6787106: Hotspot 32 bit build fails on platforms having different definitions for intptr_t & int32_t
Summary: Avoid casting between int32_t and intptr_t specifically for MasmAssembler::movptr in 32 bit platforms.
Reviewed-by: jrose, kvn
/*
* Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_c1_FrameMap_x86.cpp.incl"
const int FrameMap::pd_c_runtime_reserved_arg_size = 0;
LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) {
LIR_Opr opr = LIR_OprFact::illegalOpr;
VMReg r_1 = reg->first();
VMReg r_2 = reg->second();
if (r_1->is_stack()) {
// Convert stack slot to an SP offset
// The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value
// so we must add it in here.
int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
opr = LIR_OprFact::address(new LIR_Address(rsp_opr, st_off, type));
} else if (r_1->is_Register()) {
Register reg = r_1->as_Register();
if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
Register reg2 = r_2->as_Register();
#ifdef _LP64
assert(reg2 == reg, "must be same register");
opr = as_long_opr(reg);
#else
opr = as_long_opr(reg2, reg);
#endif // _LP64
} else if (type == T_OBJECT || type == T_ARRAY) {
opr = as_oop_opr(reg);
} else {
opr = as_opr(reg);
}
} else if (r_1->is_FloatRegister()) {
assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
int num = r_1->as_FloatRegister()->encoding();
if (type == T_FLOAT) {
opr = LIR_OprFact::single_fpu(num);
} else {
opr = LIR_OprFact::double_fpu(num);
}
} else if (r_1->is_XMMRegister()) {
assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
int num = r_1->as_XMMRegister()->encoding();
if (type == T_FLOAT) {
opr = LIR_OprFact::single_xmm(num);
} else {
opr = LIR_OprFact::double_xmm(num);
}
} else {
ShouldNotReachHere();
}
return opr;
}
LIR_Opr FrameMap::rsi_opr;
LIR_Opr FrameMap::rdi_opr;
LIR_Opr FrameMap::rbx_opr;
LIR_Opr FrameMap::rax_opr;
LIR_Opr FrameMap::rdx_opr;
LIR_Opr FrameMap::rcx_opr;
LIR_Opr FrameMap::rsp_opr;
LIR_Opr FrameMap::rbp_opr;
LIR_Opr FrameMap::receiver_opr;
LIR_Opr FrameMap::rsi_oop_opr;
LIR_Opr FrameMap::rdi_oop_opr;
LIR_Opr FrameMap::rbx_oop_opr;
LIR_Opr FrameMap::rax_oop_opr;
LIR_Opr FrameMap::rdx_oop_opr;
LIR_Opr FrameMap::rcx_oop_opr;
LIR_Opr FrameMap::long0_opr;
LIR_Opr FrameMap::long1_opr;
LIR_Opr FrameMap::fpu0_float_opr;
LIR_Opr FrameMap::fpu0_double_opr;
LIR_Opr FrameMap::xmm0_float_opr;
LIR_Opr FrameMap::xmm0_double_opr;
#ifdef _LP64
LIR_Opr FrameMap::r8_opr;
LIR_Opr FrameMap::r9_opr;
LIR_Opr FrameMap::r10_opr;
LIR_Opr FrameMap::r11_opr;
LIR_Opr FrameMap::r12_opr;
LIR_Opr FrameMap::r13_opr;
LIR_Opr FrameMap::r14_opr;
LIR_Opr FrameMap::r15_opr;
// r10 and r15 can never contain oops since they aren't available to
// the allocator
LIR_Opr FrameMap::r8_oop_opr;
LIR_Opr FrameMap::r9_oop_opr;
LIR_Opr FrameMap::r11_oop_opr;
LIR_Opr FrameMap::r12_oop_opr;
LIR_Opr FrameMap::r13_oop_opr;
LIR_Opr FrameMap::r14_oop_opr;
#endif // _LP64
LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, };
LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, };
LIR_Opr FrameMap::_caller_save_xmm_regs[] = { 0, };
XMMRegister FrameMap::_xmm_regs [] = { 0, };
XMMRegister FrameMap::nr2xmmreg(int rnr) {
assert(_init_done, "tables not initialized");
return _xmm_regs[rnr];
}
//--------------------------------------------------------
// FrameMap
//--------------------------------------------------------
void FrameMap::init() {
if (_init_done) return;
assert(nof_cpu_regs == LP64_ONLY(16) NOT_LP64(8), "wrong number of CPU registers");
map_register(0, rsi); rsi_opr = LIR_OprFact::single_cpu(0);
map_register(1, rdi); rdi_opr = LIR_OprFact::single_cpu(1);
map_register(2, rbx); rbx_opr = LIR_OprFact::single_cpu(2);
map_register(3, rax); rax_opr = LIR_OprFact::single_cpu(3);
map_register(4, rdx); rdx_opr = LIR_OprFact::single_cpu(4);
map_register(5, rcx); rcx_opr = LIR_OprFact::single_cpu(5);
#ifndef _LP64
// The unallocatable registers are at the end
map_register(6, rsp);
map_register(7, rbp);
#else
map_register( 6, r8); r8_opr = LIR_OprFact::single_cpu(6);
map_register( 7, r9); r9_opr = LIR_OprFact::single_cpu(7);
map_register( 8, r11); r11_opr = LIR_OprFact::single_cpu(8);
map_register( 9, r12); r12_opr = LIR_OprFact::single_cpu(9);
map_register(10, r13); r13_opr = LIR_OprFact::single_cpu(10);
map_register(11, r14); r14_opr = LIR_OprFact::single_cpu(11);
// The unallocatable registers are at the end
map_register(12, r10); r10_opr = LIR_OprFact::single_cpu(12);
map_register(13, r15); r15_opr = LIR_OprFact::single_cpu(13);
map_register(14, rsp);
map_register(15, rbp);
#endif // _LP64
#ifdef _LP64
long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 3 /*eax*/);
long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 2 /*ebx*/);
#else
long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 4 /*edx*/);
long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 5 /*ecx*/);
#endif // _LP64
fpu0_float_opr = LIR_OprFact::single_fpu(0);
fpu0_double_opr = LIR_OprFact::double_fpu(0);
xmm0_float_opr = LIR_OprFact::single_xmm(0);
xmm0_double_opr = LIR_OprFact::double_xmm(0);
_caller_save_cpu_regs[0] = rsi_opr;
_caller_save_cpu_regs[1] = rdi_opr;
_caller_save_cpu_regs[2] = rbx_opr;
_caller_save_cpu_regs[3] = rax_opr;
_caller_save_cpu_regs[4] = rdx_opr;
_caller_save_cpu_regs[5] = rcx_opr;
#ifdef _LP64
_caller_save_cpu_regs[6] = r8_opr;
_caller_save_cpu_regs[7] = r9_opr;
_caller_save_cpu_regs[8] = r11_opr;
_caller_save_cpu_regs[9] = r12_opr;
_caller_save_cpu_regs[10] = r13_opr;
_caller_save_cpu_regs[11] = r14_opr;
#endif // _LP64
_xmm_regs[0] = xmm0;
_xmm_regs[1] = xmm1;
_xmm_regs[2] = xmm2;
_xmm_regs[3] = xmm3;
_xmm_regs[4] = xmm4;
_xmm_regs[5] = xmm5;
_xmm_regs[6] = xmm6;
_xmm_regs[7] = xmm7;
#ifdef _LP64
_xmm_regs[8] = xmm8;
_xmm_regs[9] = xmm9;
_xmm_regs[10] = xmm10;
_xmm_regs[11] = xmm11;
_xmm_regs[12] = xmm12;
_xmm_regs[13] = xmm13;
_xmm_regs[14] = xmm14;
_xmm_regs[15] = xmm15;
#endif // _LP64
for (int i = 0; i < 8; i++) {
_caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
}
for (int i = 0; i < nof_caller_save_xmm_regs ; i++) {
_caller_save_xmm_regs[i] = LIR_OprFact::single_xmm(i);
}
_init_done = true;
rsi_oop_opr = as_oop_opr(rsi);
rdi_oop_opr = as_oop_opr(rdi);
rbx_oop_opr = as_oop_opr(rbx);
rax_oop_opr = as_oop_opr(rax);
rdx_oop_opr = as_oop_opr(rdx);
rcx_oop_opr = as_oop_opr(rcx);
rsp_opr = as_pointer_opr(rsp);
rbp_opr = as_pointer_opr(rbp);
#ifdef _LP64
r8_oop_opr = as_oop_opr(r8);
r9_oop_opr = as_oop_opr(r9);
r11_oop_opr = as_oop_opr(r11);
r12_oop_opr = as_oop_opr(r12);
r13_oop_opr = as_oop_opr(r13);
r14_oop_opr = as_oop_opr(r14);
#endif // _LP64
VMRegPair regs;
BasicType sig_bt = T_OBJECT;
SharedRuntime::java_calling_convention(&sig_bt, ®s, 1, true);
receiver_opr = as_oop_opr(regs.first()->as_Register());
}
Address FrameMap::make_new_address(ByteSize sp_offset) const {
// for rbp, based address use this:
// return Address(rbp, in_bytes(sp_offset) - (framesize() - 2) * 4);
return Address(rsp, in_bytes(sp_offset));
}
// ----------------mapping-----------------------
// all mapping is based on rbp, addressing, except for simple leaf methods where we access
// the locals rsp based (and no frame is built)
// Frame for simple leaf methods (quick entries)
//
// +----------+
// | ret addr | <- TOS
// +----------+
// | args |
// | ...... |
// Frame for standard methods
//
// | .........| <- TOS
// | locals |
// +----------+
// | old rbp, | <- EBP
// +----------+
// | ret addr |
// +----------+
// | args |
// | .........|
// For OopMaps, map a local variable or spill index to an VMRegImpl name.
// This is the offset from sp() in the frame of the slot for the index,
// skewed by VMRegImpl::stack0 to indicate a stack location (vs.a register.)
//
// framesize +
// stack0 stack0 0 <- VMReg
// | | <registers> |
// ...........|..............|.............|
// 0 1 2 3 x x 4 5 6 ... | <- local indices
// ^ ^ sp() ( x x indicate link
// | | and return addr)
// arguments non-argument locals
VMReg FrameMap::fpu_regname (int n) {
// Return the OptoReg name for the fpu stack slot "n"
// A spilled fpu stack slot comprises to two single-word OptoReg's.
return as_FloatRegister(n)->as_VMReg();
}
LIR_Opr FrameMap::stack_pointer() {
return FrameMap::rsp_opr;
}
bool FrameMap::validate_frame() {
return true;
}