UseXmmLoadAndClearUpper);
match(Set dst (LoadD mem));
ins_cost(145); // XXX
format %{ "movlpd $dst, $mem\t# double" %}
opcode(0x66, 0x0F, 0x12);
ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
ins_pipe(pipe_slow); // XXX
%}
instruct loadD(regD dst, memory mem)
%{
predicate(UseXmmLoadAndClearUpper);
match(Set dst (LoadD mem));
ins_cost(145); // XXX
format %{ "movsd $dst, $mem\t# double" %}
opcode(0xF2, 0x0F, 0x10);
ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
ins_pipe(pipe_slow); // XXX
%}
// Load Aligned Packed Byte to XMM register
instruct loadA8B(regD dst, memory mem) %{
match(Set dst (Load8B mem));
ins_cost(125);
format %{ "MOVQ $dst,$mem\t! packed8B" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Aligned Packed Short to XMM register
instruct loadA4S(regD dst, memory mem) %{
match(Set dst (Load4S mem));
ins_cost(125);
format %{ "MOVQ $dst,$mem\t! packed4S" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Aligned Packed Char to XMM register
instruct loadA4C(regD dst, memory mem) %{
match(Set dst (Load4C mem));
ins_cost(125);
format %{ "MOVQ $dst,$mem\t! packed4C" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Aligned Packed Integer to XMM register
instruct load2IU(regD dst, memory mem) %{
match(Set dst (Load2I mem));
ins_cost(125);
format %{ "MOVQ $dst,$mem\t! packed2I" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Aligned Packed Single to XMM
instruct loadA2F(regD dst, memory mem) %{
match(Set dst (Load2F mem));
ins_cost(145);
format %{ "MOVQ $dst,$mem\t! packed2F" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Effective Address
instruct leaP8(rRegP dst, indOffset8 mem)
%{
match(Set dst mem);
ins_cost(110); // XXX
format %{ "leaq $dst, $mem\t# ptr 8" %}
opcode(0x8D);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_reg_fat);
%}
instruct leaP32(rRegP dst, indOffset32 mem)
%{
match(Set dst mem);
ins_cost(110);
format %{ "leaq $dst, $mem\t# ptr 32" %}
opcode(0x8D);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_reg_fat);
%}
// instruct leaPIdx(rRegP dst, indIndex mem)
// %{
// match(Set dst mem);
// ins_cost(110);
// format %{ "leaq $dst, $mem\t# ptr idx" %}
// opcode(0x8D);
// ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
// ins_pipe(ialu_reg_reg_fat);
// %}
instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
%{
match(Set dst mem);
ins_cost(110);
format %{ "leaq $dst, $mem\t# ptr idxoff" %}
opcode(0x8D);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_reg_fat);
%}
instruct leaPIdxScale(rRegP dst, indIndexScale mem)
%{
match(Set dst mem);
ins_cost(110);
format %{ "leaq $dst, $mem\t# ptr idxscale" %}
opcode(0x8D);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_reg_fat);
%}
instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
%{
match(Set dst mem);
ins_cost(110);
format %{ "leaq $dst, $mem\t# ptr idxscaleoff" %}
opcode(0x8D);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_reg_fat);
%}
instruct loadConI(rRegI dst, immI src)
%{
match(Set dst src);
format %{ "movl $dst, $src\t# int" %}
ins_encode(load_immI(dst, src));
ins_pipe(ialu_reg_fat); // XXX
%}
instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
%{
match(Set dst src);
effect(KILL cr);
ins_cost(50);
format %{ "xorl $dst, $dst\t# int" %}
opcode(0x33); /* + rd */
ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
ins_pipe(ialu_reg);
%}
instruct loadConL(rRegL dst, immL src)
%{
match(Set dst src);
ins_cost(150);
format %{ "movq $dst, $src\t# long" %}
ins_encode(load_immL(dst, src));
ins_pipe(ialu_reg);
%}
instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
%{
match(Set dst src);
effect(KILL cr);
ins_cost(50);
format %{ "xorl $dst, $dst\t# long" %}
opcode(0x33); /* + rd */
ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
ins_pipe(ialu_reg); // XXX
%}
instruct loadConUL32(rRegL dst, immUL32 src)
%{
match(Set dst src);
ins_cost(60);
format %{ "movl $dst, $src\t# long (unsigned 32-bit)" %}
ins_encode(load_immUL32(dst, src));
ins_pipe(ialu_reg);
%}
instruct loadConL32(rRegL dst, immL32 src)
%{
match(Set dst src);
ins_cost(70);
format %{ "movq $dst, $src\t# long (32-bit)" %}
ins_encode(load_immL32(dst, src));
ins_pipe(ialu_reg);
%}
instruct loadConP(rRegP dst, immP src)
%{
match(Set dst src);
format %{ "movq $dst, $src\t# ptr" %}
ins_encode(load_immP(dst, src));
ins_pipe(ialu_reg_fat); // XXX
%}
instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
%{
match(Set dst src);
effect(KILL cr);
ins_cost(50);
format %{ "xorl $dst, $dst\t# ptr" %}
opcode(0x33); /* + rd */
ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
ins_pipe(ialu_reg);
%}
instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
%{
match(Set dst src);
effect(KILL cr);
ins_cost(60);
format %{ "movl $dst, $src\t# ptr (positive 32-bit)" %}
ins_encode(load_immP31(dst, src));
ins_pipe(ialu_reg);
%}
instruct loadConF(regF dst, immF src)
%{
match(Set dst src);
ins_cost(125);
format %{ "movss $dst, [$src]" %}
ins_encode(load_conF(dst, src));
ins_pipe(pipe_slow);
%}
instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
match(Set dst src);
effect(KILL cr);
format %{ "xorq $dst, $src\t# compressed NULL ptr" %}
ins_encode %{
Register dst = $dst$$Register;
__ xorq(dst, dst);
%}
ins_pipe(ialu_reg);
%}
instruct loadConN(rRegN dst, immN src) %{
match(Set dst src);
ins_cost(125);
format %{ "movl $dst, $src\t# compressed ptr" %}
ins_encode %{
address con = (address)$src$$constant;
Register dst = $dst$$Register;
if (con == NULL) {
ShouldNotReachHere();
} else {
__ set_narrow_oop(dst, (jobject)$src$$constant);
}
%}
ins_pipe(ialu_reg_fat); // XXX
%}
instruct loadConF0(regF dst, immF0 src)
%{
match(Set dst src);
ins_cost(100);
format %{ "xorps $dst, $dst\t# float 0.0" %}
opcode(0x0F, 0x57);
ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
ins_pipe(pipe_slow);
%}
// Use the same format since predicate() can not be used here.
instruct loadConD(regD dst, immD src)
%{
match(Set dst src);
ins_cost(125);
format %{ "movsd $dst, [$src]" %}
ins_encode(load_conD(dst, src));
ins_pipe(pipe_slow);
%}
instruct loadConD0(regD dst, immD0 src)
%{
match(Set dst src);
ins_cost(100);
format %{ "xorpd $dst, $dst\t# double 0.0" %}
opcode(0x66, 0x0F, 0x57);
ins_encode(OpcP, REX_reg_reg(dst, dst), OpcS, OpcT, reg_reg(dst, dst));
ins_pipe(pipe_slow);
%}
instruct loadSSI(rRegI dst, stackSlotI src)
%{
match(Set dst src);
ins_cost(125);
format %{ "movl $dst, $src\t# int stk" %}
opcode(0x8B);
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct loadSSL(rRegL dst, stackSlotL src)
%{
match(Set dst src);
ins_cost(125);
format %{ "movq $dst, $src\t# long stk" %}
opcode(0x8B);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct loadSSP(rRegP dst, stackSlotP src)
%{
match(Set dst src);
ins_cost(125);
format %{ "movq $dst, $src\t# ptr stk" %}
opcode(0x8B);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct loadSSF(regF dst, stackSlotF src)
%{
match(Set dst src);
ins_cost(125);
format %{ "movss $dst, $src\t# float stk" %}
opcode(0xF3, 0x0F, 0x10);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow); // XXX
%}
// Use the same format since predicate() can not be used here.
instruct loadSSD(regD dst, stackSlotD src)
%{
match(Set dst src);
ins_cost(125);
format %{ "movsd $dst, $src\t# double stk" %}
ins_encode %{
__ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
%}
ins_pipe(pipe_slow); // XXX
%}
// Prefetch instructions.
// Must be safe to execute with invalid address (cannot fault).
instruct prefetchr( memory mem ) %{
predicate(ReadPrefetchInstr==3);
match(PrefetchRead mem);
ins_cost(125);
format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
opcode(0x0F, 0x0D); /* Opcode 0F 0D /0 */
ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
ins_pipe(ialu_mem);
%}
instruct prefetchrNTA( memory mem ) %{
predicate(ReadPrefetchInstr==0);
match(PrefetchRead mem);
ins_cost(125);
format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */
ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
ins_pipe(ialu_mem);
%}
instruct prefetchrT0( memory mem ) %{
predicate(ReadPrefetchInstr==1);
match(PrefetchRead mem);
ins_cost(125);
format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
ins_pipe(ialu_mem);
%}
instruct prefetchrT2( memory mem ) %{
predicate(ReadPrefetchInstr==2);
match(PrefetchRead mem);
ins_cost(125);
format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
ins_pipe(ialu_mem);
%}
instruct prefetchw( memory mem ) %{
predicate(AllocatePrefetchInstr==3);
match(PrefetchWrite mem);
ins_cost(125);
format %{ "PREFETCHW $mem\t# Prefetch into level 1 cache and mark modified" %}
opcode(0x0F, 0x0D); /* Opcode 0F 0D /1 */
ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
ins_pipe(ialu_mem);
%}
instruct prefetchwNTA( memory mem ) %{
predicate(AllocatePrefetchInstr==0);
match(PrefetchWrite mem);
ins_cost(125);
format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */
ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
ins_pipe(ialu_mem);
%}
instruct prefetchwT0( memory mem ) %{
predicate(AllocatePrefetchInstr==1);
match(PrefetchWrite mem);
ins_cost(125);
format %{ "PREFETCHT0 $mem\t# Prefetch to level 1 and 2 caches for write" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
ins_pipe(ialu_mem);
%}
instruct prefetchwT2( memory mem ) %{
predicate(AllocatePrefetchInstr==2);
match(PrefetchWrite mem);
ins_cost(125);
format %{ "PREFETCHT2 $mem\t# Prefetch to level 2 cache for write" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
ins_pipe(ialu_mem);
%}
//----------Store Instructions-------------------------------------------------
// Store Byte
instruct storeB(memory mem, rRegI src)
%{
match(Set mem (StoreB mem src));
ins_cost(125); // XXX
format %{ "movb $mem, $src\t# byte" %}
opcode(0x88);
ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
ins_pipe(ialu_mem_reg);
%}
// Store Char/Short
instruct storeC(memory mem, rRegI src)
%{
match(Set mem (StoreC mem src));
ins_cost(125); // XXX
format %{ "movw $mem, $src\t# char/short" %}
opcode(0x89);
ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
ins_pipe(ialu_mem_reg);
%}
// Store Integer
instruct storeI(memory mem, rRegI src)
%{
match(Set mem (StoreI mem src));
ins_cost(125); // XXX
format %{ "movl $mem, $src\t# int" %}
opcode(0x89);
ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
ins_pipe(ialu_mem_reg);
%}
// Store Long
instruct storeL(memory mem, rRegL src)
%{
match(Set mem (StoreL mem src));
ins_cost(125); // XXX
format %{ "movq $mem, $src\t# long" %}
opcode(0x89);
ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
ins_pipe(ialu_mem_reg); // XXX
%}
// Store Pointer
instruct storeP(memory mem, any_RegP src)
%{
match(Set mem (StoreP mem src));
ins_cost(125); // XXX
format %{ "movq $mem, $src\t# ptr" %}
opcode(0x89);
ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
ins_pipe(ialu_mem_reg);
%}
// Store NULL Pointer, mark word, or other simple pointer constant.
instruct storeImmP(memory mem, immP31 src)
%{
match(Set mem (StoreP mem src));
ins_cost(125); // XXX
format %{ "movq $mem, $src\t# ptr" %}
opcode(0xC7); /* C7 /0 */
ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
ins_pipe(ialu_mem_imm);
%}
// Store Compressed Pointer
instruct storeN(memory mem, rRegN src)
%{
match(Set mem (StoreN mem src));
ins_cost(125); // XXX
format %{ "movl $mem, $src\t# compressed ptr" %}
ins_encode %{
Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
Register src = as_Register($src$$reg);
__ movl(addr, src);
%}
ins_pipe(ialu_mem_reg);
%}
// Store Integer Immediate
instruct storeImmI(memory mem, immI src)
%{
match(Set mem (StoreI mem src));
ins_cost(150);
format %{ "movl $mem, $src\t# int" %}
opcode(0xC7); /* C7 /0 */
ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
ins_pipe(ialu_mem_imm);
%}
// Store Long Immediate
instruct storeImmL(memory mem, immL32 src)
%{
match(Set mem (StoreL mem src));
ins_cost(150);
format %{ "movq $mem, $src\t# long" %}
opcode(0xC7); /* C7 /0 */
ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
ins_pipe(ialu_mem_imm);
%}
// Store Short/Char Immediate
instruct storeImmI16(memory mem, immI16 src)
%{
predicate(UseStoreImmI16);
match(Set mem (StoreC mem src));
ins_cost(150);
format %{ "movw $mem, $src\t# short/char" %}
opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
ins_pipe(ialu_mem_imm);
%}
// Store Byte Immediate
instruct storeImmB(memory mem, immI8 src)
%{
match(Set mem (StoreB mem src));
ins_cost(150); // XXX
format %{ "movb $mem, $src\t# byte" %}
opcode(0xC6); /* C6 /0 */
ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Store Aligned Packed Byte XMM register to memory
instruct storeA8B(memory mem, regD src) %{
match(Set mem (Store8B mem src));
ins_cost(145);
format %{ "MOVQ $mem,$src\t! packed8B" %}
ins_encode( movq_st(mem, src));
ins_pipe( pipe_slow );
%}
// Store Aligned Packed Char/Short XMM register to memory
instruct storeA4C(memory mem, regD src) %{
match(Set mem (Store4C mem src));
ins_cost(145);
format %{ "MOVQ $mem,$src\t! packed4C" %}
ins_encode( movq_st(mem, src));
ins_pipe( pipe_slow );
%}
// Store Aligned Packed Integer XMM register to memory
instruct storeA2I(memory mem, regD src) %{
match(Set mem (Store2I mem src));
ins_cost(145);
format %{ "MOVQ $mem,$src\t! packed2I" %}
ins_encode( movq_st(mem, src));
ins_pipe( pipe_slow );
%}
// Store CMS card-mark Immediate
instruct storeImmCM0(memory mem, immI0 src)
%{
match(Set mem (StoreCM mem src));
ins_cost(150); // XXX
format %{ "movb $mem, $src\t# CMS card-mark byte 0" %}
opcode(0xC6); /* C6 /0 */
ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Store Aligned Packed Single Float XMM register to memory
instruct storeA2F(memory mem, regD src) %{
match(Set mem (Store2F mem src));
ins_cost(145);
format %{ "MOVQ $mem,$src\t! packed2F" %}
ins_encode( movq_st(mem, src));
ins_pipe( pipe_slow );
%}
// Store Float
instruct storeF(memory mem, regF src)
%{
match(Set mem (StoreF mem src));
ins_cost(95); // XXX
format %{ "movss $mem, $src\t# float" %}
opcode(0xF3, 0x0F, 0x11);
ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
ins_pipe(pipe_slow); // XXX
%}
// Store immediate Float value (it is faster than store from XMM register)
instruct storeF_imm(memory mem, immF src)
%{
match(Set mem (StoreF mem src));
ins_cost(50);
format %{ "movl $mem, $src\t# float" %}
opcode(0xC7); /* C7 /0 */
ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
ins_pipe(ialu_mem_imm);
%}
// Store Double
instruct storeD(memory mem, regD src)
%{
match(Set mem (StoreD mem src));
ins_cost(95); // XXX
format %{ "movsd $mem, $src\t# double" %}
opcode(0xF2, 0x0F, 0x11);
ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
ins_pipe(pipe_slow); // XXX
%}
// Store immediate double 0.0 (it is faster than store from XMM register)
instruct storeD0_imm(memory mem, immD0 src)
%{
match(Set mem (StoreD mem src));
ins_cost(50);
format %{ "movq $mem, $src\t# double 0." %}
opcode(0xC7); /* C7 /0 */
ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
ins_pipe(ialu_mem_imm);
%}
instruct storeSSI(stackSlotI dst, rRegI src)
%{
match(Set dst src);
ins_cost(100);
format %{ "movl $dst, $src\t# int stk" %}
opcode(0x89);
ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
ins_pipe( ialu_mem_reg );
%}
instruct storeSSL(stackSlotL dst, rRegL src)
%{
match(Set dst src);
ins_cost(100);
format %{ "movq $dst, $src\t# long stk" %}
opcode(0x89);
ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
instruct storeSSP(stackSlotP dst, rRegP src)
%{
match(Set dst src);
ins_cost(100);
format %{ "movq $dst, $src\t# ptr stk" %}
opcode(0x89);
ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
instruct storeSSF(stackSlotF dst, regF src)
%{
match(Set dst src);
ins_cost(95); // XXX
format %{ "movss $dst, $src\t# float stk" %}
opcode(0xF3, 0x0F, 0x11);
ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
ins_pipe(pipe_slow); // XXX
%}
instruct storeSSD(stackSlotD dst, regD src)
%{
match(Set dst src);
ins_cost(95); // XXX
format %{ "movsd $dst, $src\t# double stk" %}
opcode(0xF2, 0x0F, 0x11);
ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
ins_pipe(pipe_slow); // XXX
%}
//----------BSWAP Instructions-------------------------------------------------
instruct bytes_reverse_int(rRegI dst) %{
match(Set dst (ReverseBytesI dst));
format %{ "bswapl $dst" %}
opcode(0x0F, 0xC8); /*Opcode 0F /C8 */
ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
ins_pipe( ialu_reg );
%}
instruct bytes_reverse_long(rRegL dst) %{
match(Set dst (ReverseBytesL dst));
format %{ "bswapq $dst" %}
opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
ins_pipe( ialu_reg);
%}
instruct loadI_reversed(rRegI dst, memory src) %{
match(Set dst (ReverseBytesI (LoadI src)));
format %{ "bswap_movl $dst, $src" %}
opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src), REX_reg(dst), OpcS, opc3_reg(dst));
ins_pipe( ialu_reg_mem );
%}
instruct loadL_reversed(rRegL dst, memory src) %{
match(Set dst (ReverseBytesL (LoadL src)));
format %{ "bswap_movq $dst, $src" %}
opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src), REX_reg_wide(dst), OpcS, opc3_reg(dst));
ins_pipe( ialu_reg_mem );
%}
instruct storeI_reversed(memory dst, rRegI src) %{
match(Set dst (StoreI dst (ReverseBytesI src)));
format %{ "movl_bswap $dst, $src" %}
opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
ins_encode( REX_reg(src), OpcP, opc2_reg(src), REX_reg_mem(src, dst), OpcT, reg_mem(src, dst) );
ins_pipe( ialu_mem_reg );
%}
instruct storeL_reversed(memory dst, rRegL src) %{
match(Set dst (StoreL dst (ReverseBytesL src)));
format %{ "movq_bswap $dst, $src" %}
opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
ins_encode( REX_reg_wide(src), OpcP, opc2_reg(src), REX_reg_mem_wide(src, dst), OpcT, reg_mem(src, dst) );
ins_pipe( ialu_mem_reg );
%}
//----------MemBar Instructions-----------------------------------------------
// Memory barrier flavors
instruct membar_acquire()
%{
match(MemBarAcquire);
ins_cost(0);
size(0);
format %{ "MEMBAR-acquire" %}
ins_encode();
ins_pipe(empty);
%}
instruct membar_acquire_lock()
%{
match(MemBarAcquire);
predicate(Matcher::prior_fast_lock(n));
ins_cost(0);
size(0);
format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
ins_encode();
ins_pipe(empty);
%}
instruct membar_release()
%{
match(MemBarRelease);
ins_cost(0);
size(0);
format %{ "MEMBAR-release" %}
ins_encode();
ins_pipe(empty);
%}
instruct membar_release_lock()
%{
match(MemBarRelease);
predicate(Matcher::post_fast_unlock(n));
ins_cost(0);
size(0);
format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
ins_encode();
ins_pipe(empty);
%}
instruct membar_volatile()
%{
match(MemBarVolatile);
ins_cost(400);
format %{ "MEMBAR-volatile" %}
ins_encode(enc_membar_volatile);
ins_pipe(pipe_slow);
%}
instruct unnecessary_membar_volatile()
%{
match(MemBarVolatile);
predicate(Matcher::post_store_load_barrier(n));
ins_cost(0);
size(0);
format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
ins_encode();
ins_pipe(empty);
%}
//----------Move Instructions--------------------------------------------------
instruct castX2P(rRegP dst, rRegL src)
%{
match(Set dst (CastX2P src));
format %{ "movq $dst, $src\t# long->ptr" %}
ins_encode(enc_copy_wide(dst, src));
ins_pipe(ialu_reg_reg); // XXX
%}
instruct castP2X(rRegL dst, rRegP src)
%{
match(Set dst (CastP2X src));
format %{ "movq $dst, $src\t# ptr -> long" %}
ins_encode(enc_copy_wide(dst, src));
ins_pipe(ialu_reg_reg); // XXX
%}
// Convert oop pointer into compressed form
instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
match(Set dst (EncodeP src));
effect(KILL cr);
format %{ "encode_heap_oop $dst,$src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
if (s != d) {
__ movq(d, s);
}
__ encode_heap_oop(d);
%}
ins_pipe(ialu_reg_long);
%}
instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
match(Set dst (EncodeP src));
effect(KILL cr);
format %{ "encode_heap_oop_not_null $dst,$src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
__ encode_heap_oop_not_null(d, s);
%}
ins_pipe(ialu_reg_long);
%}
instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
match(Set dst (DecodeN src));
effect(KILL cr);
format %{ "decode_heap_oop $dst,$src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
if (s != d) {
__ movq(d, s);
}
__ decode_heap_oop(d);
%}
ins_pipe(ialu_reg_long);
%}
instruct decodeHeapOop_not_null(rRegP dst, rRegN src) %{
predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
match(Set dst (DecodeN src));
format %{ "decode_heap_oop_not_null $dst,$src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
__ decode_heap_oop_not_null(d, s);
%}
ins_pipe(ialu_reg_long);
%}
//----------Conditional Move---------------------------------------------------
// Jump
// dummy instruction for generating temp registers
instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
match(Jump (LShiftL switch_val shift));
ins_cost(350);
predicate(false);
effect(TEMP dest);
format %{ "leaq $dest, table_base\n\t"
"jmp [$dest + $switch_val << $shift]\n\t" %}
ins_encode(jump_enc_offset(switch_val, shift, dest));
ins_pipe(pipe_jmp);
ins_pc_relative(1);
%}
instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
match(Jump (AddL (LShiftL switch_val shift) offset));
ins_cost(350);
effect(TEMP dest);
format %{ "leaq $dest, table_base\n\t"
"jmp [$dest + $switch_val << $shift + $offset]\n\t" %}
ins_encode(jump_enc_addr(switch_val, shift, offset, dest));
ins_pipe(pipe_jmp);
ins_pc_relative(1);
%}
instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
match(Jump switch_val);
ins_cost(350);
effect(TEMP dest);
format %{ "leaq $dest, table_base\n\t"
"jmp [$dest + $switch_val]\n\t" %}
ins_encode(jump_enc(switch_val, dest));
ins_pipe(pipe_jmp);
ins_pc_relative(1);
%}
// Conditional move
instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
%{
match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "cmovl$cop $dst, $src\t# signed, int" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
ins_pipe(pipe_cmov_reg);
%}
instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
ins_pipe(pipe_cmov_reg);
%}
instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
ins_cost(200);
expand %{
cmovI_regU(cop, cr, dst, src);
%}
%}
// Conditional move
instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
ins_cost(250); // XXX
format %{ "cmovl$cop $dst, $src\t# signed, int" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
ins_pipe(pipe_cmov_mem);
%}
// Conditional move
instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
%{
match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
ins_cost(250); // XXX
format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
ins_pipe(pipe_cmov_mem);
%}
instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
ins_cost(250);
expand %{
cmovI_memU(cop, cr, dst, src);
%}
%}
// Conditional move
instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
%{
match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
ins_pipe(pipe_cmov_reg);
%}
// Conditional move
instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
%{
match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
ins_pipe(pipe_cmov_reg);
%}
instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
ins_cost(200);
expand %{
cmovN_regU(cop, cr, dst, src);
%}
%}
// Conditional move
instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
%{
match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
ins_pipe(pipe_cmov_reg); // XXX
%}
// Conditional move
instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
%{
match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
ins_pipe(pipe_cmov_reg); // XXX
%}
instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
ins_cost(200);
expand %{
cmovP_regU(cop, cr, dst, src);
%}
%}
// DISABLED: Requires the ADLC to emit a bottom_type call that
// correctly meets the two pointer arguments; one is an incoming
// register but the other is a memory operand. ALSO appears to
// be buggy with implicit null checks.
//
//// Conditional move
//instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
//%{
// match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
// ins_cost(250);
// format %{ "CMOV$cop $dst,$src\t# ptr" %}
// opcode(0x0F,0x40);
// ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
// ins_pipe( pipe_cmov_mem );
//%}
//
//// Conditional move
//instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
//%{
// match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
// ins_cost(250);
// format %{ "CMOV$cop $dst,$src\t# ptr" %}
// opcode(0x0F,0x40);
// ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
// ins_pipe( pipe_cmov_mem );
//%}
instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
%{
match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "cmovq$cop $dst, $src\t# signed, long" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
ins_pipe(pipe_cmov_reg); // XXX
%}
instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
%{
match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
ins_cost(200); // XXX
format %{ "cmovq$cop $dst, $src\t# signed, long" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
ins_pipe(pipe_cmov_mem); // XXX
%}
instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
%{
match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
ins_pipe(pipe_cmov_reg); // XXX
%}
instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
ins_cost(200);
expand %{
cmovL_regU(cop, cr, dst, src);
%}
%}
instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
%{
match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
ins_cost(200); // XXX
format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
opcode(0x0F, 0x40);
ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
ins_pipe(pipe_cmov_mem); // XXX
%}
instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
ins_cost(200);
expand %{
cmovL_memU(cop, cr, dst, src);
%}
%}
instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
%{
match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "jn$cop skip\t# signed cmove float\n\t"
"movss $dst, $src\n"
"skip:" %}
ins_encode(enc_cmovf_branch(cop, dst, src));
ins_pipe(pipe_slow);
%}
// instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
// %{
// match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
// ins_cost(200); // XXX
// format %{ "jn$cop skip\t# signed cmove float\n\t"
// "movss $dst, $src\n"
// "skip:" %}
// ins_encode(enc_cmovf_mem_branch(cop, dst, src));
// ins_pipe(pipe_slow);
// %}
instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
%{
match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "jn$cop skip\t# unsigned cmove float\n\t"
"movss $dst, $src\n"
"skip:" %}
ins_encode(enc_cmovf_branch(cop, dst, src));
ins_pipe(pipe_slow);
%}
instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
ins_cost(200);
expand %{
cmovF_regU(cop, cr, dst, src);
%}
%}
instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
%{
match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "jn$cop skip\t# signed cmove double\n\t"
"movsd $dst, $src\n"
"skip:" %}
ins_encode(enc_cmovd_branch(cop, dst, src));
ins_pipe(pipe_slow);
%}
instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
%{
match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
ins_cost(200); // XXX
format %{ "jn$cop skip\t# unsigned cmove double\n\t"
"movsd $dst, $src\n"
"skip:" %}
ins_encode(enc_cmovd_branch(cop, dst, src));
ins_pipe(pipe_slow);
%}
instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
ins_cost(200);
expand %{
cmovD_regU(cop, cr, dst, src);
%}
%}
//----------Arithmetic Instructions--------------------------------------------
//----------Addition Instructions----------------------------------------------
instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (AddI dst src));
effect(KILL cr);
format %{ "addl $dst, $src\t# int" %}
opcode(0x03);
ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
%{
match(Set dst (AddI dst src));
effect(KILL cr);
format %{ "addl $dst, $src\t# int" %}
opcode(0x81, 0x00); /* /0 id */
ins_encode(OpcSErm(dst, src), Con8or32(src));
ins_pipe( ialu_reg );
%}
instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
%{
match(Set dst (AddI dst (LoadI src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "addl $dst, $src\t# int" %}
opcode(0x03);
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (AddI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150); // XXX
format %{ "addl $dst, $src\t# int" %}
opcode(0x01); /* Opcode 01 /r */
ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (AddI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "addl $dst, $src\t# int" %}
opcode(0x81); /* Opcode 81 /0 id */
ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
%{
predicate(UseIncDec);
match(Set dst (AddI dst src));
effect(KILL cr);
format %{ "incl $dst\t# int" %}
opcode(0xFF, 0x00); // FF /0
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
%{
predicate(UseIncDec);
match(Set dst (StoreI dst (AddI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "incl $dst\t# int" %}
opcode(0xFF); /* Opcode FF /0 */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
ins_pipe(ialu_mem_imm);
%}
// XXX why does that use AddI
instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
%{
predicate(UseIncDec);
match(Set dst (AddI dst src));
effect(KILL cr);
format %{ "decl $dst\t# int" %}
opcode(0xFF, 0x01); // FF /1
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
// XXX why does that use AddI
instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
%{
predicate(UseIncDec);
match(Set dst (StoreI dst (AddI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "decl $dst\t# int" %}
opcode(0xFF); /* Opcode FF /1 */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
ins_pipe(ialu_mem_imm);
%}
instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
%{
match(Set dst (AddI src0 src1));
ins_cost(110);
format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
opcode(0x8D); /* 0x8D /r */
ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
ins_pipe(ialu_reg_reg);
%}
instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (AddL dst src));
effect(KILL cr);
format %{ "addq $dst, $src\t# long" %}
opcode(0x03);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (AddL dst src));
effect(KILL cr);
format %{ "addq $dst, $src\t# long" %}
opcode(0x81, 0x00); /* /0 id */
ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
ins_pipe( ialu_reg );
%}
instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
%{
match(Set dst (AddL dst (LoadL src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "addq $dst, $src\t# long" %}
opcode(0x03);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (AddL (LoadL dst) src)));
effect(KILL cr);
ins_cost(150); // XXX
format %{ "addq $dst, $src\t# long" %}
opcode(0x01); /* Opcode 01 /r */
ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (AddL (LoadL dst) src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "addq $dst, $src\t# long" %}
opcode(0x81); /* Opcode 81 /0 id */
ins_encode(REX_mem_wide(dst),
OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
%{
predicate(UseIncDec);
match(Set dst (AddL dst src));
effect(KILL cr);
format %{ "incq $dst\t# long" %}
opcode(0xFF, 0x00); // FF /0
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
%{
predicate(UseIncDec);
match(Set dst (StoreL dst (AddL (LoadL dst) src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "incq $dst\t# long" %}
opcode(0xFF); /* Opcode FF /0 */
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
ins_pipe(ialu_mem_imm);
%}
// XXX why does that use AddL
instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
%{
predicate(UseIncDec);
match(Set dst (AddL dst src));
effect(KILL cr);
format %{ "decq $dst\t# long" %}
opcode(0xFF, 0x01); // FF /1
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
// XXX why does that use AddL
instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
%{
predicate(UseIncDec);
match(Set dst (StoreL dst (AddL (LoadL dst) src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "decq $dst\t# long" %}
opcode(0xFF); /* Opcode FF /1 */
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
ins_pipe(ialu_mem_imm);
%}
instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
%{
match(Set dst (AddL src0 src1));
ins_cost(110);
format %{ "leaq $dst, [$src0 + $src1]\t# long" %}
opcode(0x8D); /* 0x8D /r */
ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
ins_pipe(ialu_reg_reg);
%}
instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (AddP dst src));
effect(KILL cr);
format %{ "addq $dst, $src\t# ptr" %}
opcode(0x03);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (AddP dst src));
effect(KILL cr);
format %{ "addq $dst, $src\t# ptr" %}
opcode(0x81, 0x00); /* /0 id */
ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
ins_pipe( ialu_reg );
%}
// XXX addP mem ops ????
instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
%{
match(Set dst (AddP src0 src1));
ins_cost(110);
format %{ "leaq $dst, [$src0 + $src1]\t# ptr" %}
opcode(0x8D); /* 0x8D /r */
ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
ins_pipe(ialu_reg_reg);
%}
instruct checkCastPP(rRegP dst)
%{
match(Set dst (CheckCastPP dst));
size(0);
format %{ "# checkcastPP of $dst" %}
ins_encode(/* empty encoding */);
ins_pipe(empty);
%}
instruct castPP(rRegP dst)
%{
match(Set dst (CastPP dst));
size(0);
format %{ "# castPP of $dst" %}
ins_encode(/* empty encoding */);
ins_pipe(empty);
%}
instruct castII(rRegI dst)
%{
match(Set dst (CastII dst));
size(0);
format %{ "# castII of $dst" %}
ins_encode(/* empty encoding */);
ins_cost(0);
ins_pipe(empty);
%}
// LoadP-locked same as a regular LoadP when used with compare-swap
instruct loadPLocked(rRegP dst, memory mem)
%{
match(Set dst (LoadPLocked mem));
ins_cost(125); // XXX
format %{ "movq $dst, $mem\t# ptr locked" %}
opcode(0x8B);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem); // XXX
%}
// LoadL-locked - same as a regular LoadL when used with compare-swap
instruct loadLLocked(rRegL dst, memory mem)
%{
match(Set dst (LoadLLocked mem));
ins_cost(125); // XXX
format %{ "movq $dst, $mem\t# long locked" %}
opcode(0x8B);
ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem); // XXX
%}
// Conditional-store of the updated heap-top.
// Used during allocation of the shared heap.
// Sets flags (EQ) on success. Implemented with a CMPXCHG on Intel.
instruct storePConditional(memory heap_top_ptr,
rax_RegP oldval, rRegP newval,
rFlagsReg cr)
%{
match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
"If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem_wide(newval, heap_top_ptr),
OpcP, OpcS,
reg_mem(newval, heap_top_ptr));
ins_pipe(pipe_cmpxchg);
%}
// Conditional-store of an int value.
// ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG.
instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
%{
match(Set cr (StoreIConditional mem (Binary oldval newval)));
effect(KILL oldval);
format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem(newval, mem),
OpcP, OpcS,
reg_mem(newval, mem));
ins_pipe(pipe_cmpxchg);
%}
// Conditional-store of a long value.
// ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG.
instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
%{
match(Set cr (StoreLConditional mem (Binary oldval newval)));
effect(KILL oldval);
format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem_wide(newval, mem),
OpcP, OpcS,
reg_mem(newval, mem));
ins_pipe(pipe_cmpxchg);
%}
// XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
instruct compareAndSwapP(rRegI res,
memory mem_ptr,
rax_RegP oldval, rRegP newval,
rFlagsReg cr)
%{
match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "cmpxchgq $mem_ptr,$newval\t# "
"If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
"sete $res\n\t"
"movzbl $res, $res" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem_wide(newval, mem_ptr),
OpcP, OpcS,
reg_mem(newval, mem_ptr),
REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
REX_reg_breg(res, res), // movzbl
Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndSwapL(rRegI res,
memory mem_ptr,
rax_RegL oldval, rRegL newval,
rFlagsReg cr)
%{
match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "cmpxchgq $mem_ptr,$newval\t# "
"If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
"sete $res\n\t"
"movzbl $res, $res" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem_wide(newval, mem_ptr),
OpcP, OpcS,
reg_mem(newval, mem_ptr),
REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
REX_reg_breg(res, res), // movzbl
Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndSwapI(rRegI res,
memory mem_ptr,
rax_RegI oldval, rRegI newval,
rFlagsReg cr)
%{
match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "cmpxchgl $mem_ptr,$newval\t# "
"If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
"sete $res\n\t"
"movzbl $res, $res" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem(newval, mem_ptr),
OpcP, OpcS,
reg_mem(newval, mem_ptr),
REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
REX_reg_breg(res, res), // movzbl
Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndSwapN(rRegI res,
memory mem_ptr,
rax_RegN oldval, rRegN newval,
rFlagsReg cr) %{
match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "cmpxchgl $mem_ptr,$newval\t# "
"If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
"sete $res\n\t"
"movzbl $res, $res" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem(newval, mem_ptr),
OpcP, OpcS,
reg_mem(newval, mem_ptr),
REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
REX_reg_breg(res, res), // movzbl
Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
ins_pipe( pipe_cmpxchg );
%}
//----------Subtraction Instructions-------------------------------------------
// Integer Subtraction Instructions
instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (SubI dst src));
effect(KILL cr);
format %{ "subl $dst, $src\t# int" %}
opcode(0x2B);
ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
%{
match(Set dst (SubI dst src));
effect(KILL cr);
format %{ "subl $dst, $src\t# int" %}
opcode(0x81, 0x05); /* Opcode 81 /5 */
ins_encode(OpcSErm(dst, src), Con8or32(src));
ins_pipe(ialu_reg);
%}
instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
%{
match(Set dst (SubI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "subl $dst, $src\t# int" %}
opcode(0x2B);
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (SubI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "subl $dst, $src\t# int" %}
opcode(0x29); /* Opcode 29 /r */
ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (SubI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "subl $dst, $src\t# int" %}
opcode(0x81); /* Opcode 81 /5 id */
ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (SubL dst src));
effect(KILL cr);
format %{ "subq $dst, $src\t# long" %}
opcode(0x2B);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (SubL dst src));
effect(KILL cr);
format %{ "subq $dst, $src\t# long" %}
opcode(0x81, 0x05); /* Opcode 81 /5 */
ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
ins_pipe(ialu_reg);
%}
instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
%{
match(Set dst (SubL dst (LoadL src)));
effect(KILL cr);
ins_cost(125);
format %{ "subq $dst, $src\t# long" %}
opcode(0x2B);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (SubL (LoadL dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "subq $dst, $src\t# long" %}
opcode(0x29); /* Opcode 29 /r */
ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (SubL (LoadL dst) src)));
effect(KILL cr);
ins_cost(125); // XXX
format %{ "subq $dst, $src\t# long" %}
opcode(0x81); /* Opcode 81 /5 id */
ins_encode(REX_mem_wide(dst),
OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Subtract from a pointer
// XXX hmpf???
instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
%{
match(Set dst (AddP dst (SubI zero src)));
effect(KILL cr);
format %{ "subq $dst, $src\t# ptr - int" %}
opcode(0x2B);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
%{
match(Set dst (SubI zero dst));
effect(KILL cr);
format %{ "negl $dst\t# int" %}
opcode(0xF7, 0x03); // Opcode F7 /3
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
%{
match(Set dst (StoreI dst (SubI zero (LoadI dst))));
effect(KILL cr);
format %{ "negl $dst\t# int" %}
opcode(0xF7, 0x03); // Opcode F7 /3
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_reg);
%}
instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
%{
match(Set dst (SubL zero dst));
effect(KILL cr);
format %{ "negq $dst\t# long" %}
opcode(0xF7, 0x03); // Opcode F7 /3
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
%{
match(Set dst (StoreL dst (SubL zero (LoadL dst))));
effect(KILL cr);
format %{ "negq $dst\t# long" %}
opcode(0xF7, 0x03); // Opcode F7 /3
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_reg);
%}
//----------Multiplication/Division Instructions-------------------------------
// Integer Multiplication Instructions
// Multiply Register
instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (MulI dst src));
effect(KILL cr);
ins_cost(300);
format %{ "imull $dst, $src\t# int" %}
opcode(0x0F, 0xAF);
ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
%{
match(Set dst (MulI src imm));
effect(KILL cr);
ins_cost(300);
format %{ "imull $dst, $src, $imm\t# int" %}
opcode(0x69); /* 69 /r id */
ins_encode(REX_reg_reg(dst, src),
OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
%{
match(Set dst (MulI dst (LoadI src)));
effect(KILL cr);
ins_cost(350);
format %{ "imull $dst, $src\t# int" %}
opcode(0x0F, 0xAF);
ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
ins_pipe(ialu_reg_mem_alu0);
%}
instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
%{
match(Set dst (MulI (LoadI src) imm));
effect(KILL cr);
ins_cost(300);
format %{ "imull $dst, $src, $imm\t# int" %}
opcode(0x69); /* 69 /r id */
ins_encode(REX_reg_mem(dst, src),
OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
ins_pipe(ialu_reg_mem_alu0);
%}
instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (MulL dst src));
effect(KILL cr);
ins_cost(300);
format %{ "imulq $dst, $src\t# long" %}
opcode(0x0F, 0xAF);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
%{
match(Set dst (MulL src imm));
effect(KILL cr);
ins_cost(300);
format %{ "imulq $dst, $src, $imm\t# long" %}
opcode(0x69); /* 69 /r id */
ins_encode(REX_reg_reg_wide(dst, src),
OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
%{
match(Set dst (MulL dst (LoadL src)));
effect(KILL cr);
ins_cost(350);
format %{ "imulq $dst, $src\t# long" %}
opcode(0x0F, 0xAF);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
ins_pipe(ialu_reg_mem_alu0);
%}
instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
%{
match(Set dst (MulL (LoadL src) imm));
effect(KILL cr);
ins_cost(300);
format %{ "imulq $dst, $src, $imm\t# long" %}
opcode(0x69); /* 69 /r id */
ins_encode(REX_reg_mem_wide(dst, src),
OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
ins_pipe(ialu_reg_mem_alu0);
%}
instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
%{
match(Set dst (MulHiL src rax));
effect(USE_KILL rax, KILL cr);
ins_cost(300);
format %{ "imulq RDX:RAX, RAX, $src\t# mulhi" %}
opcode(0xF7, 0x5); /* Opcode F7 /5 */
ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
rFlagsReg cr)
%{
match(Set rax (DivI rax div));
effect(KILL rdx, KILL cr);
ins_cost(30*100+10*100); // XXX
format %{ "cmpl rax, 0x80000000\t# idiv\n\t"
"jne,s normal\n\t"
"xorl rdx, rdx\n\t"
"cmpl $div, -1\n\t"
"je,s done\n"
"normal: cdql\n\t"
"idivl $div\n"
"done:" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
rFlagsReg cr)
%{
match(Set rax (DivL rax div));
effect(KILL rdx, KILL cr);
ins_cost(30*100+10*100); // XXX
format %{ "movq rdx, 0x8000000000000000\t# ldiv\n\t"
"cmpq rax, rdx\n\t"
"jne,s normal\n\t"
"xorl rdx, rdx\n\t"
"cmpq $div, -1\n\t"
"je,s done\n"
"normal: cdqq\n\t"
"idivq $div\n"
"done:" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
ins_pipe(ialu_reg_reg_alu0);
%}
// Integer DIVMOD with Register, both quotient and mod results
instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
rFlagsReg cr)
%{
match(DivModI rax div);
effect(KILL cr);
ins_cost(30*100+10*100); // XXX
format %{ "cmpl rax, 0x80000000\t# idiv\n\t"
"jne,s normal\n\t"
"xorl rdx, rdx\n\t"
"cmpl $div, -1\n\t"
"je,s done\n"
"normal: cdql\n\t"
"idivl $div\n"
"done:" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
ins_pipe(pipe_slow);
%}
// Long DIVMOD with Register, both quotient and mod results
instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
rFlagsReg cr)
%{
match(DivModL rax div);
effect(KILL cr);
ins_cost(30*100+10*100); // XXX
format %{ "movq rdx, 0x8000000000000000\t# ldiv\n\t"
"cmpq rax, rdx\n\t"
"jne,s normal\n\t"
"xorl rdx, rdx\n\t"
"cmpq $div, -1\n\t"
"je,s done\n"
"normal: cdqq\n\t"
"idivq $div\n"
"done:" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
ins_pipe(pipe_slow);
%}
//----------- DivL-By-Constant-Expansions--------------------------------------
// DivI cases are handled by the compiler
// Magic constant, reciprical of 10
instruct loadConL_0x6666666666666667(rRegL dst)
%{
effect(DEF dst);
format %{ "movq $dst, #0x666666666666667\t# Used in div-by-10" %}
ins_encode(load_immL(dst, 0x6666666666666667));
ins_pipe(ialu_reg);
%}
instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
%{
effect(DEF dst, USE src, USE_KILL rax, KILL cr);
format %{ "imulq rdx:rax, rax, $src\t# Used in div-by-10" %}
opcode(0xF7, 0x5); /* Opcode F7 /5 */
ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
%{
effect(USE_DEF dst, KILL cr);
format %{ "sarq $dst, #63\t# Used in div-by-10" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode(reg_opc_imm_wide(dst, 0x3F));
ins_pipe(ialu_reg);
%}
instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
%{
effect(USE_DEF dst, KILL cr);
format %{ "sarq $dst, #2\t# Used in div-by-10" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode(reg_opc_imm_wide(dst, 0x2));
ins_pipe(ialu_reg);
%}
instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
%{
match(Set dst (DivL src div));
ins_cost((5+8)*100);
expand %{
rax_RegL rax; // Killed temp
rFlagsReg cr; // Killed
loadConL_0x6666666666666667(rax); // movq rax, 0x6666666666666667
mul_hi(dst, src, rax, cr); // mulq rdx:rax <= rax * $src
sarL_rReg_63(src, cr); // sarq src, 63
sarL_rReg_2(dst, cr); // sarq rdx, 2
subL_rReg(dst, src, cr); // subl rdx, src
%}
%}
//-----------------------------------------------------------------------------
instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
rFlagsReg cr)
%{
match(Set rdx (ModI rax div));
effect(KILL rax, KILL cr);
ins_cost(300); // XXX
format %{ "cmpl rax, 0x80000000\t# irem\n\t"
"jne,s normal\n\t"
"xorl rdx, rdx\n\t"
"cmpl $div, -1\n\t"
"je,s done\n"
"normal: cdql\n\t"
"idivl $div\n"
"done:" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
rFlagsReg cr)
%{
match(Set rdx (ModL rax div));
effect(KILL rax, KILL cr);
ins_cost(300); // XXX
format %{ "movq rdx, 0x8000000000000000\t# lrem\n\t"
"cmpq rax, rdx\n\t"
"jne,s normal\n\t"
"xorl rdx, rdx\n\t"
"cmpq $div, -1\n\t"
"je,s done\n"
"normal: cdqq\n\t"
"idivq $div\n"
"done:" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
ins_pipe(ialu_reg_reg_alu0);
%}
// Integer Shift Instructions
// Shift Left by one
instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (LShiftI dst shift));
effect(KILL cr);
format %{ "sall $dst, $shift" %}
opcode(0xD1, 0x4); /* D1 /4 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
// Shift Left by one
instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "sall $dst, $shift\t" %}
opcode(0xD1, 0x4); /* D1 /4 */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_imm);
%}
// Shift Left by 8-bit immediate
instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (LShiftI dst shift));
effect(KILL cr);
format %{ "sall $dst, $shift" %}
opcode(0xC1, 0x4); /* C1 /4 ib */
ins_encode(reg_opc_imm(dst, shift));
ins_pipe(ialu_reg);
%}
// Shift Left by 8-bit immediate
instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "sall $dst, $shift" %}
opcode(0xC1, 0x4); /* C1 /4 ib */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
ins_pipe(ialu_mem_imm);
%}
// Shift Left by variable
instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (LShiftI dst shift));
effect(KILL cr);
format %{ "sall $dst, $shift" %}
opcode(0xD3, 0x4); /* D3 /4 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// Shift Left by variable
instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "sall $dst, $shift" %}
opcode(0xD3, 0x4); /* D3 /4 */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_reg);
%}
// Arithmetic shift right by one
instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (RShiftI dst shift));
effect(KILL cr);
format %{ "sarl $dst, $shift" %}
opcode(0xD1, 0x7); /* D1 /7 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
// Arithmetic shift right by one
instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "sarl $dst, $shift" %}
opcode(0xD1, 0x7); /* D1 /7 */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_imm);
%}
// Arithmetic Shift Right by 8-bit immediate
instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (RShiftI dst shift));
effect(KILL cr);
format %{ "sarl $dst, $shift" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode(reg_opc_imm(dst, shift));
ins_pipe(ialu_mem_imm);
%}
// Arithmetic Shift Right by 8-bit immediate
instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "sarl $dst, $shift" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
ins_pipe(ialu_mem_imm);
%}
// Arithmetic Shift Right by variable
instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (RShiftI dst shift));
effect(KILL cr);
format %{ "sarl $dst, $shift" %}
opcode(0xD3, 0x7); /* D3 /7 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// Arithmetic Shift Right by variable
instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "sarl $dst, $shift" %}
opcode(0xD3, 0x7); /* D3 /7 */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_reg);
%}
// Logical shift right by one
instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (URShiftI dst shift));
effect(KILL cr);
format %{ "shrl $dst, $shift" %}
opcode(0xD1, 0x5); /* D1 /5 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
// Logical shift right by one
instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "shrl $dst, $shift" %}
opcode(0xD1, 0x5); /* D1 /5 */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_imm);
%}
// Logical Shift Right by 8-bit immediate
instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (URShiftI dst shift));
effect(KILL cr);
format %{ "shrl $dst, $shift" %}
opcode(0xC1, 0x5); /* C1 /5 ib */
ins_encode(reg_opc_imm(dst, shift));
ins_pipe(ialu_reg);
%}
// Logical Shift Right by 8-bit immediate
instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "shrl $dst, $shift" %}
opcode(0xC1, 0x5); /* C1 /5 ib */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
ins_pipe(ialu_mem_imm);
%}
// Logical Shift Right by variable
instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (URShiftI dst shift));
effect(KILL cr);
format %{ "shrl $dst, $shift" %}
opcode(0xD3, 0x5); /* D3 /5 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// Logical Shift Right by variable
instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "shrl $dst, $shift" %}
opcode(0xD3, 0x5); /* D3 /5 */
ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_reg);
%}
// Long Shift Instructions
// Shift Left by one
instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (LShiftL dst shift));
effect(KILL cr);
format %{ "salq $dst, $shift" %}
opcode(0xD1, 0x4); /* D1 /4 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
// Shift Left by one
instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "salq $dst, $shift" %}
opcode(0xD1, 0x4); /* D1 /4 */
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_imm);
%}
// Shift Left by 8-bit immediate
instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (LShiftL dst shift));
effect(KILL cr);
format %{ "salq $dst, $shift" %}
opcode(0xC1, 0x4); /* C1 /4 ib */
ins_encode(reg_opc_imm_wide(dst, shift));
ins_pipe(ialu_reg);
%}
// Shift Left by 8-bit immediate
instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "salq $dst, $shift" %}
opcode(0xC1, 0x4); /* C1 /4 ib */
ins_encode(REX_mem_wide(dst), OpcP,
RM_opc_mem(secondary, dst), Con8or32(shift));
ins_pipe(ialu_mem_imm);
%}
// Shift Left by variable
instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (LShiftL dst shift));
effect(KILL cr);
format %{ "salq $dst, $shift" %}
opcode(0xD3, 0x4); /* D3 /4 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// Shift Left by variable
instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "salq $dst, $shift" %}
opcode(0xD3, 0x4); /* D3 /4 */
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_reg);
%}
// Arithmetic shift right by one
instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (RShiftL dst shift));
effect(KILL cr);
format %{ "sarq $dst, $shift" %}
opcode(0xD1, 0x7); /* D1 /7 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
// Arithmetic shift right by one
instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "sarq $dst, $shift" %}
opcode(0xD1, 0x7); /* D1 /7 */
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_imm);
%}
// Arithmetic Shift Right by 8-bit immediate
instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (RShiftL dst shift));
effect(KILL cr);
format %{ "sarq $dst, $shift" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode(reg_opc_imm_wide(dst, shift));
ins_pipe(ialu_mem_imm);
%}
// Arithmetic Shift Right by 8-bit immediate
instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "sarq $dst, $shift" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode(REX_mem_wide(dst), OpcP,
RM_opc_mem(secondary, dst), Con8or32(shift));
ins_pipe(ialu_mem_imm);
%}
// Arithmetic Shift Right by variable
instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (RShiftL dst shift));
effect(KILL cr);
format %{ "sarq $dst, $shift" %}
opcode(0xD3, 0x7); /* D3 /7 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// Arithmetic Shift Right by variable
instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "sarq $dst, $shift" %}
opcode(0xD3, 0x7); /* D3 /7 */
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_reg);
%}
// Logical shift right by one
instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (URShiftL dst shift));
effect(KILL cr);
format %{ "shrq $dst, $shift" %}
opcode(0xD1, 0x5); /* D1 /5 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
ins_pipe(ialu_reg);
%}
// Logical shift right by one
instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "shrq $dst, $shift" %}
opcode(0xD1, 0x5); /* D1 /5 */
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_imm);
%}
// Logical Shift Right by 8-bit immediate
instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (URShiftL dst shift));
effect(KILL cr);
format %{ "shrq $dst, $shift" %}
opcode(0xC1, 0x5); /* C1 /5 ib */
ins_encode(reg_opc_imm_wide(dst, shift));
ins_pipe(ialu_reg);
%}
// Logical Shift Right by 8-bit immediate
instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "shrq $dst, $shift" %}
opcode(0xC1, 0x5); /* C1 /5 ib */
ins_encode(REX_mem_wide(dst), OpcP,
RM_opc_mem(secondary, dst), Con8or32(shift));
ins_pipe(ialu_mem_imm);
%}
// Logical Shift Right by variable
instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (URShiftL dst shift));
effect(KILL cr);
format %{ "shrq $dst, $shift" %}
opcode(0xD3, 0x5); /* D3 /5 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// Logical Shift Right by variable
instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
%{
match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
effect(KILL cr);
format %{ "shrq $dst, $shift" %}
opcode(0xD3, 0x5); /* D3 /5 */
ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
ins_pipe(ialu_mem_reg);
%}
// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
// This idiom is used by the compiler for the i2b bytecode.
instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
%{
match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
format %{ "movsbl $dst, $src\t# i2b" %}
opcode(0x0F, 0xBE);
ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
// This idiom is used by the compiler the i2s bytecode.
instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
%{
match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
format %{ "movswl $dst, $src\t# i2s" %}
opcode(0x0F, 0xBF);
ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// ROL/ROR instructions
// ROL expand
instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
effect(KILL cr, USE_DEF dst);
format %{ "roll $dst" %}
opcode(0xD1, 0x0); /* Opcode D1 /0 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "roll $dst, $shift" %}
opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
ins_encode( reg_opc_imm(dst, shift) );
ins_pipe(ialu_reg);
%}
instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
%{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "roll $dst, $shift" %}
opcode(0xD3, 0x0); /* Opcode D3 /0 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// end of ROL expand
// Rotate Left by one
instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
%{
match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
expand %{
rolI_rReg_imm1(dst, cr);
%}
%}
// Rotate Left by 8-bit immediate
instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
%{
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
expand %{
rolI_rReg_imm8(dst, lshift, cr);
%}
%}
// Rotate Left by variable
instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
%{
match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
expand %{
rolI_rReg_CL(dst, shift, cr);
%}
%}
// Rotate Left by variable
instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
%{
match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
expand %{
rolI_rReg_CL(dst, shift, cr);
%}
%}
// ROR expand
instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
%{
effect(USE_DEF dst, KILL cr);
format %{ "rorl $dst" %}
opcode(0xD1, 0x1); /* D1 /1 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
%{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "rorl $dst, $shift" %}
opcode(0xC1, 0x1); /* C1 /1 ib */
ins_encode(reg_opc_imm(dst, shift));
ins_pipe(ialu_reg);
%}
instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
%{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "rorl $dst, $shift" %}
opcode(0xD3, 0x1); /* D3 /1 */
ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// end of ROR expand
// Rotate Right by one
instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
%{
match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
expand %{
rorI_rReg_imm1(dst, cr);
%}
%}
// Rotate Right by 8-bit immediate
instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
%{
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
expand %{
rorI_rReg_imm8(dst, rshift, cr);
%}
%}
// Rotate Right by variable
instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
%{
match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
expand %{
rorI_rReg_CL(dst, shift, cr);
%}
%}
// Rotate Right by variable
instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
%{
match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
expand %{
rorI_rReg_CL(dst, shift, cr);
%}
%}
// for long rotate
// ROL expand
instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
effect(USE_DEF dst, KILL cr);
format %{ "rolq $dst" %}
opcode(0xD1, 0x0); /* Opcode D1 /0 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "rolq $dst, $shift" %}
opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
ins_encode( reg_opc_imm_wide(dst, shift) );
ins_pipe(ialu_reg);
%}
instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
%{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "rolq $dst, $shift" %}
opcode(0xD3, 0x0); /* Opcode D3 /0 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// end of ROL expand
// Rotate Left by one
instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
%{
match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
expand %{
rolL_rReg_imm1(dst, cr);
%}
%}
// Rotate Left by 8-bit immediate
instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
%{
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
expand %{
rolL_rReg_imm8(dst, lshift, cr);
%}
%}
// Rotate Left by variable
instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
%{
match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
expand %{
rolL_rReg_CL(dst, shift, cr);
%}
%}
// Rotate Left by variable
instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
%{
match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
expand %{
rolL_rReg_CL(dst, shift, cr);
%}
%}
// ROR expand
instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
%{
effect(USE_DEF dst, KILL cr);
format %{ "rorq $dst" %}
opcode(0xD1, 0x1); /* D1 /1 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg);
%}
instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
%{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "rorq $dst, $shift" %}
opcode(0xC1, 0x1); /* C1 /1 ib */
ins_encode(reg_opc_imm_wide(dst, shift));
ins_pipe(ialu_reg);
%}
instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
%{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "rorq $dst, $shift" %}
opcode(0xD3, 0x1); /* D3 /1 */
ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
ins_pipe(ialu_reg_reg);
%}
// end of ROR expand
// Rotate Right by one
instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
%{
match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
expand %{
rorL_rReg_imm1(dst, cr);
%}
%}
// Rotate Right by 8-bit immediate
instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
%{
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
expand %{
rorL_rReg_imm8(dst, rshift, cr);
%}
%}
// Rotate Right by variable
instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
%{
match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
expand %{
rorL_rReg_CL(dst, shift, cr);
%}
%}
// Rotate Right by variable
instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
%{
match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
expand %{
rorL_rReg_CL(dst, shift, cr);
%}
%}
// Logical Instructions
// Integer Logical Instructions
// And Instructions
// And Register with Register
instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (AndI dst src));
effect(KILL cr);
format %{ "andl $dst, $src\t# int" %}
opcode(0x23);
ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// And Register with Immediate 255
instruct andI_rReg_imm255(rRegI dst, immI_255 src)
%{
match(Set dst (AndI dst src));
format %{ "movzbl $dst, $dst\t# int & 0xFF" %}
opcode(0x0F, 0xB6);
ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
ins_pipe(ialu_reg);
%}
// And Register with Immediate 255 and promote to long
instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
%{
match(Set dst (ConvI2L (AndI src mask)));
format %{ "movzbl $dst, $src\t# int & 0xFF -> long" %}
opcode(0x0F, 0xB6);
ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
ins_pipe(ialu_reg);
%}
// And Register with Immediate 65535
instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
%{
match(Set dst (AndI dst src));
format %{ "movzwl $dst, $dst\t# int & 0xFFFF" %}
opcode(0x0F, 0xB7);
ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
ins_pipe(ialu_reg);
%}
// And Register with Immediate 65535 and promote to long
instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
%{
match(Set dst (ConvI2L (AndI src mask)));
format %{ "movzwl $dst, $src\t# int & 0xFFFF -> long" %}
opcode(0x0F, 0xB7);
ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
ins_pipe(ialu_reg);
%}
// And Register with Immediate
instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
%{
match(Set dst (AndI dst src));
effect(KILL cr);
format %{ "andl $dst, $src\t# int" %}
opcode(0x81, 0x04); /* Opcode 81 /4 */
ins_encode(OpcSErm(dst, src), Con8or32(src));
ins_pipe(ialu_reg);
%}
// And Register with Memory
instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
%{
match(Set dst (AndI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "andl $dst, $src\t# int" %}
opcode(0x23);
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
// And Memory with Register
instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (AndI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "andl $dst, $src\t# int" %}
opcode(0x21); /* Opcode 21 /r */
ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
// And Memory with Immediate
instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (AndI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "andl $dst, $src\t# int" %}
opcode(0x81, 0x4); /* Opcode 81 /4 id */
ins_encode(REX_mem(dst), OpcSE(src),
RM_opc_mem(secondary, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Or Instructions
// Or Register with Register
instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (OrI dst src));
effect(KILL cr);
format %{ "orl $dst, $src\t# int" %}
opcode(0x0B);
ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// Or Register with Immediate
instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
%{
match(Set dst (OrI dst src));
effect(KILL cr);
format %{ "orl $dst, $src\t# int" %}
opcode(0x81, 0x01); /* Opcode 81 /1 id */
ins_encode(OpcSErm(dst, src), Con8or32(src));
ins_pipe(ialu_reg);
%}
// Or Register with Memory
instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
%{
match(Set dst (OrI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "orl $dst, $src\t# int" %}
opcode(0x0B);
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
// Or Memory with Register
instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (OrI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "orl $dst, $src\t# int" %}
opcode(0x09); /* Opcode 09 /r */
ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
// Or Memory with Immediate
instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (OrI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "orl $dst, $src\t# int" %}
opcode(0x81, 0x1); /* Opcode 81 /1 id */
ins_encode(REX_mem(dst), OpcSE(src),
RM_opc_mem(secondary, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Xor Instructions
// Xor Register with Register
instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (XorI dst src));
effect(KILL cr);
format %{ "xorl $dst, $src\t# int" %}
opcode(0x33);
ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// Xor Register with Immediate -1
instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
match(Set dst (XorI dst imm));
format %{ "not $dst" %}
ins_encode %{
__ notl($dst$$Register);
%}
ins_pipe(ialu_reg);
%}
// Xor Register with Immediate
instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
%{
match(Set dst (XorI dst src));
effect(KILL cr);
format %{ "xorl $dst, $src\t# int" %}
opcode(0x81, 0x06); /* Opcode 81 /6 id */
ins_encode(OpcSErm(dst, src), Con8or32(src));
ins_pipe(ialu_reg);
%}
// Xor Register with Memory
instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
%{
match(Set dst (XorI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "xorl $dst, $src\t# int" %}
opcode(0x33);
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
// Xor Memory with Register
instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (XorI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "xorl $dst, $src\t# int" %}
opcode(0x31); /* Opcode 31 /r */
ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
// Xor Memory with Immediate
instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
%{
match(Set dst (StoreI dst (XorI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "xorl $dst, $src\t# int" %}
opcode(0x81, 0x6); /* Opcode 81 /6 id */
ins_encode(REX_mem(dst), OpcSE(src),
RM_opc_mem(secondary, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Long Logical Instructions
// And Instructions
// And Register with Register
instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (AndL dst src));
effect(KILL cr);
format %{ "andq $dst, $src\t# long" %}
opcode(0x23);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// And Register with Immediate 255
instruct andL_rReg_imm255(rRegL dst, immL_255 src)
%{
match(Set dst (AndL dst src));
format %{ "movzbq $dst, $src\t# long & 0xFF" %}
opcode(0x0F, 0xB6);
ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
ins_pipe(ialu_reg);
%}
// And Register with Immediate 65535
instruct andL_rReg_imm65535(rRegI dst, immL_65535 src)
%{
match(Set dst (AndL dst src));
format %{ "movzwq $dst, $dst\t# long & 0xFFFF" %}
opcode(0x0F, 0xB7);
ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
ins_pipe(ialu_reg);
%}
// And Register with Immediate
instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (AndL dst src));
effect(KILL cr);
format %{ "andq $dst, $src\t# long" %}
opcode(0x81, 0x04); /* Opcode 81 /4 */
ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
ins_pipe(ialu_reg);
%}
// And Register with Memory
instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
%{
match(Set dst (AndL dst (LoadL src)));
effect(KILL cr);
ins_cost(125);
format %{ "andq $dst, $src\t# long" %}
opcode(0x23);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
// And Memory with Register
instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (AndL (LoadL dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "andq $dst, $src\t# long" %}
opcode(0x21); /* Opcode 21 /r */
ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
// And Memory with Immediate
instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (AndL (LoadL dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "andq $dst, $src\t# long" %}
opcode(0x81, 0x4); /* Opcode 81 /4 id */
ins_encode(REX_mem_wide(dst), OpcSE(src),
RM_opc_mem(secondary, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Or Instructions
// Or Register with Register
instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (OrL dst src));
effect(KILL cr);
format %{ "orq $dst, $src\t# long" %}
opcode(0x0B);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// Use any_RegP to match R15 (TLS register) without spilling.
instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
match(Set dst (OrL dst (CastP2X src)));
effect(KILL cr);
format %{ "orq $dst, $src\t# long" %}
opcode(0x0B);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// Or Register with Immediate
instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (OrL dst src));
effect(KILL cr);
format %{ "orq $dst, $src\t# long" %}
opcode(0x81, 0x01); /* Opcode 81 /1 id */
ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
ins_pipe(ialu_reg);
%}
// Or Register with Memory
instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
%{
match(Set dst (OrL dst (LoadL src)));
effect(KILL cr);
ins_cost(125);
format %{ "orq $dst, $src\t# long" %}
opcode(0x0B);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
// Or Memory with Register
instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (OrL (LoadL dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "orq $dst, $src\t# long" %}
opcode(0x09); /* Opcode 09 /r */
ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
// Or Memory with Immediate
instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (OrL (LoadL dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "orq $dst, $src\t# long" %}
opcode(0x81, 0x1); /* Opcode 81 /1 id */
ins_encode(REX_mem_wide(dst), OpcSE(src),
RM_opc_mem(secondary, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Xor Instructions
// Xor Register with Register
instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (XorL dst src));
effect(KILL cr);
format %{ "xorq $dst, $src\t# long" %}
opcode(0x33);
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
ins_pipe(ialu_reg_reg);
%}
// Xor Register with Immediate -1
instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
match(Set dst (XorL dst imm));
format %{ "notq $dst" %}
ins_encode %{
__ notq($dst$$Register);
%}
ins_pipe(ialu_reg);
%}
// Xor Register with Immediate
instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (XorL dst src));
effect(KILL cr);
format %{ "xorq $dst, $src\t# long" %}
opcode(0x81, 0x06); /* Opcode 81 /6 id */
ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
ins_pipe(ialu_reg);
%}
// Xor Register with Memory
instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
%{
match(Set dst (XorL dst (LoadL src)));
effect(KILL cr);
ins_cost(125);
format %{ "xorq $dst, $src\t# long" %}
opcode(0x33);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
// Xor Memory with Register
instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (XorL (LoadL dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "xorq $dst, $src\t# long" %}
opcode(0x31); /* Opcode 31 /r */
ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
// Xor Memory with Immediate
instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
%{
match(Set dst (StoreL dst (XorL (LoadL dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "xorq $dst, $src\t# long" %}
opcode(0x81, 0x6); /* Opcode 81 /6 id */
ins_encode(REX_mem_wide(dst), OpcSE(src),
RM_opc_mem(secondary, dst), Con8or32(src));
ins_pipe(ialu_mem_imm);
%}
// Convert Int to Boolean
instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
%{
match(Set dst (Conv2B src));
effect(KILL cr);
format %{ "testl $src, $src\t# ci2b\n\t"
"setnz $dst\n\t"
"movzbl $dst, $dst" %}
ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
setNZ_reg(dst),
REX_reg_breg(dst, dst), // movzbl
Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
ins_pipe(pipe_slow); // XXX
%}
// Convert Pointer to Boolean
instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
%{
match(Set dst (Conv2B src));
effect(KILL cr);
format %{ "testq $src, $src\t# cp2b\n\t"
"setnz $dst\n\t"
"movzbl $dst, $dst" %}
ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
setNZ_reg(dst),
REX_reg_breg(dst, dst), // movzbl
Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
ins_pipe(pipe_slow); // XXX
%}
instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
%{
match(Set dst (CmpLTMask p q));
effect(KILL cr);
ins_cost(400); // XXX
format %{ "cmpl $p, $q\t# cmpLTMask\n\t"
"setlt $dst\n\t"
"movzbl $dst, $dst\n\t"
"negl $dst" %}
ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
setLT_reg(dst),
REX_reg_breg(dst, dst), // movzbl
Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
neg_reg(dst));
ins_pipe(pipe_slow);
%}
instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
%{
match(Set dst (CmpLTMask dst zero));
effect(KILL cr);
ins_cost(100); // XXX
format %{ "sarl $dst, #31\t# cmpLTMask0" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode(reg_opc_imm(dst, 0x1F));
ins_pipe(ialu_reg);
%}
instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y,
rRegI tmp,
rFlagsReg cr)
%{
match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
effect(TEMP tmp, KILL cr);
ins_cost(400); // XXX
format %{ "subl $p, $q\t# cadd_cmpLTMask1\n\t"
"sbbl $tmp, $tmp\n\t"
"andl $tmp, $y\n\t"
"addl $p, $tmp" %}
ins_encode(enc_cmpLTP(p, q, y, tmp));
ins_pipe(pipe_cmplt);
%}
/* If I enable this, I encourage spilling in the inner loop of compress.
instruct cadd_cmpLTMask_mem( rRegI p, rRegI q, memory y, rRegI tmp, rFlagsReg cr )
%{
match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
effect( TEMP tmp, KILL cr );
ins_cost(400);
format %{ "SUB $p,$q\n\t"
"SBB RCX,RCX\n\t"
"AND RCX,$y\n\t"
"ADD $p,RCX" %}
ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
%}
*/
//---------- FP Instructions------------------------------------------------
instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
%{
match(Set cr (CmpF src1 src2));
ins_cost(145);
format %{ "ucomiss $src1, $src2\n\t"
"jnp,s exit\n\t"
"pushfq\t# saw NaN, set CF\n\t"
"andq [rsp], #0xffffff2b\n\t"
"popfq\n"
"exit: nop\t# avoid branch to branch" %}
opcode(0x0F, 0x2E);
ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
cmpfp_fixup);
ins_pipe(pipe_slow);
%}
instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
match(Set cr (CmpF src1 src2));
ins_cost(145);
format %{ "ucomiss $src1, $src2" %}
ins_encode %{
__ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
%}
ins_pipe(pipe_slow);
%}
instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
%{
match(Set cr (CmpF src1 (LoadF src2)));
ins_cost(145);
format %{ "ucomiss $src1, $src2\n\t"
"jnp,s exit\n\t"
"pushfq\t# saw NaN, set CF\n\t"
"andq [rsp], #0xffffff2b\n\t"
"popfq\n"
"exit: nop\t# avoid branch to branch" %}
opcode(0x0F, 0x2E);
ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
cmpfp_fixup);
ins_pipe(pipe_slow);
%}
instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
match(Set cr (CmpF src1 (LoadF src2)));
ins_cost(100);
format %{ "ucomiss $src1, $src2" %}
opcode(0x0F, 0x2E);
ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2));
ins_pipe(pipe_slow);
%}
instruct cmpF_cc_imm(rFlagsRegU cr, regF src1, immF src2)
%{
match(Set cr (CmpF src1 src2));
ins_cost(145);
format %{ "ucomiss $src1, $src2\n\t"
"jnp,s exit\n\t"
"pushfq\t# saw NaN, set CF\n\t"
"andq [rsp], #0xffffff2b\n\t"
"popfq\n"
"exit: nop\t# avoid branch to branch" %}
opcode(0x0F, 0x2E);
ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
cmpfp_fixup);
ins_pipe(pipe_slow);
%}
instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src1, immF src2) %{
match(Set cr (CmpF src1 src2));
ins_cost(100);
format %{ "ucomiss $src1, $src2" %}
opcode(0x0F, 0x2E);
ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2));
ins_pipe(pipe_slow);
%}
instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
%{
match(Set cr (CmpD src1 src2));
ins_cost(145);
format %{ "ucomisd $src1, $src2\n\t"
"jnp,s exit\n\t"
"pushfq\t# saw NaN, set CF\n\t"
"andq [rsp], #0xffffff2b\n\t"
"popfq\n"
"exit: nop\t# avoid branch to branch" %}
opcode(0x66, 0x0F, 0x2E);
ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
cmpfp_fixup);
ins_pipe(pipe_slow);
%}
instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
match(Set cr (CmpD src1 src2));
ins_cost(100);
format %{ "ucomisd $src1, $src2 test" %}
ins_encode %{
__ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
%}
ins_pipe(pipe_slow);
%}
instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
%{
match(Set cr (CmpD src1 (LoadD src2)));
ins_cost(145);
format %{ "ucomisd $src1, $src2\n\t"
"jnp,s exit\n\t"
"pushfq\t# saw NaN, set CF\n\t"
"andq [rsp], #0xffffff2b\n\t"
"popfq\n"
"exit: nop\t# avoid branch to branch" %}
opcode(0x66, 0x0F, 0x2E);
ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
cmpfp_fixup);
ins_pipe(pipe_slow);
%}
instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
match(Set cr (CmpD src1 (LoadD src2)));
ins_cost(100);
format %{ "ucomisd $src1, $src2" %}
opcode(0x66, 0x0F, 0x2E);
ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2));
ins_pipe(pipe_slow);
%}
instruct cmpD_cc_imm(rFlagsRegU cr, regD src1, immD src2)
%{
match(Set cr (CmpD src1 src2));
ins_cost(145);
format %{ "ucomisd $src1, [$src2]\n\t"
"jnp,s exit\n\t"
"pushfq\t# saw NaN, set CF\n\t"
"andq [rsp], #0xffffff2b\n\t"
"popfq\n"
"exit: nop\t# avoid branch to branch" %}
opcode(0x66, 0x0F, 0x2E);
ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
cmpfp_fixup);
ins_pipe(pipe_slow);
%}
instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src1, immD src2) %{
match(Set cr (CmpD src1 src2));
ins_cost(100);
format %{ "ucomisd $src1, [$src2]" %}
opcode(0x66, 0x0F, 0x2E);
ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2));
ins_pipe(pipe_slow);
%}
// Compare into -1,0,1
instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
%{
match(Set dst (CmpF3 src1 src2));
effect(KILL cr);
ins_cost(275);
format %{ "ucomiss $src1, $src2\n\t"
"movl $dst, #-1\n\t"
"jp,s done\n\t"
"jb,s done\n\t"
"setne $dst\n\t"
"movzbl $dst, $dst\n"
"done:" %}
opcode(0x0F, 0x2E);
ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
cmpfp3(dst));
ins_pipe(pipe_slow);
%}
// Compare into -1,0,1
instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
%{
match(Set dst (CmpF3 src1 (LoadF src2)));
effect(KILL cr);
ins_cost(275);
format %{ "ucomiss $src1, $src2\n\t"
"movl $dst, #-1\n\t"
"jp,s done\n\t"
"jb,s done\n\t"
"setne $dst\n\t"
"movzbl $dst, $dst\n"
"done:" %}
opcode(0x0F, 0x2E);
ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
cmpfp3(dst));
ins_pipe(pipe_slow);
%}
// Compare into -1,0,1
instruct cmpF_imm(rRegI dst, regF src1, immF src2, rFlagsReg cr)
%{
match(Set dst (CmpF3 src1 src2));
effect(KILL cr);
ins_cost(275);
format %{ "ucomiss $src1, [$src2]\n\t"
"movl $dst, #-1\n\t"
"jp,s done\n\t"
"jb,s done\n\t"
"setne $dst\n\t"
"movzbl $dst, $dst\n"
"done:" %}
opcode(0x0F, 0x2E);
ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
cmpfp3(dst));
ins_pipe(pipe_slow);
%}
// Compare into -1,0,1
instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
%{
match(Set dst (CmpD3 src1 src2));
effect(KILL cr);
ins_cost(275);
format %{ "ucomisd $src1, $src2\n\t"
"movl $dst, #-1\n\t"
"jp,s done\n\t"
"jb,s done\n\t"
"setne $dst\n\t"
"movzbl $dst, $dst\n"
"done:" %}
opcode(0x66, 0x0F, 0x2E);
ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
cmpfp3(dst));
ins_pipe(pipe_slow);
%}
// Compare into -1,0,1
instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
%{
match(Set dst (CmpD3 src1 (LoadD src2)));
effect(KILL cr);
ins_cost(275);
format %{ "ucomisd $src1, $src2\n\t"
"movl $dst, #-1\n\t"
"jp,s done\n\t"
"jb,s done\n\t"
"setne $dst\n\t"
"movzbl $dst, $dst\n"
"done:" %}
opcode(0x66, 0x0F, 0x2E);
ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
cmpfp3(dst));
ins_pipe(pipe_slow);
%}
// Compare into -1,0,1
instruct cmpD_imm(rRegI dst, regD src1, immD src2, rFlagsReg cr)
%{
match(Set dst (CmpD3 src1 src2));
effect(KILL cr);
ins_cost(275);
format %{ "ucomisd $src1, [$src2]\n\t"
"movl $dst, #-1\n\t"
"jp,s done\n\t"
"jb,s done\n\t"
"setne $dst\n\t"
"movzbl $dst, $dst\n"
"done:" %}
opcode(0x66, 0x0F, 0x2E);
ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
cmpfp3(dst));
ins_pipe(pipe_slow);
%}
instruct addF_reg(regF dst, regF src)
%{
match(Set dst (AddF dst src));
format %{ "addss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x58);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct addF_mem(regF dst, memory src)
%{
match(Set dst (AddF dst (LoadF src)));
format %{ "addss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x58);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct addF_imm(regF dst, immF src)
%{
match(Set dst (AddF dst src));
format %{ "addss $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x58);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
ins_pipe(pipe_slow);
%}
instruct addD_reg(regD dst, regD src)
%{
match(Set dst (AddD dst src));
format %{ "addsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x58);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct addD_mem(regD dst, memory src)
%{
match(Set dst (AddD dst (LoadD src)));
format %{ "addsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x58);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct addD_imm(regD dst, immD src)
%{
match(Set dst (AddD dst src));
format %{ "addsd $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x58);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
ins_pipe(pipe_slow);
%}
instruct subF_reg(regF dst, regF src)
%{
match(Set dst (SubF dst src));
format %{ "subss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x5C);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct subF_mem(regF dst, memory src)
%{
match(Set dst (SubF dst (LoadF src)));
format %{ "subss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x5C);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct subF_imm(regF dst, immF src)
%{
match(Set dst (SubF dst src));
format %{ "subss $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x5C);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
ins_pipe(pipe_slow);
%}
instruct subD_reg(regD dst, regD src)
%{
match(Set dst (SubD dst src));
format %{ "subsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x5C);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct subD_mem(regD dst, memory src)
%{
match(Set dst (SubD dst (LoadD src)));
format %{ "subsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x5C);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct subD_imm(regD dst, immD src)
%{
match(Set dst (SubD dst src));
format %{ "subsd $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x5C);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
ins_pipe(pipe_slow);
%}
instruct mulF_reg(regF dst, regF src)
%{
match(Set dst (MulF dst src));
format %{ "mulss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x59);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct mulF_mem(regF dst, memory src)
%{
match(Set dst (MulF dst (LoadF src)));
format %{ "mulss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x59);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct mulF_imm(regF dst, immF src)
%{
match(Set dst (MulF dst src));
format %{ "mulss $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x59);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
ins_pipe(pipe_slow);
%}
instruct mulD_reg(regD dst, regD src)
%{
match(Set dst (MulD dst src));
format %{ "mulsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x59);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct mulD_mem(regD dst, memory src)
%{
match(Set dst (MulD dst (LoadD src)));
format %{ "mulsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x59);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct mulD_imm(regD dst, immD src)
%{
match(Set dst (MulD dst src));
format %{ "mulsd $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x59);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
ins_pipe(pipe_slow);
%}
instruct divF_reg(regF dst, regF src)
%{
match(Set dst (DivF dst src));
format %{ "divss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x5E);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct divF_mem(regF dst, memory src)
%{
match(Set dst (DivF dst (LoadF src)));
format %{ "divss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x5E);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct divF_imm(regF dst, immF src)
%{
match(Set dst (DivF dst src));
format %{ "divss $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x5E);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
ins_pipe(pipe_slow);
%}
instruct divD_reg(regD dst, regD src)
%{
match(Set dst (DivD dst src));
format %{ "divsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x5E);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct divD_mem(regD dst, memory src)
%{
match(Set dst (DivD dst (LoadD src)));
format %{ "divsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x5E);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct divD_imm(regD dst, immD src)
%{
match(Set dst (DivD dst src));
format %{ "divsd $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x5E);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
ins_pipe(pipe_slow);
%}
instruct sqrtF_reg(regF dst, regF src)
%{
match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
format %{ "sqrtss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x51);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct sqrtF_mem(regF dst, memory src)
%{
match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF src)))));
format %{ "sqrtss $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x51);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct sqrtF_imm(regF dst, immF src)
%{
match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
format %{ "sqrtss $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF3, 0x0F, 0x51);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
ins_pipe(pipe_slow);
%}
instruct sqrtD_reg(regD dst, regD src)
%{
match(Set dst (SqrtD src));
format %{ "sqrtsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x51);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow);
%}
instruct sqrtD_mem(regD dst, memory src)
%{
match(Set dst (SqrtD (LoadD src)));
format %{ "sqrtsd $dst, $src" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x51);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct sqrtD_imm(regD dst, immD src)
%{
match(Set dst (SqrtD src));
format %{ "sqrtsd $dst, [$src]" %}
ins_cost(150); // XXX
opcode(0xF2, 0x0F, 0x51);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
ins_pipe(pipe_slow);
%}
instruct absF_reg(regF dst)
%{
match(Set dst (AbsF dst));
format %{ "andps $dst, [0x7fffffff]\t# abs float by sign masking" %}
ins_encode(absF_encoding(dst));
ins_pipe(pipe_slow);
%}
instruct absD_reg(regD dst)
%{
match(Set dst (AbsD dst));
format %{ "andpd $dst, [0x7fffffffffffffff]\t"
"# abs double by sign masking" %}
ins_encode(absD_encoding(dst));
ins_pipe(pipe_slow);
%}
instruct negF_reg(regF dst)
%{
match(Set dst (NegF dst));
format %{ "xorps $dst, [0x80000000]\t# neg float by sign flipping" %}
ins_encode(negF_encoding(dst));
ins_pipe(pipe_slow);
%}
instruct negD_reg(regD dst)
%{
match(Set dst (NegD dst));
format %{ "xorpd $dst, [0x8000000000000000]\t"
"# neg double by sign flipping" %}
ins_encode(negD_encoding(dst));
ins_pipe(pipe_slow);
%}
// -----------Trig and Trancendental Instructions------------------------------
instruct cosD_reg(regD dst) %{
match(Set dst (CosD dst));
format %{ "dcos $dst\n\t" %}
opcode(0xD9, 0xFF);
ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct sinD_reg(regD dst) %{
match(Set dst (SinD dst));
format %{ "dsin $dst\n\t" %}
opcode(0xD9, 0xFE);
ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct tanD_reg(regD dst) %{
match(Set dst (TanD dst));
format %{ "dtan $dst\n\t" %}
ins_encode( Push_SrcXD(dst),
Opcode(0xD9), Opcode(0xF2), //fptan
Opcode(0xDD), Opcode(0xD8), //fstp st
Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct log10D_reg(regD dst) %{
// The source and result Double operands in XMM registers
match(Set dst (Log10D dst));
// fldlg2 ; push log_10(2) on the FPU stack; full 80-bit number
// fyl2x ; compute log_10(2) * log_2(x)
format %{ "fldlg2\t\t\t#Log10\n\t"
"fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
%}
ins_encode(Opcode(0xD9), Opcode(0xEC), // fldlg2
Push_SrcXD(dst),
Opcode(0xD9), Opcode(0xF1), // fyl2x
Push_ResultXD(dst));
ins_pipe( pipe_slow );
%}
instruct logD_reg(regD dst) %{
// The source and result Double operands in XMM registers
match(Set dst (LogD dst));
// fldln2 ; push log_e(2) on the FPU stack; full 80-bit number
// fyl2x ; compute log_e(2) * log_2(x)
format %{ "fldln2\t\t\t#Log_e\n\t"
"fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
%}
ins_encode( Opcode(0xD9), Opcode(0xED), // fldln2
Push_SrcXD(dst),
Opcode(0xD9), Opcode(0xF1), // fyl2x
Push_ResultXD(dst));
ins_pipe( pipe_slow );
%}
//----------Arithmetic Conversion Instructions---------------------------------
instruct roundFloat_nop(regF dst)
%{
match(Set dst (RoundFloat dst));
ins_cost(0);
ins_encode();
ins_pipe(empty);
%}
instruct roundDouble_nop(regD dst)
%{
match(Set dst (RoundDouble dst));
ins_cost(0);
ins_encode();
ins_pipe(empty);
%}
instruct convF2D_reg_reg(regD dst, regF src)
%{
match(Set dst (ConvF2D src));
format %{ "cvtss2sd $dst, $src" %}
opcode(0xF3, 0x0F, 0x5A);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convF2D_reg_mem(regD dst, memory src)
%{
match(Set dst (ConvF2D (LoadF src)));
format %{ "cvtss2sd $dst, $src" %}
opcode(0xF3, 0x0F, 0x5A);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convD2F_reg_reg(regF dst, regD src)
%{
match(Set dst (ConvD2F src));
format %{ "cvtsd2ss $dst, $src" %}
opcode(0xF2, 0x0F, 0x5A);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convD2F_reg_mem(regF dst, memory src)
%{
match(Set dst (ConvD2F (LoadD src)));
format %{ "cvtsd2ss $dst, $src" %}
opcode(0xF2, 0x0F, 0x5A);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow); // XXX
%}
// XXX do mem variants
instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
%{
match(Set dst (ConvF2I src));
effect(KILL cr);
format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
"cmpl $dst, #0x80000000\n\t"
"jne,s done\n\t"
"subq rsp, #8\n\t"
"movss [rsp], $src\n\t"
"call f2i_fixup\n\t"
"popq $dst\n"
"done: "%}
opcode(0xF3, 0x0F, 0x2C);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
f2i_fixup(dst, src));
ins_pipe(pipe_slow);
%}
instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
%{
match(Set dst (ConvF2L src));
effect(KILL cr);
format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
"cmpq $dst, [0x8000000000000000]\n\t"
"jne,s done\n\t"
"subq rsp, #8\n\t"
"movss [rsp], $src\n\t"
"call f2l_fixup\n\t"
"popq $dst\n"
"done: "%}
opcode(0xF3, 0x0F, 0x2C);
ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
f2l_fixup(dst, src));
ins_pipe(pipe_slow);
%}
instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
%{
match(Set dst (ConvD2I src));
effect(KILL cr);
format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
"cmpl $dst, #0x80000000\n\t"
"jne,s done\n\t"
"subq rsp, #8\n\t"
"movsd [rsp], $src\n\t"
"call d2i_fixup\n\t"
"popq $dst\n"
"done: "%}
opcode(0xF2, 0x0F, 0x2C);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
d2i_fixup(dst, src));
ins_pipe(pipe_slow);
%}
instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
%{
match(Set dst (ConvD2L src));
effect(KILL cr);
format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
"cmpq $dst, [0x8000000000000000]\n\t"
"jne,s done\n\t"
"subq rsp, #8\n\t"
"movsd [rsp], $src\n\t"
"call d2l_fixup\n\t"
"popq $dst\n"
"done: "%}
opcode(0xF2, 0x0F, 0x2C);
ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
d2l_fixup(dst, src));
ins_pipe(pipe_slow);
%}
instruct convI2F_reg_reg(regF dst, rRegI src)
%{
predicate(!UseXmmI2F);
match(Set dst (ConvI2F src));
format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
opcode(0xF3, 0x0F, 0x2A);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convI2F_reg_mem(regF dst, memory src)
%{
match(Set dst (ConvI2F (LoadI src)));
format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
opcode(0xF3, 0x0F, 0x2A);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convI2D_reg_reg(regD dst, rRegI src)
%{
predicate(!UseXmmI2D);
match(Set dst (ConvI2D src));
format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
opcode(0xF2, 0x0F, 0x2A);
ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convI2D_reg_mem(regD dst, memory src)
%{
match(Set dst (ConvI2D (LoadI src)));
format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
opcode(0xF2, 0x0F, 0x2A);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convXI2F_reg(regF dst, rRegI src)
%{
predicate(UseXmmI2F);
match(Set dst (ConvI2F src));
format %{ "movdl $dst, $src\n\t"
"cvtdq2psl $dst, $dst\t# i2f" %}
ins_encode %{
__ movdl($dst$$XMMRegister, $src$$Register);
__ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
%}
ins_pipe(pipe_slow); // XXX
%}
instruct convXI2D_reg(regD dst, rRegI src)
%{
predicate(UseXmmI2D);
match(Set dst (ConvI2D src));
format %{ "movdl $dst, $src\n\t"
"cvtdq2pdl $dst, $dst\t# i2d" %}
ins_encode %{
__ movdl($dst$$XMMRegister, $src$$Register);
__ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
%}
ins_pipe(pipe_slow); // XXX
%}
instruct convL2F_reg_reg(regF dst, rRegL src)
%{
match(Set dst (ConvL2F src));
format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
opcode(0xF3, 0x0F, 0x2A);
ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convL2F_reg_mem(regF dst, memory src)
%{
match(Set dst (ConvL2F (LoadL src)));
format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
opcode(0xF3, 0x0F, 0x2A);
ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convL2D_reg_reg(regD dst, rRegL src)
%{
match(Set dst (ConvL2D src));
format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
opcode(0xF2, 0x0F, 0x2A);
ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convL2D_reg_mem(regD dst, memory src)
%{
match(Set dst (ConvL2D (LoadL src)));
format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
opcode(0xF2, 0x0F, 0x2A);
ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow); // XXX
%}
instruct convI2L_reg_reg(rRegL dst, rRegI src)
%{
match(Set dst (ConvI2L src));
ins_cost(125);
format %{ "movslq $dst, $src\t# i2l" %}
opcode(0x63); // needs REX.W
ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
ins_pipe(ialu_reg_reg);
%}
// instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
// %{
// match(Set dst (ConvI2L src));
// // predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
// // _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
// predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
// (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
// ((const TypeNode*) n)->type()->is_long()->_lo ==
// (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
// format %{ "movl $dst, $src\t# unsigned i2l" %}
// ins_encode(enc_copy(dst, src));
// // opcode(0x63); // needs REX.W
// // ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
// ins_pipe(ialu_reg_reg);
// %}
instruct convI2L_reg_mem(rRegL dst, memory src)
%{
match(Set dst (ConvI2L (LoadI src)));
format %{ "movslq $dst, $src\t# i2l" %}
opcode(0x63); // needs REX.W
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst,src));
ins_pipe(ialu_reg_mem);
%}
// Zero-extend convert int to long
instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
%{
match(Set dst (AndL (ConvI2L src) mask));
format %{ "movl $dst, $src\t# i2l zero-extend\n\t" %}
ins_encode(enc_copy(dst, src));
ins_pipe(ialu_reg_reg);
%}
// Zero-extend convert int to long
instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
%{
match(Set dst (AndL (ConvI2L (LoadI src)) mask));
format %{ "movl $dst, $src\t# i2l zero-extend\n\t" %}
opcode(0x8B);
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
%{
match(Set dst (AndL src mask));
format %{ "movl $dst, $src\t# zero-extend long" %}
ins_encode(enc_copy_always(dst, src));
ins_pipe(ialu_reg_reg);
%}
instruct convL2I_reg_reg(rRegI dst, rRegL src)
%{
match(Set dst (ConvL2I src));
format %{ "movl $dst, $src\t# l2i" %}
ins_encode(enc_copy_always(dst, src));
ins_pipe(ialu_reg_reg);
%}
instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
match(Set dst (MoveF2I src));
effect(DEF dst, USE src);
ins_cost(125);
format %{ "movl $dst, $src\t# MoveF2I_stack_reg" %}
opcode(0x8B);
ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(125);
format %{ "movss $dst, $src\t# MoveI2F_stack_reg" %}
opcode(0xF3, 0x0F, 0x10);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(125);
format %{ "movq $dst, $src\t# MoveD2L_stack_reg" %}
opcode(0x8B);
ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
ins_pipe(ialu_reg_mem);
%}
instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
predicate(!UseXmmLoadAndClearUpper);
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(125);
format %{ "movlpd $dst, $src\t# MoveL2D_stack_reg" %}
opcode(0x66, 0x0F, 0x12);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
predicate(UseXmmLoadAndClearUpper);
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(125);
format %{ "movsd $dst, $src\t# MoveL2D_stack_reg" %}
opcode(0xF2, 0x0F, 0x10);
ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
ins_pipe(pipe_slow);
%}
instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
match(Set dst (MoveF2I src));
effect(DEF dst, USE src);
ins_cost(95); // XXX
format %{ "movss $dst, $src\t# MoveF2I_reg_stack" %}
opcode(0xF3, 0x0F, 0x11);
ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
ins_pipe(pipe_slow);
%}
instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(100);
format %{ "movl $dst, $src\t# MoveI2F_reg_stack" %}
opcode(0x89);
ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
ins_pipe( ialu_mem_reg );
%}
instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(95); // XXX
format %{ "movsd $dst, $src\t# MoveL2D_reg_stack" %}
opcode(0xF2, 0x0F, 0x11);
ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
ins_pipe(pipe_slow);
%}
instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(100);
format %{ "movq $dst, $src\t# MoveL2D_reg_stack" %}
opcode(0x89);
ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
ins_pipe(ialu_mem_reg);
%}
instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
match(Set dst (MoveF2I src));
effect(DEF dst, USE src);
ins_cost(85);
format %{ "movd $dst,$src\t# MoveF2I" %}
ins_encode %{ __ movdl($dst$$Register, $src$$XMMRegister); %}
ins_pipe( pipe_slow );
%}
instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(85);
format %{ "movd $dst,$src\t# MoveD2L" %}
ins_encode %{ __ movdq($dst$$Register, $src$$XMMRegister); %}
ins_pipe( pipe_slow );
%}
// The next instructions have long latency and use Int unit. Set high cost.
instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(300);
format %{ "movd $dst,$src\t# MoveI2F" %}
ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); %}
ins_pipe( pipe_slow );
%}
instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(300);
format %{ "movd $dst,$src\t# MoveL2D" %}
ins_encode %{ __ movdq($dst$$XMMRegister, $src$$Register); %}
ins_pipe( pipe_slow );
%}
// Replicate scalar to packed byte (1 byte) values in xmm
instruct Repl8B_reg(regD dst, regD src) %{
match(Set dst (Replicate8B src));
format %{ "MOVDQA $dst,$src\n\t"
"PUNPCKLBW $dst,$dst\n\t"
"PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
ins_encode( pshufd_8x8(dst, src));
ins_pipe( pipe_slow );
%}
// Replicate scalar to packed byte (1 byte) values in xmm
instruct Repl8B_rRegI(regD dst, rRegI src) %{
match(Set dst (Replicate8B src));
format %{ "MOVD $dst,$src\n\t"
"PUNPCKLBW $dst,$dst\n\t"
"PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
ins_pipe( pipe_slow );
%}
// Replicate scalar zero to packed byte (1 byte) values in xmm
instruct Repl8B_immI0(regD dst, immI0 zero) %{
match(Set dst (Replicate8B zero));
format %{ "PXOR $dst,$dst\t! replicate8B" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed shore (2 byte) values in xmm
instruct Repl4S_reg(regD dst, regD src) %{
match(Set dst (Replicate4S src));
format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
ins_encode( pshufd_4x16(dst, src));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed shore (2 byte) values in xmm
instruct Repl4S_rRegI(regD dst, rRegI src) %{
match(Set dst (Replicate4S src));
format %{ "MOVD $dst,$src\n\t"
"PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar zero to packed short (2 byte) values in xmm
instruct Repl4S_immI0(regD dst, immI0 zero) %{
match(Set dst (Replicate4S zero));
format %{ "PXOR $dst,$dst\t! replicate4S" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed char (2 byte) values in xmm
instruct Repl4C_reg(regD dst, regD src) %{
match(Set dst (Replicate4C src));
format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
ins_encode( pshufd_4x16(dst, src));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed char (2 byte) values in xmm
instruct Repl4C_rRegI(regD dst, rRegI src) %{
match(Set dst (Replicate4C src));
format %{ "MOVD $dst,$src\n\t"
"PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar zero to packed char (2 byte) values in xmm
instruct Repl4C_immI0(regD dst, immI0 zero) %{
match(Set dst (Replicate4C zero));
format %{ "PXOR $dst,$dst\t! replicate4C" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed integer (4 byte) values in xmm
instruct Repl2I_reg(regD dst, regD src) %{
match(Set dst (Replicate2I src));
format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
ins_encode( pshufd(dst, src, 0x00));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed integer (4 byte) values in xmm
instruct Repl2I_rRegI(regD dst, rRegI src) %{
match(Set dst (Replicate2I src));
format %{ "MOVD $dst,$src\n\t"
"PSHUFD $dst,$dst,0x00\t! replicate2I" %}
ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar zero to packed integer (2 byte) values in xmm
instruct Repl2I_immI0(regD dst, immI0 zero) %{
match(Set dst (Replicate2I zero));
format %{ "PXOR $dst,$dst\t! replicate2I" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_reg(regD dst, regD src) %{
match(Set dst (Replicate2F src));
format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
ins_encode( pshufd(dst, src, 0xe0));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_regF(regD dst, regF src) %{
match(Set dst (Replicate2F src));
format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
ins_encode( pshufd(dst, src, 0xe0));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_immF0(regD dst, immF0 zero) %{
match(Set dst (Replicate2F zero));
format %{ "PXOR $dst,$dst\t! replicate2F" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// =======================================================================
// fast clearing of an array
instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
rFlagsReg cr)
%{
match(Set dummy (ClearArray cnt base));
effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
format %{ "xorl rax, rax\t# ClearArray:\n\t"
"rep stosq\t# Store rax to *rdi++ while rcx--" %}
ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
ins_pipe(pipe_slow);
%}
instruct string_compare(rdi_RegP str1, rsi_RegP str2, rax_RegI tmp1,
rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr)
%{
match(Set result (StrComp str1 str2));
effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
//ins_cost(300);
format %{ "String Compare $str1, $str2 -> $result // XXX KILL RAX, RBX" %}
ins_encode( enc_String_Compare() );
ins_pipe( pipe_slow );
%}
// fast array equals
instruct array_equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI tmp1,
rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr) %{
match(Set result (AryEq ary1 ary2));
effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL cr);
//ins_cost(300);
format %{ "Array Equals $ary1,$ary2 -> $result // KILL RAX, RBX" %}
ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result) );
ins_pipe( pipe_slow );
%}
//----------Control Flow Instructions------------------------------------------
// Signed compare Instructions
// XXX more variants!!
instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
%{
match(Set cr (CmpI op1 op2));
effect(DEF cr, USE op1, USE op2);
format %{ "cmpl $op1, $op2" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
ins_pipe(ialu_cr_reg_reg);
%}
instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
%{
match(Set cr (CmpI op1 op2));
format %{ "cmpl $op1, $op2" %}
opcode(0x81, 0x07); /* Opcode 81 /7 */
ins_encode(OpcSErm(op1, op2), Con8or32(op2));
ins_pipe(ialu_cr_reg_imm);
%}
instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
%{
match(Set cr (CmpI op1 (LoadI op2)));
ins_cost(500); // XXX
format %{ "cmpl $op1, $op2" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
ins_pipe(ialu_cr_reg_mem);
%}
instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
%{
match(Set cr (CmpI src zero));
format %{ "testl $src, $src" %}
opcode(0x85);
ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
ins_pipe(ialu_cr_reg_imm);
%}
instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
%{
match(Set cr (CmpI (AndI src con) zero));
format %{ "testl $src, $con" %}
opcode(0xF7, 0x00);
ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
ins_pipe(ialu_cr_reg_imm);
%}
instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
%{
match(Set cr (CmpI (AndI src (LoadI mem)) zero));
format %{ "testl $src, $mem" %}
opcode(0x85);
ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
ins_pipe(ialu_cr_reg_mem);
%}
// Unsigned compare Instructions; really, same as signed except they
// produce an rFlagsRegU instead of rFlagsReg.
instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
%{
match(Set cr (CmpU op1 op2));
format %{ "cmpl $op1, $op2\t# unsigned" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
ins_pipe(ialu_cr_reg_reg);
%}
instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
%{
match(Set cr (CmpU op1 op2));
format %{ "cmpl $op1, $op2\t# unsigned" %}
opcode(0x81,0x07); /* Opcode 81 /7 */
ins_encode(OpcSErm(op1, op2), Con8or32(op2));
ins_pipe(ialu_cr_reg_imm);
%}
instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
%{
match(Set cr (CmpU op1 (LoadI op2)));
ins_cost(500); // XXX
format %{ "cmpl $op1, $op2\t# unsigned" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
ins_pipe(ialu_cr_reg_mem);
%}
// // // Cisc-spilled version of cmpU_rReg
// //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
// //%{
// // match(Set cr (CmpU (LoadI op1) op2));
// //
// // format %{ "CMPu $op1,$op2" %}
// // ins_cost(500);
// // opcode(0x39); /* Opcode 39 /r */
// // ins_encode( OpcP, reg_mem( op1, op2) );
// //%}
instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
%{
match(Set cr (CmpU src zero));
format %{ "testl $src, $src\t# unsigned" %}
opcode(0x85);
ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
ins_pipe(ialu_cr_reg_imm);
%}
instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
%{
match(Set cr (CmpP op1 op2));
format %{ "cmpq $op1, $op2\t# ptr" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
ins_pipe(ialu_cr_reg_reg);
%}
instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
%{
match(Set cr (CmpP op1 (LoadP op2)));
ins_cost(500); // XXX
format %{ "cmpq $op1, $op2\t# ptr" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
ins_pipe(ialu_cr_reg_mem);
%}
// // // Cisc-spilled version of cmpP_rReg
// //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
// //%{
// // match(Set cr (CmpP (LoadP op1) op2));
// //
// // format %{ "CMPu $op1,$op2" %}
// // ins_cost(500);
// // opcode(0x39); /* Opcode 39 /r */
// // ins_encode( OpcP, reg_mem( op1, op2) );
// //%}
// XXX this is generalized by compP_rReg_mem???
// Compare raw pointer (used in out-of-heap check).
// Only works because non-oop pointers must be raw pointers
// and raw pointers have no anti-dependencies.
instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
%{
predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
match(Set cr (CmpP op1 (LoadP op2)));
format %{ "cmpq $op1, $op2\t# raw ptr" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
ins_pipe(ialu_cr_reg_mem);
%}
// This will generate a signed flags result. This should be OK since
// any compare to a zero should be eq/neq.
instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
%{
match(Set cr (CmpP src zero));
format %{ "testq $src, $src\t# ptr" %}
opcode(0x85);
ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
ins_pipe(ialu_cr_reg_imm);
%}
// This will generate a signed flags result. This should be OK since
// any compare to a zero should be eq/neq.
instruct testP_reg_mem(rFlagsReg cr, memory op, immP0 zero)
%{
match(Set cr (CmpP (LoadP op) zero));
ins_cost(500); // XXX
format %{ "testq $op, 0xffffffffffffffff\t# ptr" %}
opcode(0xF7); /* Opcode F7 /0 */
ins_encode(REX_mem_wide(op),
OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
ins_pipe(ialu_cr_reg_imm);
%}
instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
%{
match(Set cr (CmpN op1 op2));
format %{ "cmpl $op1, $op2\t# compressed ptr" %}
ins_encode %{ __ cmpl(as_Register($op1$$reg), as_Register($op2$$reg)); %}
ins_pipe(ialu_cr_reg_reg);
%}
instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
%{
match(Set cr (CmpN src (LoadN mem)));
ins_cost(500); // XXX
format %{ "cmpl $src, mem\t# compressed ptr" %}
ins_encode %{
Address adr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
__ cmpl(as_Register($src$$reg), adr);
%}
ins_pipe(ialu_cr_reg_mem);
%}
instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
match(Set cr (CmpN src zero));
format %{ "testl $src, $src\t# compressed ptr" %}
ins_encode %{ __ testl($src$$Register, $src$$Register); %}
ins_pipe(ialu_cr_reg_imm);
%}
instruct testN_reg_mem(rFlagsReg cr, memory mem, immN0 zero)
%{
match(Set cr (CmpN (LoadN mem) zero));
ins_cost(500); // XXX
format %{ "testl $mem, 0xffffffff\t# compressed ptr" %}
ins_encode %{
Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
__ cmpl(addr, (int)0xFFFFFFFF);
%}
ins_pipe(ialu_cr_reg_mem);
%}
// Yanked all unsigned pointer compare operations.
// Pointer compares are done with CmpP which is already unsigned.
instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
%{
match(Set cr (CmpL op1 op2));
format %{ "cmpq $op1, $op2" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
ins_pipe(ialu_cr_reg_reg);
%}
instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
%{
match(Set cr (CmpL op1 op2));
format %{ "cmpq $op1, $op2" %}
opcode(0x81, 0x07); /* Opcode 81 /7 */
ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
ins_pipe(ialu_cr_reg_imm);
%}
instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
%{
match(Set cr (CmpL op1 (LoadL op2)));
ins_cost(500); // XXX
format %{ "cmpq $op1, $op2" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
ins_pipe(ialu_cr_reg_mem);
%}
instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
%{
match(Set cr (CmpL src zero));
format %{ "testq $src, $src" %}
opcode(0x85);
ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
ins_pipe(ialu_cr_reg_imm);
%}
instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
%{
match(Set cr (CmpL (AndL src con) zero));
format %{ "testq $src, $con\t# long" %}
opcode(0xF7, 0x00);
ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
ins_pipe(ialu_cr_reg_imm);
%}
instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
%{
match(Set cr (CmpL (AndL src (LoadL mem)) zero));
format %{ "testq $src, $mem" %}
opcode(0x85);
ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
ins_pipe(ialu_cr_reg_mem);
%}
// Manifest a CmpL result in an integer register. Very painful.
// This is the test to avoid.
instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
%{
match(Set dst (CmpL3 src1 src2));
effect(KILL flags);
ins_cost(275); // XXX
format %{ "cmpq $src1, $src2\t# CmpL3\n\t"
"movl $dst, -1\n\t"
"jl,s done\n\t"
"setne $dst\n\t"
"movzbl $dst, $dst\n\t"
"done:" %}
ins_encode(cmpl3_flag(src1, src2, dst));
ins_pipe(pipe_slow);
%}
//----------Max and Min--------------------------------------------------------
// Min Instructions
instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
%{
effect(USE_DEF dst, USE src, USE cr);
format %{ "cmovlgt $dst, $src\t# min" %}
opcode(0x0F, 0x4F);
ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
ins_pipe(pipe_cmov_reg);
%}
instruct minI_rReg(rRegI dst, rRegI src)
%{
match(Set dst (MinI dst src));
ins_cost(200);
expand %{
rFlagsReg cr;
compI_rReg(cr, dst, src);
cmovI_reg_g(dst, src, cr);
%}
%}
instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
%{
effect(USE_DEF dst, USE src, USE cr);
format %{ "cmovllt $dst, $src\t# max" %}
opcode(0x0F, 0x4C);
ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
ins_pipe(pipe_cmov_reg);
%}
instruct maxI_rReg(rRegI dst, rRegI src)
%{
match(Set dst (MaxI dst src));
ins_cost(200);
expand %{
rFlagsReg cr;
compI_rReg(cr, dst, src);
cmovI_reg_l(dst, src, cr);
%}
%}
// ============================================================================
// Branch Instructions
// Jump Direct - Label defines a relative address from JMP+1
instruct jmpDir(label labl)
%{
match(Goto);
effect(USE labl);
ins_cost(300);
format %{ "jmp $labl" %}
size(5);
opcode(0xE9);
ins_encode(OpcP, Lbl(labl));
ins_pipe(pipe_jmp);
ins_pc_relative(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
%{
match(If cop cr);
effect(USE labl);
ins_cost(300);
format %{ "j$cop $labl" %}
size(6);
opcode(0x0F, 0x80);
ins_encode(Jcc(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
%{
match(CountedLoopEnd cop cr);
effect(USE labl);
ins_cost(300);
format %{ "j$cop $labl\t# loop end" %}
size(6);
opcode(0x0F, 0x80);
ins_encode(Jcc(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
match(CountedLoopEnd cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "j$cop,u $labl\t# loop end" %}
size(6);
opcode(0x0F, 0x80);
ins_encode(Jcc(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
%}
instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
match(CountedLoopEnd cop cmp);
effect(USE labl);
ins_cost(200);
format %{ "j$cop,u $labl\t# loop end" %}
size(6);
opcode(0x0F, 0x80);
ins_encode(Jcc(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
%}
// Jump Direct Conditional - using unsigned comparison
instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
match(If cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "j$cop,u $labl" %}
size(6);
opcode(0x0F, 0x80);
ins_encode(Jcc(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
%}
instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
match(If cop cmp);
effect(USE labl);
ins_cost(200);
format %{ "j$cop,u $labl" %}
size(6);
opcode(0x0F, 0x80);
ins_encode(Jcc(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
%}
instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
match(If cop cmp);
effect(USE labl);
ins_cost(200);
format %{ $$template
if ($cop$$cmpcode == Assembler::notEqual) {
$$emit$$"jp,u $labl\n\t"
$$emit$$"j$cop,u $labl"
} else {
$$emit$$"jp,u done\n\t"
$$emit$$"j$cop,u $labl\n\t"
$$emit$$"done:"
}
%}
size(12);
opcode(0x0F, 0x80);
ins_encode %{
Label* l = $labl$$label;
$$$emit8$primary;
emit_cc(cbuf, $secondary, Assembler::parity);
int parity_disp = -1;
if ($cop$$cmpcode == Assembler::notEqual) {
// the two jumps 6 bytes apart so the jump distances are too
parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
} else if ($cop$$cmpcode == Assembler::equal) {
parity_disp = 6;
} else {
ShouldNotReachHere();
}
emit_d32(cbuf, parity_disp);
$$$emit8$primary;
emit_cc(cbuf, $secondary, $cop$$cmpcode);
int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
emit_d32(cbuf, disp);
%}
ins_pipe(pipe_jcc);
ins_pc_relative(1);
%}
// ============================================================================
// The 2nd slow-half of a subtype check. Scan the subklass's 2ndary
// superklass array for an instance of the superklass. Set a hidden
// internal cache on a hit (cache is checked with exposed code in
// gen_subtype_check()). Return NZ for a miss or zero for a hit. The
// encoding ALSO sets flags.
instruct partialSubtypeCheck(rdi_RegP result,
rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
rFlagsReg cr)
%{
match(Set result (PartialSubtypeCheck sub super));
effect(KILL rcx, KILL cr);
ins_cost(1100); // slightly larger than the next version
format %{ "cmpq rax, rsi\n\t"
"jeq,s hit\n\t"
"movq rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
"movl rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
"addq rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
"repne scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
"jne,s miss\t\t# Missed: rdi not-zero\n\t"
"movq [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
"hit:\n\t"
"xorq $result, $result\t\t Hit: rdi zero\n\t"
"miss:\t" %}
opcode(0x1); // Force a XOR of RDI
ins_encode(enc_PartialSubtypeCheck());
ins_pipe(pipe_slow);
%}
instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
immP0 zero,
rdi_RegP result)
%{
match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
predicate(!UseCompressedOops); // decoding oop kills condition codes
effect(KILL rcx, KILL result);
ins_cost(1000);
format %{ "cmpq rax, rsi\n\t"
"jeq,s miss\t# Actually a hit; we are done.\n\t"
"movq rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
"movl rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
"addq rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
"repne scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
"jne,s miss\t\t# Missed: flags nz\n\t"
"movq [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
"miss:\t" %}
opcode(0x0); // No need to XOR RDI
ins_encode(enc_PartialSubtypeCheck());
ins_pipe(pipe_slow);
%}
// ============================================================================
// Branch Instructions -- short offset versions
//
// These instructions are used to replace jumps of a long offset (the default
// match) with jumps of a shorter offset. These instructions are all tagged
// with the ins_short_branch attribute, which causes the ADLC to suppress the
// match rules in general matching. Instead, the ADLC generates a conversion
// method in the MachNode which can be used to do in-place replacement of the
// long variant with the shorter variant. The compiler will determine if a
// branch can be taken by the is_short_branch_offset() predicate in the machine
// specific code section of the file.
// Jump Direct - Label defines a relative address from JMP+1
instruct jmpDir_short(label labl) %{
match(Goto);
effect(USE labl);
ins_cost(300);
format %{ "jmp,s $labl" %}
size(2);
opcode(0xEB);
ins_encode(OpcP, LblShort(labl));
ins_pipe(pipe_jmp);
ins_pc_relative(1);
ins_short_branch(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
match(If cop cr);
effect(USE labl);
ins_cost(300);
format %{ "j$cop,s $labl" %}
size(2);
opcode(0x70);
ins_encode(JccShort(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
ins_short_branch(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
match(CountedLoopEnd cop cr);
effect(USE labl);
ins_cost(300);
format %{ "j$cop,s $labl\t# loop end" %}
size(2);
opcode(0x70);
ins_encode(JccShort(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
ins_short_branch(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
match(CountedLoopEnd cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "j$cop,us $labl\t# loop end" %}
size(2);
opcode(0x70);
ins_encode(JccShort(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
ins_short_branch(1);
%}
instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
match(CountedLoopEnd cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "j$cop,us $labl\t# loop end" %}
size(2);
opcode(0x70);
ins_encode(JccShort(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
ins_short_branch(1);
%}
// Jump Direct Conditional - using unsigned comparison
instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
match(If cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "j$cop,us $labl" %}
size(2);
opcode(0x70);
ins_encode(JccShort(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
ins_short_branch(1);
%}
instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
match(If cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "j$cop,us $labl" %}
size(2);
opcode(0x70);
ins_encode(JccShort(cop, labl));
ins_pipe(pipe_jcc);
ins_pc_relative(1);
ins_short_branch(1);
%}
instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
match(If cop cmp);
effect(USE labl);
ins_cost(300);
format %{ $$template
if ($cop$$cmpcode == Assembler::notEqual) {
$$emit$$"jp,u,s $labl\n\t"
$$emit$$"j$cop,u,s $labl"
} else {
$$emit$$"jp,u,s done\n\t"
$$emit$$"j$cop,u,s $labl\n\t"
$$emit$$"done:"
}
%}
size(4);
opcode(0x70);
ins_encode %{
Label* l = $labl$$label;
emit_cc(cbuf, $primary, Assembler::parity);
int parity_disp = -1;
if ($cop$$cmpcode == Assembler::notEqual) {
parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
} else if ($cop$$cmpcode == Assembler::equal) {
parity_disp = 2;
} else {
ShouldNotReachHere();
}
emit_d8(cbuf, parity_disp);
emit_cc(cbuf, $primary, $cop$$cmpcode);
int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
emit_d8(cbuf, disp);
assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
%}
ins_pipe(pipe_jcc);
ins_pc_relative(1);
ins_short_branch(1);
%}
// ============================================================================
// inlined locking and unlocking
instruct cmpFastLock(rFlagsReg cr,
rRegP object, rRegP box, rax_RegI tmp, rRegP scr)
%{
match(Set cr (FastLock object box));
effect(TEMP tmp, TEMP scr);
ins_cost(300);
format %{ "fastlock $object,$box,$tmp,$scr" %}
ins_encode(Fast_Lock(object, box, tmp, scr));
ins_pipe(pipe_slow);
ins_pc_relative(1);
%}
instruct cmpFastUnlock(rFlagsReg cr,
rRegP object, rax_RegP box, rRegP tmp)
%{
match(Set cr (FastUnlock object box));
effect(TEMP tmp);
ins_cost(300);
format %{ "fastunlock $object, $box, $tmp" %}
ins_encode(Fast_Unlock(object, box, tmp));
ins_pipe(pipe_slow);
ins_pc_relative(1);
%}
// ============================================================================
// Safepoint Instructions
instruct safePoint_poll(rFlagsReg cr)
%{
match(SafePoint);
effect(KILL cr);
format %{ "testl rax, [rip + #offset_to_poll_page]\t"
"# Safepoint: poll for GC" %}
size(6); // Opcode + ModRM + Disp32 == 6 bytes
ins_cost(125);
ins_encode(enc_safepoint_poll);
ins_pipe(ialu_reg_mem);
%}
// ============================================================================
// Procedure Call/Return Instructions
// Call Java Static Instruction
// Note: If this code changes, the corresponding ret_addr_offset() and
// compute_padding() functions will have to be adjusted.
instruct CallStaticJavaDirect(method meth)
%{
match(CallStaticJava);
effect(USE meth);
ins_cost(300);
format %{ "call,static " %}
opcode(0xE8); /* E8 cd */
ins_encode(Java_Static_Call(meth), call_epilog);
ins_pipe(pipe_slow);
ins_pc_relative(1);
ins_alignment(4);
%}
// Call Java Dynamic Instruction
// Note: If this code changes, the corresponding ret_addr_offset() and
// compute_padding() functions will have to be adjusted.
instruct CallDynamicJavaDirect(method meth)
%{
match(CallDynamicJava);
effect(USE meth);
ins_cost(300);
format %{ "movq rax, #Universe::non_oop_word()\n\t"
"call,dynamic " %}
opcode(0xE8); /* E8 cd */
ins_encode(Java_Dynamic_Call(meth), call_epilog);
ins_pipe(pipe_slow);
ins_pc_relative(1);
ins_alignment(4);
%}
// Call Runtime Instruction
instruct CallRuntimeDirect(method meth)
%{
match(CallRuntime);
effect(USE meth);
ins_cost(300);
format %{ "call,runtime " %}
opcode(0xE8); /* E8 cd */
ins_encode(Java_To_Runtime(meth));
ins_pipe(pipe_slow);
ins_pc_relative(1);
%}
// Call runtime without safepoint
instruct CallLeafDirect(method meth)
%{
match(CallLeaf);
effect(USE meth);
ins_cost(300);
format %{ "call_leaf,runtime " %}
opcode(0xE8); /* E8 cd */
ins_encode(Java_To_Runtime(meth));
ins_pipe(pipe_slow);
ins_pc_relative(1);
%}
// Call runtime without safepoint
instruct CallLeafNoFPDirect(method meth)
%{
match(CallLeafNoFP);
effect(USE meth);
ins_cost(300);
format %{ "call_leaf_nofp,runtime " %}
opcode(0xE8); /* E8 cd */
ins_encode(Java_To_Runtime(meth));
ins_pipe(pipe_slow);
ins_pc_relative(1);
%}
// Return Instruction
// Remove the return address & jump to it.
// Notice: We always emit a nop after a ret to make sure there is room
// for safepoint patching
instruct Ret()
%{
match(Return);
format %{ "ret" %}
opcode(0xC3);
ins_encode(OpcP);
ins_pipe(pipe_jmp);
%}
// Tail Call; Jump from runtime stub to Java code.
// Also known as an 'interprocedural jump'.
// Target of jump will eventually return to caller.
// TailJump below removes the return address.
instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
%{
match(TailCall jump_target method_oop);
ins_cost(300);
format %{ "jmp $jump_target\t# rbx holds method oop" %}
opcode(0xFF, 0x4); /* Opcode FF /4 */
ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
ins_pipe(pipe_jmp);
%}
// Tail Jump; remove the return address; jump to target.
// TailCall above leaves the return address around.
instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
%{
match(TailJump jump_target ex_oop);
ins_cost(300);
format %{ "popq rdx\t# pop return address\n\t"
"jmp $jump_target" %}
opcode(0xFF, 0x4); /* Opcode FF /4 */
ins_encode(Opcode(0x5a), // popq rdx
REX_reg(jump_target), OpcP, reg_opc(jump_target));
ins_pipe(pipe_jmp);
%}
// Create exception oop: created by stack-crawling runtime code.
// Created exception is now available to this handler, and is setup
// just prior to jumping to this handler. No code emitted.
instruct CreateException(rax_RegP ex_oop)
%{
match(Set ex_oop (CreateEx));
size(0);
// use the following format syntax
format %{ "# exception oop is in rax; no code emitted" %}
ins_encode();
ins_pipe(empty);
%}
// Rethrow exception:
// The exception oop will come in the first argument position.
// Then JUMP (not call) to the rethrow stub code.
instruct RethrowException()
%{
match(Rethrow);
// use the following format syntax
format %{ "jmp rethrow_stub" %}
ins_encode(enc_rethrow);
ins_pipe(pipe_jmp);
%}
//----------PEEPHOLE RULES-----------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
// peepmatch ( root_instr_name [precerding_instruction]* );
//
// peepconstraint %{
// (instruction_number.operand_name relational_op instruction_number.operand_name
// [, ...] );
// // instruction numbers are zero-based using left to right order in peepmatch
//
// peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
// // provide an instruction_number.operand_name for each operand that appears
// // in the replacement instruction's match rule
//
// ---------VM FLAGS---------------------------------------------------------
//
// All peephole optimizations can be turned off using -XX:-OptoPeephole
//
// Each peephole rule is given an identifying number starting with zero and
// increasing by one in the order seen by the parser. An individual peephole
// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
// on the command-line.
//
// ---------CURRENT LIMITATIONS----------------------------------------------
//
// Only match adjacent instructions in same basic block
// Only equality constraints
// Only constraints between operands, not (0.dest_reg == RAX_enc)
// Only one replacement instruction
//
// ---------EXAMPLE----------------------------------------------------------
//
// // pertinent parts of existing instructions in architecture description
// instruct movI(rRegI dst, rRegI src)
// %{
// match(Set dst (CopyI src));
// %}
//
// instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
// %{
// match(Set dst (AddI dst src));
// effect(KILL cr);
// %}
//
// // Change (inc mov) to lea
// peephole %{
// // increment preceeded by register-register move
// peepmatch ( incI_rReg movI );
// // require that the destination register of the increment
// // match the destination register of the move
// peepconstraint ( 0.dst == 1.dst );
// // construct a replacement instruction that sets
// // the destination to ( move's source register + one )
// peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// Implementation no longer uses movX instructions since
// machine-independent system no longer uses CopyX nodes.
//
// peephole
// %{
// peepmatch (incI_rReg movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (decI_rReg movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (addI_rReg_imm movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (incL_rReg movL);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (decL_rReg movL);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (addL_rReg_imm movL);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
// %}
// peephole
// %{
// peepmatch (addP_rReg_imm movP);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
// %}
// // Change load of spilled value to only a spill
// instruct storeI(memory mem, rRegI src)
// %{
// match(Set mem (StoreI mem src));
// %}
//
// instruct loadI(rRegI dst, memory mem)
// %{
// match(Set dst (LoadI mem));
// %}
//
peephole
%{
peepmatch (loadI storeI);
peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
peepreplace (storeI(1.mem 1.mem 1.src));
%}
peephole
%{
peepmatch (loadL storeL);
peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
peepreplace (storeL(1.mem 1.mem 1.src));
%}
//----------SMARTSPILL RULES---------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.