8072008: Emit direct call instead of linkTo* for recursive indy/MH.invoke* calls
Reviewed-by: jrose, dlong, aph, forax
/*
* Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_aarch64.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/top.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
#ifdef BUILTIN_SIM
#include "../../../../../../simulator/simulator.hpp"
#endif
// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp
#undef __
#define __ _masm->
#define TIMES_OOP Address::sxtw(exact_log2(UseCompressedOops ? 4 : 8))
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
// Stub Code definitions
class StubGenerator: public StubCodeGenerator {
private:
#ifdef PRODUCT
#define inc_counter_np(counter) ((void)0)
#else
void inc_counter_np_(int& counter) {
__ lea(rscratch2, ExternalAddress((address)&counter));
__ ldrw(rscratch1, Address(rscratch2));
__ addw(rscratch1, rscratch1, 1);
__ strw(rscratch1, Address(rscratch2));
}
#define inc_counter_np(counter) \
BLOCK_COMMENT("inc_counter " #counter); \
inc_counter_np_(counter);
#endif
// Call stubs are used to call Java from C
//
// Arguments:
// c_rarg0: call wrapper address address
// c_rarg1: result address
// c_rarg2: result type BasicType
// c_rarg3: method Method*
// c_rarg4: (interpreter) entry point address
// c_rarg5: parameters intptr_t*
// c_rarg6: parameter size (in words) int
// c_rarg7: thread Thread*
//
// There is no return from the stub itself as any Java result
// is written to result
//
// we save r30 (lr) as the return PC at the base of the frame and
// link r29 (fp) below it as the frame pointer installing sp (r31)
// into fp.
//
// we save r0-r7, which accounts for all the c arguments.
//
// TODO: strictly do we need to save them all? they are treated as
// volatile by C so could we omit saving the ones we are going to
// place in global registers (thread? method?) or those we only use
// during setup of the Java call?
//
// we don't need to save r8 which C uses as an indirect result location
// return register.
//
// we don't need to save r9-r15 which both C and Java treat as
// volatile
//
// we don't need to save r16-18 because Java does not use them
//
// we save r19-r28 which Java uses as scratch registers and C
// expects to be callee-save
//
// we save the bottom 64 bits of each value stored in v8-v15; it is
// the responsibility of the caller to preserve larger values.
//
// so the stub frame looks like this when we enter Java code
//
// [ return_from_Java ] <--- sp
// [ argument word n ]
// ...
// -27 [ argument word 1 ]
// -26 [ saved v15 ] <--- sp_after_call
// -25 [ saved v14 ]
// -24 [ saved v13 ]
// -23 [ saved v12 ]
// -22 [ saved v11 ]
// -21 [ saved v10 ]
// -20 [ saved v9 ]
// -19 [ saved v8 ]
// -18 [ saved r28 ]
// -17 [ saved r27 ]
// -16 [ saved r26 ]
// -15 [ saved r25 ]
// -14 [ saved r24 ]
// -13 [ saved r23 ]
// -12 [ saved r22 ]
// -11 [ saved r21 ]
// -10 [ saved r20 ]
// -9 [ saved r19 ]
// -8 [ call wrapper (r0) ]
// -7 [ result (r1) ]
// -6 [ result type (r2) ]
// -5 [ method (r3) ]
// -4 [ entry point (r4) ]
// -3 [ parameters (r5) ]
// -2 [ parameter size (r6) ]
// -1 [ thread (r7) ]
// 0 [ saved fp (r29) ] <--- fp == saved sp (r31)
// 1 [ saved lr (r30) ]
// Call stub stack layout word offsets from fp
enum call_stub_layout {
sp_after_call_off = -26,
d15_off = -26,
d14_off = -25,
d13_off = -24,
d12_off = -23,
d11_off = -22,
d10_off = -21,
d9_off = -20,
d8_off = -19,
r28_off = -18,
r27_off = -17,
r26_off = -16,
r25_off = -15,
r24_off = -14,
r23_off = -13,
r22_off = -12,
r21_off = -11,
r20_off = -10,
r19_off = -9,
call_wrapper_off = -8,
result_off = -7,
result_type_off = -6,
method_off = -5,
entry_point_off = -4,
parameters_off = -3,
parameter_size_off = -2,
thread_off = -1,
fp_f = 0,
retaddr_off = 1,
};
address generate_call_stub(address& return_address) {
assert((int)frame::entry_frame_after_call_words == -(int)sp_after_call_off + 1 &&
(int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
"adjust this code");
StubCodeMark mark(this, "StubRoutines", "call_stub");
address start = __ pc();
const Address sp_after_call(rfp, sp_after_call_off * wordSize);
const Address call_wrapper (rfp, call_wrapper_off * wordSize);
const Address result (rfp, result_off * wordSize);
const Address result_type (rfp, result_type_off * wordSize);
const Address method (rfp, method_off * wordSize);
const Address entry_point (rfp, entry_point_off * wordSize);
const Address parameters (rfp, parameters_off * wordSize);
const Address parameter_size(rfp, parameter_size_off * wordSize);
const Address thread (rfp, thread_off * wordSize);
const Address d15_save (rfp, d15_off * wordSize);
const Address d14_save (rfp, d14_off * wordSize);
const Address d13_save (rfp, d13_off * wordSize);
const Address d12_save (rfp, d12_off * wordSize);
const Address d11_save (rfp, d11_off * wordSize);
const Address d10_save (rfp, d10_off * wordSize);
const Address d9_save (rfp, d9_off * wordSize);
const Address d8_save (rfp, d8_off * wordSize);
const Address r28_save (rfp, r28_off * wordSize);
const Address r27_save (rfp, r27_off * wordSize);
const Address r26_save (rfp, r26_off * wordSize);
const Address r25_save (rfp, r25_off * wordSize);
const Address r24_save (rfp, r24_off * wordSize);
const Address r23_save (rfp, r23_off * wordSize);
const Address r22_save (rfp, r22_off * wordSize);
const Address r21_save (rfp, r21_off * wordSize);
const Address r20_save (rfp, r20_off * wordSize);
const Address r19_save (rfp, r19_off * wordSize);
// stub code
// we need a C prolog to bootstrap the x86 caller into the sim
__ c_stub_prolog(8, 0, MacroAssembler::ret_type_void);
address aarch64_entry = __ pc();
#ifdef BUILTIN_SIM
// Save sender's SP for stack traces.
__ mov(rscratch1, sp);
__ str(rscratch1, Address(__ pre(sp, -2 * wordSize)));
#endif
// set up frame and move sp to end of save area
__ enter();
__ sub(sp, rfp, -sp_after_call_off * wordSize);
// save register parameters and Java scratch/global registers
// n.b. we save thread even though it gets installed in
// rthread because we want to sanity check rthread later
__ str(c_rarg7, thread);
__ strw(c_rarg6, parameter_size);
__ str(c_rarg5, parameters);
__ str(c_rarg4, entry_point);
__ str(c_rarg3, method);
__ str(c_rarg2, result_type);
__ str(c_rarg1, result);
__ str(c_rarg0, call_wrapper);
__ str(r19, r19_save);
__ str(r20, r20_save);
__ str(r21, r21_save);
__ str(r22, r22_save);
__ str(r23, r23_save);
__ str(r24, r24_save);
__ str(r25, r25_save);
__ str(r26, r26_save);
__ str(r27, r27_save);
__ str(r28, r28_save);
__ strd(v8, d8_save);
__ strd(v9, d9_save);
__ strd(v10, d10_save);
__ strd(v11, d11_save);
__ strd(v12, d12_save);
__ strd(v13, d13_save);
__ strd(v14, d14_save);
__ strd(v15, d15_save);
// install Java thread in global register now we have saved
// whatever value it held
__ mov(rthread, c_rarg7);
// And method
__ mov(rmethod, c_rarg3);
// set up the heapbase register
__ reinit_heapbase();
#ifdef ASSERT
// make sure we have no pending exceptions
{
Label L;
__ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
__ cmp(rscratch1, (unsigned)NULL_WORD);
__ br(Assembler::EQ, L);
__ stop("StubRoutines::call_stub: entered with pending exception");
__ BIND(L);
}
#endif
// pass parameters if any
__ mov(esp, sp);
__ sub(rscratch1, sp, c_rarg6, ext::uxtw, LogBytesPerWord); // Move SP out of the way
__ andr(sp, rscratch1, -2 * wordSize);
BLOCK_COMMENT("pass parameters if any");
Label parameters_done;
// parameter count is still in c_rarg6
// and parameter pointer identifying param 1 is in c_rarg5
__ cbzw(c_rarg6, parameters_done);
address loop = __ pc();
__ ldr(rscratch1, Address(__ post(c_rarg5, wordSize)));
__ subsw(c_rarg6, c_rarg6, 1);
__ push(rscratch1);
__ br(Assembler::GT, loop);
__ BIND(parameters_done);
// call Java entry -- passing methdoOop, and current sp
// rmethod: Method*
// r13: sender sp
BLOCK_COMMENT("call Java function");
__ mov(r13, sp);
__ blr(c_rarg4);
// tell the simulator we have returned to the stub
// we do this here because the notify will already have been done
// if we get to the next instruction via an exception
//
// n.b. adding this instruction here affects the calculation of
// whether or not a routine returns to the call stub (used when
// doing stack walks) since the normal test is to check the return
// pc against the address saved below. so we may need to allow for
// this extra instruction in the check.
if (NotifySimulator) {
__ notify(Assembler::method_reentry);
}
// save current address for use by exception handling code
return_address = __ pc();
// store result depending on type (everything that is not
// T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
// n.b. this assumes Java returns an integral result in r0
// and a floating result in j_farg0
__ ldr(j_rarg2, result);
Label is_long, is_float, is_double, exit;
__ ldr(j_rarg1, result_type);
__ cmp(j_rarg1, T_OBJECT);
__ br(Assembler::EQ, is_long);
__ cmp(j_rarg1, T_LONG);
__ br(Assembler::EQ, is_long);
__ cmp(j_rarg1, T_FLOAT);
__ br(Assembler::EQ, is_float);
__ cmp(j_rarg1, T_DOUBLE);
__ br(Assembler::EQ, is_double);
// handle T_INT case
__ strw(r0, Address(j_rarg2));
__ BIND(exit);
// pop parameters
__ sub(esp, rfp, -sp_after_call_off * wordSize);
#ifdef ASSERT
// verify that threads correspond
{
Label L, S;
__ ldr(rscratch1, thread);
__ cmp(rthread, rscratch1);
__ br(Assembler::NE, S);
__ get_thread(rscratch1);
__ cmp(rthread, rscratch1);
__ br(Assembler::EQ, L);
__ BIND(S);
__ stop("StubRoutines::call_stub: threads must correspond");
__ BIND(L);
}
#endif
// restore callee-save registers
__ ldrd(v15, d15_save);
__ ldrd(v14, d14_save);
__ ldrd(v13, d13_save);
__ ldrd(v12, d12_save);
__ ldrd(v11, d11_save);
__ ldrd(v10, d10_save);
__ ldrd(v9, d9_save);
__ ldrd(v8, d8_save);
__ ldr(r28, r28_save);
__ ldr(r27, r27_save);
__ ldr(r26, r26_save);
__ ldr(r25, r25_save);
__ ldr(r24, r24_save);
__ ldr(r23, r23_save);
__ ldr(r22, r22_save);
__ ldr(r21, r21_save);
__ ldr(r20, r20_save);
__ ldr(r19, r19_save);
__ ldr(c_rarg0, call_wrapper);
__ ldr(c_rarg1, result);
__ ldrw(c_rarg2, result_type);
__ ldr(c_rarg3, method);
__ ldr(c_rarg4, entry_point);
__ ldr(c_rarg5, parameters);
__ ldr(c_rarg6, parameter_size);
__ ldr(c_rarg7, thread);
#ifndef PRODUCT
// tell the simulator we are about to end Java execution
if (NotifySimulator) {
__ notify(Assembler::method_exit);
}
#endif
// leave frame and return to caller
__ leave();
__ ret(lr);
// handle return types different from T_INT
__ BIND(is_long);
__ str(r0, Address(j_rarg2, 0));
__ br(Assembler::AL, exit);
__ BIND(is_float);
__ strs(j_farg0, Address(j_rarg2, 0));
__ br(Assembler::AL, exit);
__ BIND(is_double);
__ strd(j_farg0, Address(j_rarg2, 0));
__ br(Assembler::AL, exit);
return start;
}
// Return point for a Java call if there's an exception thrown in
// Java code. The exception is caught and transformed into a
// pending exception stored in JavaThread that can be tested from
// within the VM.
//
// Note: Usually the parameters are removed by the callee. In case
// of an exception crossing an activation frame boundary, that is
// not the case if the callee is compiled code => need to setup the
// rsp.
//
// r0: exception oop
// NOTE: this is used as a target from the signal handler so it
// needs an x86 prolog which returns into the current simulator
// executing the generated catch_exception code. so the prolog
// needs to install rax in a sim register and adjust the sim's
// restart pc to enter the generated code at the start position
// then return from native to simulated execution.
address generate_catch_exception() {
StubCodeMark mark(this, "StubRoutines", "catch_exception");
address start = __ pc();
// same as in generate_call_stub():
const Address sp_after_call(rfp, sp_after_call_off * wordSize);
const Address thread (rfp, thread_off * wordSize);
#ifdef ASSERT
// verify that threads correspond
{
Label L, S;
__ ldr(rscratch1, thread);
__ cmp(rthread, rscratch1);
__ br(Assembler::NE, S);
__ get_thread(rscratch1);
__ cmp(rthread, rscratch1);
__ br(Assembler::EQ, L);
__ bind(S);
__ stop("StubRoutines::catch_exception: threads must correspond");
__ bind(L);
}
#endif
// set pending exception
__ verify_oop(r0);
__ str(r0, Address(rthread, Thread::pending_exception_offset()));
__ mov(rscratch1, (address)__FILE__);
__ str(rscratch1, Address(rthread, Thread::exception_file_offset()));
__ movw(rscratch1, (int)__LINE__);
__ strw(rscratch1, Address(rthread, Thread::exception_line_offset()));
// complete return to VM
assert(StubRoutines::_call_stub_return_address != NULL,
"_call_stub_return_address must have been generated before");
__ b(StubRoutines::_call_stub_return_address);
return start;
}
// Continuation point for runtime calls returning with a pending
// exception. The pending exception check happened in the runtime
// or native call stub. The pending exception in Thread is
// converted into a Java-level exception.
//
// Contract with Java-level exception handlers:
// r0: exception
// r3: throwing pc
//
// NOTE: At entry of this stub, exception-pc must be in LR !!
// NOTE: this is always used as a jump target within generated code
// so it just needs to be generated code wiht no x86 prolog
address generate_forward_exception() {
StubCodeMark mark(this, "StubRoutines", "forward exception");
address start = __ pc();
// Upon entry, LR points to the return address returning into
// Java (interpreted or compiled) code; i.e., the return address
// becomes the throwing pc.
//
// Arguments pushed before the runtime call are still on the stack
// but the exception handler will reset the stack pointer ->
// ignore them. A potential result in registers can be ignored as
// well.
#ifdef ASSERT
// make sure this code is only executed if there is a pending exception
{
Label L;
__ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
__ cbnz(rscratch1, L);
__ stop("StubRoutines::forward exception: no pending exception (1)");
__ bind(L);
}
#endif
// compute exception handler into r19
// call the VM to find the handler address associated with the
// caller address. pass thread in r0 and caller pc (ret address)
// in r1. n.b. the caller pc is in lr, unlike x86 where it is on
// the stack.
__ mov(c_rarg1, lr);
// lr will be trashed by the VM call so we move it to R19
// (callee-saved) because we also need to pass it to the handler
// returned by this call.
__ mov(r19, lr);
BLOCK_COMMENT("call exception_handler_for_return_address");
__ call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
rthread, c_rarg1);
// we should not really care that lr is no longer the callee
// address. we saved the value the handler needs in r19 so we can
// just copy it to r3. however, the C2 handler will push its own
// frame and then calls into the VM and the VM code asserts that
// the PC for the frame above the handler belongs to a compiled
// Java method. So, we restore lr here to satisfy that assert.
__ mov(lr, r19);
// setup r0 & r3 & clear pending exception
__ mov(r3, r19);
__ mov(r19, r0);
__ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
__ str(zr, Address(rthread, Thread::pending_exception_offset()));
#ifdef ASSERT
// make sure exception is set
{
Label L;
__ cbnz(r0, L);
__ stop("StubRoutines::forward exception: no pending exception (2)");
__ bind(L);
}
#endif
// continue at exception handler
// r0: exception
// r3: throwing pc
// r19: exception handler
__ verify_oop(r0);
__ br(r19);
return start;
}
// Non-destructive plausibility checks for oops
//
// Arguments:
// r0: oop to verify
// rscratch1: error message
//
// Stack after saving c_rarg3:
// [tos + 0]: saved c_rarg3
// [tos + 1]: saved c_rarg2
// [tos + 2]: saved lr
// [tos + 3]: saved rscratch2
// [tos + 4]: saved r0
// [tos + 5]: saved rscratch1
address generate_verify_oop() {
StubCodeMark mark(this, "StubRoutines", "verify_oop");
address start = __ pc();
Label exit, error;
// save c_rarg2 and c_rarg3
__ stp(c_rarg3, c_rarg2, Address(__ pre(sp, -16)));
// __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
__ lea(c_rarg2, ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
__ ldr(c_rarg3, Address(c_rarg2));
__ add(c_rarg3, c_rarg3, 1);
__ str(c_rarg3, Address(c_rarg2));
// object is in r0
// make sure object is 'reasonable'
__ cbz(r0, exit); // if obj is NULL it is OK
// Check if the oop is in the right area of memory
__ mov(c_rarg3, (intptr_t) Universe::verify_oop_mask());
__ andr(c_rarg2, r0, c_rarg3);
__ mov(c_rarg3, (intptr_t) Universe::verify_oop_bits());
// Compare c_rarg2 and c_rarg3. We don't use a compare
// instruction here because the flags register is live.
__ eor(c_rarg2, c_rarg2, c_rarg3);
__ cbnz(c_rarg2, error);
// make sure klass is 'reasonable', which is not zero.
__ load_klass(r0, r0); // get klass
__ cbz(r0, error); // if klass is NULL it is broken
// return if everything seems ok
__ bind(exit);
__ ldp(c_rarg3, c_rarg2, Address(__ post(sp, 16)));
__ ret(lr);
// handle errors
__ bind(error);
__ ldp(c_rarg3, c_rarg2, Address(__ post(sp, 16)));
__ push(RegSet::range(r0, r29), sp);
// debug(char* msg, int64_t pc, int64_t regs[])
__ mov(c_rarg0, rscratch1); // pass address of error message
__ mov(c_rarg1, lr); // pass return address
__ mov(c_rarg2, sp); // pass address of regs on stack
#ifndef PRODUCT
assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
#endif
BLOCK_COMMENT("call MacroAssembler::debug");
__ mov(rscratch1, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
__ blrt(rscratch1, 3, 0, 1);
return start;
}
void array_overlap_test(Label& L_no_overlap, Address::sxtw sf) { __ b(L_no_overlap); }
// Generate code for an array write pre barrier
//
// addr - starting address
// count - element count
// tmp - scratch register
//
// Destroy no registers!
//
void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
BarrierSet* bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCTLogging:
// With G1, don't generate the call if we statically know that the target in uninitialized
if (!dest_uninitialized) {
__ push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
if (count == c_rarg0) {
if (addr == c_rarg1) {
// exactly backwards!!
__ stp(c_rarg0, c_rarg1, __ pre(sp, -2 * wordSize));
__ ldp(c_rarg1, c_rarg0, __ post(sp, -2 * wordSize));
} else {
__ mov(c_rarg1, count);
__ mov(c_rarg0, addr);
}
} else {
__ mov(c_rarg0, addr);
__ mov(c_rarg1, count);
}
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
__ pop(RegSet::range(r0, r29), sp); // integer registers except lr & sp }
break;
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
case BarrierSet::ModRef:
break;
default:
ShouldNotReachHere();
}
}
}
//
// Generate code for an array write post barrier
//
// Input:
// start - register containing starting address of destination array
// end - register containing ending address of destination array
// scratch - scratch register
//
// The input registers are overwritten.
// The ending address is inclusive.
void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
assert_different_registers(start, end, scratch);
BarrierSet* bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCTLogging:
{
__ push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
// must compute element count unless barrier set interface is changed (other platforms supply count)
assert_different_registers(start, end, scratch);
__ lea(scratch, Address(end, BytesPerHeapOop));
__ sub(scratch, scratch, start); // subtract start to get #bytes
__ lsr(scratch, scratch, LogBytesPerHeapOop); // convert to element count
__ mov(c_rarg0, start);
__ mov(c_rarg1, scratch);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
__ pop(RegSet::range(r0, r29), sp); // integer registers except lr & sp }
}
break;
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
{
CardTableModRefBS* ct = (CardTableModRefBS*)bs;
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
Label L_loop;
__ lsr(start, start, CardTableModRefBS::card_shift);
__ lsr(end, end, CardTableModRefBS::card_shift);
__ sub(end, end, start); // number of bytes to copy
const Register count = end; // 'end' register contains bytes count now
__ mov(scratch, (address)ct->byte_map_base);
__ add(start, start, scratch);
if (UseConcMarkSweepGC) {
__ membar(__ StoreStore);
}
__ BIND(L_loop);
__ strb(zr, Address(start, count));
__ subs(count, count, 1);
__ br(Assembler::HS, L_loop);
}
break;
default:
ShouldNotReachHere();
}
}
typedef enum {
copy_forwards = 1,
copy_backwards = -1
} copy_direction;
// Bulk copy of blocks of 8 words.
//
// count is a count of words.
//
// Precondition: count >= 2
//
// Postconditions:
//
// The least significant bit of count contains the remaining count
// of words to copy. The rest of count is trash.
//
// s and d are adjusted to point to the remaining words to copy
//
void generate_copy_longs(Label &start, Register s, Register d, Register count,
copy_direction direction) {
int unit = wordSize * direction;
int offset;
const Register t0 = r3, t1 = r4, t2 = r5, t3 = r6,
t4 = r7, t5 = r10, t6 = r11, t7 = r12;
assert_different_registers(rscratch1, t0, t1, t2, t3, t4, t5, t6, t7);
assert_different_registers(s, d, count, rscratch1);
Label again, large, small;
__ align(6);
__ bind(start);
__ cmp(count, 8);
__ br(Assembler::LO, small);
if (direction == copy_forwards) {
__ sub(s, s, 2 * wordSize);
__ sub(d, d, 2 * wordSize);
}
__ subs(count, count, 16);
__ br(Assembler::GE, large);
// 8 <= count < 16 words. Copy 8.
__ ldp(t0, t1, Address(s, 2 * unit));
__ ldp(t2, t3, Address(s, 4 * unit));
__ ldp(t4, t5, Address(s, 6 * unit));
__ ldp(t6, t7, Address(__ pre(s, 8 * unit)));
__ stp(t0, t1, Address(d, 2 * unit));
__ stp(t2, t3, Address(d, 4 * unit));
__ stp(t4, t5, Address(d, 6 * unit));
__ stp(t6, t7, Address(__ pre(d, 8 * unit)));
if (direction == copy_forwards) {
__ add(s, s, 2 * wordSize);
__ add(d, d, 2 * wordSize);
}
{
Label L1, L2;
__ bind(small);
__ tbz(count, exact_log2(4), L1);
__ ldp(t0, t1, Address(__ adjust(s, 2 * unit, direction == copy_backwards)));
__ ldp(t2, t3, Address(__ adjust(s, 2 * unit, direction == copy_backwards)));
__ stp(t0, t1, Address(__ adjust(d, 2 * unit, direction == copy_backwards)));
__ stp(t2, t3, Address(__ adjust(d, 2 * unit, direction == copy_backwards)));
__ bind(L1);
__ tbz(count, 1, L2);
__ ldp(t0, t1, Address(__ adjust(s, 2 * unit, direction == copy_backwards)));
__ stp(t0, t1, Address(__ adjust(d, 2 * unit, direction == copy_backwards)));
__ bind(L2);
}
__ ret(lr);
__ align(6);
__ bind(large);
// Fill 8 registers
__ ldp(t0, t1, Address(s, 2 * unit));
__ ldp(t2, t3, Address(s, 4 * unit));
__ ldp(t4, t5, Address(s, 6 * unit));
__ ldp(t6, t7, Address(__ pre(s, 8 * unit)));
__ bind(again);
if (direction == copy_forwards && PrefetchCopyIntervalInBytes > 0)
__ prfm(Address(s, PrefetchCopyIntervalInBytes), PLDL1KEEP);
__ stp(t0, t1, Address(d, 2 * unit));
__ ldp(t0, t1, Address(s, 2 * unit));
__ stp(t2, t3, Address(d, 4 * unit));
__ ldp(t2, t3, Address(s, 4 * unit));
__ stp(t4, t5, Address(d, 6 * unit));
__ ldp(t4, t5, Address(s, 6 * unit));
__ stp(t6, t7, Address(__ pre(d, 8 * unit)));
__ ldp(t6, t7, Address(__ pre(s, 8 * unit)));
__ subs(count, count, 8);
__ br(Assembler::HS, again);
// Drain
__ stp(t0, t1, Address(d, 2 * unit));
__ stp(t2, t3, Address(d, 4 * unit));
__ stp(t4, t5, Address(d, 6 * unit));
__ stp(t6, t7, Address(__ pre(d, 8 * unit)));
if (direction == copy_forwards) {
__ add(s, s, 2 * wordSize);
__ add(d, d, 2 * wordSize);
}
{
Label L1, L2;
__ tbz(count, exact_log2(4), L1);
__ ldp(t0, t1, Address(__ adjust(s, 2 * unit, direction == copy_backwards)));
__ ldp(t2, t3, Address(__ adjust(s, 2 * unit, direction == copy_backwards)));
__ stp(t0, t1, Address(__ adjust(d, 2 * unit, direction == copy_backwards)));
__ stp(t2, t3, Address(__ adjust(d, 2 * unit, direction == copy_backwards)));
__ bind(L1);
__ tbz(count, 1, L2);
__ ldp(t0, t1, Address(__ adjust(s, 2 * unit, direction == copy_backwards)));
__ stp(t0, t1, Address(__ adjust(d, 2 * unit, direction == copy_backwards)));
__ bind(L2);
}
__ ret(lr);
}
// Small copy: less than 16 bytes.
//
// NB: Ignores all of the bits of count which represent more than 15
// bytes, so a caller doesn't have to mask them.
void copy_memory_small(Register s, Register d, Register count, Register tmp, int step) {
bool is_backwards = step < 0;
size_t granularity = uabs(step);
int direction = is_backwards ? -1 : 1;
int unit = wordSize * direction;
Label Lpair, Lword, Lint, Lshort, Lbyte;
assert(granularity
&& granularity <= sizeof (jlong), "Impossible granularity in copy_memory_small");
const Register t0 = r3, t1 = r4, t2 = r5, t3 = r6;
// ??? I don't know if this bit-test-and-branch is the right thing
// to do. It does a lot of jumping, resulting in several
// mispredicted branches. It might make more sense to do this
// with something like Duff's device with a single computed branch.
__ tbz(count, 3 - exact_log2(granularity), Lword);
__ ldr(tmp, Address(__ adjust(s, unit, is_backwards)));
__ str(tmp, Address(__ adjust(d, unit, is_backwards)));
__ bind(Lword);
if (granularity <= sizeof (jint)) {
__ tbz(count, 2 - exact_log2(granularity), Lint);
__ ldrw(tmp, Address(__ adjust(s, sizeof (jint) * direction, is_backwards)));
__ strw(tmp, Address(__ adjust(d, sizeof (jint) * direction, is_backwards)));
__ bind(Lint);
}
if (granularity <= sizeof (jshort)) {
__ tbz(count, 1 - exact_log2(granularity), Lshort);
__ ldrh(tmp, Address(__ adjust(s, sizeof (jshort) * direction, is_backwards)));
__ strh(tmp, Address(__ adjust(d, sizeof (jshort) * direction, is_backwards)));
__ bind(Lshort);
}
if (granularity <= sizeof (jbyte)) {
__ tbz(count, 0, Lbyte);
__ ldrb(tmp, Address(__ adjust(s, sizeof (jbyte) * direction, is_backwards)));
__ strb(tmp, Address(__ adjust(d, sizeof (jbyte) * direction, is_backwards)));
__ bind(Lbyte);
}
}
Label copy_f, copy_b;
// All-singing all-dancing memory copy.
//
// Copy count units of memory from s to d. The size of a unit is
// step, which can be positive or negative depending on the direction
// of copy. If is_aligned is false, we align the source address.
//
void copy_memory(bool is_aligned, Register s, Register d,
Register count, Register tmp, int step) {
copy_direction direction = step < 0 ? copy_backwards : copy_forwards;
bool is_backwards = step < 0;
int granularity = uabs(step);
const Register t0 = r3, t1 = r4;
if (is_backwards) {
__ lea(s, Address(s, count, Address::uxtw(exact_log2(-step))));
__ lea(d, Address(d, count, Address::uxtw(exact_log2(-step))));
}
Label done, tail;
__ cmp(count, 16/granularity);
__ br(Assembler::LO, tail);
// Now we've got the small case out of the way we can align the
// source address on a 2-word boundary.
Label aligned;
if (is_aligned) {
// We may have to adjust by 1 word to get s 2-word-aligned.
__ tbz(s, exact_log2(wordSize), aligned);
__ ldr(tmp, Address(__ adjust(s, direction * wordSize, is_backwards)));
__ str(tmp, Address(__ adjust(d, direction * wordSize, is_backwards)));
__ sub(count, count, wordSize/granularity);
} else {
if (is_backwards) {
__ andr(rscratch2, s, 2 * wordSize - 1);
} else {
__ neg(rscratch2, s);
__ andr(rscratch2, rscratch2, 2 * wordSize - 1);
}
// rscratch2 is the byte adjustment needed to align s.
__ cbz(rscratch2, aligned);
__ lsr(rscratch2, rscratch2, exact_log2(granularity));
__ sub(count, count, rscratch2);
#if 0
// ?? This code is only correct for a disjoint copy. It may or
// may not make sense to use it in that case.
// Copy the first pair; s and d may not be aligned.
__ ldp(t0, t1, Address(s, is_backwards ? -2 * wordSize : 0));
__ stp(t0, t1, Address(d, is_backwards ? -2 * wordSize : 0));
// Align s and d, adjust count
if (is_backwards) {
__ sub(s, s, rscratch2);
__ sub(d, d, rscratch2);
} else {
__ add(s, s, rscratch2);
__ add(d, d, rscratch2);
}
#else
copy_memory_small(s, d, rscratch2, rscratch1, step);
#endif
}
__ cmp(count, 16/granularity);
__ br(Assembler::LT, tail);
__ bind(aligned);
// s is now 2-word-aligned.
// We have a count of units and some trailing bytes. Adjust the
// count and do a bulk copy of words.
__ lsr(rscratch2, count, exact_log2(wordSize/granularity));
if (direction == copy_forwards)
__ bl(copy_f);
else
__ bl(copy_b);
// And the tail.
__ bind(tail);
copy_memory_small(s, d, count, tmp, step);
}
void clobber_registers() {
#ifdef ASSERT
__ mov(rscratch1, (uint64_t)0xdeadbeef);
__ orr(rscratch1, rscratch1, rscratch1, Assembler::LSL, 32);
for (Register r = r3; r <= r18; r++)
if (r != rscratch1) __ mov(r, rscratch1);
#endif
}
// Scan over array at a for count oops, verifying each one.
// Preserves a and count, clobbers rscratch1 and rscratch2.
void verify_oop_array (size_t size, Register a, Register count, Register temp) {
Label loop, end;
__ mov(rscratch1, a);
__ mov(rscratch2, zr);
__ bind(loop);
__ cmp(rscratch2, count);
__ br(Assembler::HS, end);
if (size == (size_t)wordSize) {
__ ldr(temp, Address(a, rscratch2, Address::uxtw(exact_log2(size))));
__ verify_oop(temp);
} else {
__ ldrw(r16, Address(a, rscratch2, Address::uxtw(exact_log2(size))));
__ decode_heap_oop(temp); // calls verify_oop
}
__ add(rscratch2, rscratch2, size);
__ b(loop);
__ bind(end);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomicly.
//
// Side Effects:
// disjoint_int_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_int_oop_copy().
//
address generate_disjoint_copy(size_t size, bool aligned, bool is_oop, address *entry,
const char *name, bool dest_uninitialized = false) {
Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
__ enter();
if (is_oop) {
__ push(RegSet::of(d, count), sp);
// no registers are destroyed by this call
gen_write_ref_array_pre_barrier(d, count, dest_uninitialized);
}
copy_memory(aligned, s, d, count, rscratch1, size);
if (is_oop) {
__ pop(RegSet::of(d, count), sp);
if (VerifyOops)
verify_oop_array(size, d, count, r16);
__ sub(count, count, 1); // make an inclusive end pointer
__ lea(count, Address(d, count, Address::uxtw(exact_log2(size))));
gen_write_ref_array_post_barrier(d, count, rscratch1);
}
__ leave();
__ ret(lr);
#ifdef BUILTIN_SIM
{
AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
sim->notifyCompile(const_cast<char*>(name), start);
}
#endif
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomicly.
//
address generate_conjoint_copy(size_t size, bool aligned, bool is_oop, address nooverlap_target,
address *entry, const char *name,
bool dest_uninitialized = false) {
Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
__ cmp(d, s);
__ br(Assembler::LS, nooverlap_target);
__ enter();
if (is_oop) {
__ push(RegSet::of(d, count), sp);
// no registers are destroyed by this call
gen_write_ref_array_pre_barrier(d, count, dest_uninitialized);
}
copy_memory(aligned, s, d, count, rscratch1, -size);
if (is_oop) {
__ pop(RegSet::of(d, count), sp);
if (VerifyOops)
verify_oop_array(size, d, count, r16);
__ sub(count, count, 1); // make an inclusive end pointer
__ lea(count, Address(d, count, Address::uxtw(exact_log2(size))));
gen_write_ref_array_post_barrier(d, count, rscratch1);
}
__ leave();
__ ret(lr);
#ifdef BUILTIN_SIM
{
AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
sim->notifyCompile(const_cast<char*>(name), start);
}
#endif
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// disjoint_byte_copy_entry is set to the no-overlap entry point //
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// disjoint_byte_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_byte_copy().
//
address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
const bool not_oop = false;
return generate_disjoint_copy(sizeof (jbyte), aligned, not_oop, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
address* entry, const char *name) {
const bool not_oop = false;
return generate_conjoint_copy(sizeof (jbyte), aligned, not_oop, nooverlap_target, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
// let the hardware handle it. The two or four words within dwords
// or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// disjoint_short_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_short_copy().
//
address generate_disjoint_short_copy(bool aligned,
address* entry, const char *name) {
const bool not_oop = false;
return generate_disjoint_copy(sizeof (jshort), aligned, not_oop, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
// let the hardware handle it. The two or four words within dwords
// or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
address *entry, const char *name) {
const bool not_oop = false;
return generate_conjoint_copy(sizeof (jshort), aligned, not_oop, nooverlap_target, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomicly.
//
// Side Effects:
// disjoint_int_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_int_oop_copy().
//
address generate_disjoint_int_copy(bool aligned, address *entry,
const char *name, bool dest_uninitialized = false) {
const bool not_oop = false;
return generate_disjoint_copy(sizeof (jint), aligned, not_oop, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomicly.
//
address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
address *entry, const char *name,
bool dest_uninitialized = false) {
const bool not_oop = false;
return generate_conjoint_copy(sizeof (jint), aligned, not_oop, nooverlap_target, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as size_t, can be zero
//
// Side Effects:
// disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
// no-overlap entry point used by generate_conjoint_long_oop_copy().
//
address generate_disjoint_long_copy(bool aligned, address *entry,
const char *name, bool dest_uninitialized = false) {
const bool not_oop = false;
return generate_disjoint_copy(sizeof (jlong), aligned, not_oop, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as size_t, can be zero
//
address generate_conjoint_long_copy(bool aligned,
address nooverlap_target, address *entry,
const char *name, bool dest_uninitialized = false) {
const bool not_oop = false;
return generate_conjoint_copy(sizeof (jlong), aligned, not_oop, nooverlap_target, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as size_t, can be zero
//
// Side Effects:
// disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
// no-overlap entry point used by generate_conjoint_long_oop_copy().
//
address generate_disjoint_oop_copy(bool aligned, address *entry,
const char *name, bool dest_uninitialized = false) {
const bool is_oop = true;
const size_t size = UseCompressedOops ? sizeof (jint) : sizeof (jlong);
return generate_disjoint_copy(size, aligned, is_oop, entry, name);
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as size_t, can be zero
//
address generate_conjoint_oop_copy(bool aligned,
address nooverlap_target, address *entry,
const char *name, bool dest_uninitialized = false) {
const bool is_oop = true;
const size_t size = UseCompressedOops ? sizeof (jint) : sizeof (jlong);
return generate_conjoint_copy(size, aligned, is_oop, nooverlap_target, entry, name);
}
// Helper for generating a dynamic type check.
// Smashes rscratch1.
void generate_type_check(Register sub_klass,
Register super_check_offset,
Register super_klass,
Label& L_success) {
assert_different_registers(sub_klass, super_check_offset, super_klass);
BLOCK_COMMENT("type_check:");
Label L_miss;
__ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
super_check_offset);
__ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
// Fall through on failure!
__ BIND(L_miss);
}
//
// Generate checkcasting array copy stub
//
// Input:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
// c_rarg3 - size_t ckoff (super_check_offset)
// c_rarg4 - oop ckval (super_klass)
//
// Output:
// r0 == 0 - success
// r0 == -1^K - failure, where K is partial transfer count
//
address generate_checkcast_copy(const char *name, address *entry,
bool dest_uninitialized = false) {
Label L_load_element, L_store_element, L_do_card_marks, L_done, L_done_pop;
// Input registers (after setup_arg_regs)
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register count = c_rarg2; // elementscount
const Register ckoff = c_rarg3; // super_check_offset
const Register ckval = c_rarg4; // super_klass
// Registers used as temps (r18, r19, r20 are save-on-entry)
const Register count_save = r21; // orig elementscount
const Register start_to = r20; // destination array start address
const Register copied_oop = r18; // actual oop copied
const Register r19_klass = r19; // oop._klass
//---------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the two arrays are subtypes of Object[] but the
// destination array type is not equal to or a supertype
// of the source type. Each element must be separately
// checked.
assert_different_registers(from, to, count, ckoff, ckval, start_to,
copied_oop, r19_klass, count_save);
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef ASSERT
// caller guarantees that the arrays really are different
// otherwise, we would have to make conjoint checks
{ Label L;
array_overlap_test(L, TIMES_OOP);
__ stop("checkcast_copy within a single array");
__ bind(L);
}
#endif //ASSERT
// Caller of this entry point must set up the argument registers.
if (entry != NULL) {
*entry = __ pc();
BLOCK_COMMENT("Entry:");
}
// Empty array: Nothing to do.
__ cbz(count, L_done);
__ push(RegSet::of(r18, r19, r20, r21), sp);
#ifdef ASSERT
BLOCK_COMMENT("assert consistent ckoff/ckval");
// The ckoff and ckval must be mutually consistent,
// even though caller generates both.
{ Label L;
int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ ldrw(start_to, Address(ckval, sco_offset));
__ cmpw(ckoff, start_to);
__ br(Assembler::EQ, L);
__ stop("super_check_offset inconsistent");
__ bind(L);
}
#endif //ASSERT
// save the original count
__ mov(count_save, count);
// Copy from low to high addresses
__ mov(start_to, to); // Save destination array start address
__ b(L_load_element);
// ======== begin loop ========
// (Loop is rotated; its entry is L_load_element.)
// Loop control:
// for (; count != 0; count--) {
// copied_oop = load_heap_oop(from++);
// ... generate_type_check ...;
// store_heap_oop(to++, copied_oop);
// }
__ align(OptoLoopAlignment);
__ BIND(L_store_element);
__ store_heap_oop(__ post(to, UseCompressedOops ? 4 : 8), copied_oop); // store the oop
__ sub(count, count, 1);
__ cbz(count, L_do_card_marks);
// ======== loop entry is here ========
__ BIND(L_load_element);
__ load_heap_oop(copied_oop, __ post(from, UseCompressedOops ? 4 : 8)); // load the oop
__ cbz(copied_oop, L_store_element);
__ load_klass(r19_klass, copied_oop);// query the object klass
generate_type_check(r19_klass, ckoff, ckval, L_store_element);
// ======== end loop ========
// It was a real error; we must depend on the caller to finish the job.
// Register count = remaining oops, count_orig = total oops.
// Emit GC store barriers for the oops we have copied and report
// their number to the caller.
__ subs(count, count_save, count); // K = partially copied oop count
__ eon(count, count, zr); // report (-1^K) to caller
__ br(Assembler::EQ, L_done_pop);
__ BIND(L_do_card_marks);
__ add(to, to, -heapOopSize); // make an inclusive end pointer
gen_write_ref_array_post_barrier(start_to, to, rscratch1);
__ bind(L_done_pop);
__ pop(RegSet::of(r18, r19, r20, r21), sp);
inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
__ bind(L_done);
__ mov(r0, count);
__ leave();
__ ret(lr);
return start;
}
// Perform range checks on the proposed arraycopy.
// Kills temp, but nothing else.
// Also, clean the sign bits of src_pos and dst_pos.
void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
Register src_pos, // source position (c_rarg1)
Register dst, // destination array oo (c_rarg2)
Register dst_pos, // destination position (c_rarg3)
Register length,
Register temp,
Label& L_failed) { Unimplemented(); }
// These stubs get called from some dumb test routine.
// I'll write them properly when they're called from
// something that's actually doing something.
static void fake_arraycopy_stub(address src, address dst, int count) {
assert(count == 0, "huh?");
}
void generate_arraycopy_stubs() {
address entry;
address entry_jbyte_arraycopy;
address entry_jshort_arraycopy;
address entry_jint_arraycopy;
address entry_oop_arraycopy;
address entry_jlong_arraycopy;
address entry_checkcast_arraycopy;
generate_copy_longs(copy_f, r0, r1, rscratch2, copy_forwards);
generate_copy_longs(copy_b, r0, r1, rscratch2, copy_backwards);
//*** jbyte
// Always need aligned and unaligned versions
StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
"jbyte_disjoint_arraycopy");
StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry,
&entry_jbyte_arraycopy,
"jbyte_arraycopy");
StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
"arrayof_jbyte_disjoint_arraycopy");
StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
"arrayof_jbyte_arraycopy");
//*** jshort
// Always need aligned and unaligned versions
StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
"jshort_disjoint_arraycopy");
StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry,
&entry_jshort_arraycopy,
"jshort_arraycopy");
StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
"arrayof_jshort_disjoint_arraycopy");
StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
"arrayof_jshort_arraycopy");
//*** jint
// Aligned versions
StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
"arrayof_jint_disjoint_arraycopy");
StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
"arrayof_jint_arraycopy");
// In 64 bit we need both aligned and unaligned versions of jint arraycopy.
// entry_jint_arraycopy always points to the unaligned version
StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
"jint_disjoint_arraycopy");
StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry,
&entry_jint_arraycopy,
"jint_arraycopy");
//*** jlong
// It is always aligned
StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
"arrayof_jlong_disjoint_arraycopy");
StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
"arrayof_jlong_arraycopy");
StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy;
//*** oops
{
// With compressed oops we need unaligned versions; notice that
// we overwrite entry_oop_arraycopy.
bool aligned = !UseCompressedOops;
StubRoutines::_arrayof_oop_disjoint_arraycopy
= generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy");
StubRoutines::_arrayof_oop_arraycopy
= generate_conjoint_oop_copy(aligned, entry, &entry_oop_arraycopy, "arrayof_oop_arraycopy");
// Aligned versions without pre-barriers
StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit
= generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_arrayof_oop_arraycopy_uninit
= generate_conjoint_oop_copy(aligned, entry, NULL, "arrayof_oop_arraycopy_uninit",
/*dest_uninitialized*/true);
}
StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy;
StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy;
StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit;
StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
/*dest_uninitialized*/true);
}
void generate_math_stubs() { Unimplemented(); }
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
//
address generate_aescrypt_encryptBlock() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
Label L_doLast;
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register keylen = rscratch1;
address start = __ pc();
__ enter();
__ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ ld1(v0, __ T16B, from); // get 16 bytes of input
__ ld1(v1, v2, v3, v4, __ T16B, __ post(key, 64));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ rev32(v3, __ T16B, v3);
__ rev32(v4, __ T16B, v4);
__ aese(v0, v1);
__ aesmc(v0, v0);
__ aese(v0, v2);
__ aesmc(v0, v0);
__ aese(v0, v3);
__ aesmc(v0, v0);
__ aese(v0, v4);
__ aesmc(v0, v0);
__ ld1(v1, v2, v3, v4, __ T16B, __ post(key, 64));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ rev32(v3, __ T16B, v3);
__ rev32(v4, __ T16B, v4);
__ aese(v0, v1);
__ aesmc(v0, v0);
__ aese(v0, v2);
__ aesmc(v0, v0);
__ aese(v0, v3);
__ aesmc(v0, v0);
__ aese(v0, v4);
__ aesmc(v0, v0);
__ ld1(v1, v2, __ T16B, __ post(key, 32));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ cmpw(keylen, 44);
__ br(Assembler::EQ, L_doLast);
__ aese(v0, v1);
__ aesmc(v0, v0);
__ aese(v0, v2);
__ aesmc(v0, v0);
__ ld1(v1, v2, __ T16B, __ post(key, 32));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ cmpw(keylen, 52);
__ br(Assembler::EQ, L_doLast);
__ aese(v0, v1);
__ aesmc(v0, v0);
__ aese(v0, v2);
__ aesmc(v0, v0);
__ ld1(v1, v2, __ T16B, __ post(key, 32));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ BIND(L_doLast);
__ aese(v0, v1);
__ aesmc(v0, v0);
__ aese(v0, v2);
__ ld1(v1, __ T16B, key);
__ rev32(v1, __ T16B, v1);
__ eor(v0, __ T16B, v0, v1);
__ st1(v0, __ T16B, to);
__ mov(r0, 0);
__ leave();
__ ret(lr);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
//
address generate_aescrypt_decryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
Label L_doLast;
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register keylen = rscratch1;
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ ld1(v0, __ T16B, from); // get 16 bytes of input
__ ld1(v5, __ T16B, __ post(key, 16));
__ rev32(v5, __ T16B, v5);
__ ld1(v1, v2, v3, v4, __ T16B, __ post(key, 64));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ rev32(v3, __ T16B, v3);
__ rev32(v4, __ T16B, v4);
__ aesd(v0, v1);
__ aesimc(v0, v0);
__ aesd(v0, v2);
__ aesimc(v0, v0);
__ aesd(v0, v3);
__ aesimc(v0, v0);
__ aesd(v0, v4);
__ aesimc(v0, v0);
__ ld1(v1, v2, v3, v4, __ T16B, __ post(key, 64));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ rev32(v3, __ T16B, v3);
__ rev32(v4, __ T16B, v4);
__ aesd(v0, v1);
__ aesimc(v0, v0);
__ aesd(v0, v2);
__ aesimc(v0, v0);
__ aesd(v0, v3);
__ aesimc(v0, v0);
__ aesd(v0, v4);
__ aesimc(v0, v0);
__ ld1(v1, v2, __ T16B, __ post(key, 32));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ cmpw(keylen, 44);
__ br(Assembler::EQ, L_doLast);
__ aesd(v0, v1);
__ aesimc(v0, v0);
__ aesd(v0, v2);
__ aesimc(v0, v0);
__ ld1(v1, v2, __ T16B, __ post(key, 32));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ cmpw(keylen, 52);
__ br(Assembler::EQ, L_doLast);
__ aesd(v0, v1);
__ aesimc(v0, v0);
__ aesd(v0, v2);
__ aesimc(v0, v0);
__ ld1(v1, v2, __ T16B, __ post(key, 32));
__ rev32(v1, __ T16B, v1);
__ rev32(v2, __ T16B, v2);
__ BIND(L_doLast);
__ aesd(v0, v1);
__ aesimc(v0, v0);
__ aesd(v0, v2);
__ eor(v0, __ T16B, v0, v5);
__ st1(v0, __ T16B, to);
__ mov(r0, 0);
__ leave();
__ ret(lr);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - r vector byte array address
// c_rarg4 - input length
//
// Output:
// x0 - input length
//
address generate_cipherBlockChaining_encryptAESCrypt() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
Label L_loadkeys_44, L_loadkeys_52, L_aes_loop, L_rounds_44, L_rounds_52;
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register rvec = c_rarg3; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
const Register keylen = rscratch1;
address start = __ pc();
__ enter();
__ mov(rscratch2, len_reg);
__ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ ld1(v0, __ T16B, rvec);
__ cmpw(keylen, 52);
__ br(Assembler::CC, L_loadkeys_44);
__ br(Assembler::EQ, L_loadkeys_52);
__ ld1(v17, v18, __ T16B, __ post(key, 32));
__ rev32(v17, __ T16B, v17);
__ rev32(v18, __ T16B, v18);
__ BIND(L_loadkeys_52);
__ ld1(v19, v20, __ T16B, __ post(key, 32));
__ rev32(v19, __ T16B, v19);
__ rev32(v20, __ T16B, v20);
__ BIND(L_loadkeys_44);
__ ld1(v21, v22, v23, v24, __ T16B, __ post(key, 64));
__ rev32(v21, __ T16B, v21);
__ rev32(v22, __ T16B, v22);
__ rev32(v23, __ T16B, v23);
__ rev32(v24, __ T16B, v24);
__ ld1(v25, v26, v27, v28, __ T16B, __ post(key, 64));
__ rev32(v25, __ T16B, v25);
__ rev32(v26, __ T16B, v26);
__ rev32(v27, __ T16B, v27);
__ rev32(v28, __ T16B, v28);
__ ld1(v29, v30, v31, __ T16B, key);
__ rev32(v29, __ T16B, v29);
__ rev32(v30, __ T16B, v30);
__ rev32(v31, __ T16B, v31);
__ BIND(L_aes_loop);
__ ld1(v1, __ T16B, __ post(from, 16));
__ eor(v0, __ T16B, v0, v1);
__ br(Assembler::CC, L_rounds_44);
__ br(Assembler::EQ, L_rounds_52);
__ aese(v0, v17); __ aesmc(v0, v0);
__ aese(v0, v18); __ aesmc(v0, v0);
__ BIND(L_rounds_52);
__ aese(v0, v19); __ aesmc(v0, v0);
__ aese(v0, v20); __ aesmc(v0, v0);
__ BIND(L_rounds_44);
__ aese(v0, v21); __ aesmc(v0, v0);
__ aese(v0, v22); __ aesmc(v0, v0);
__ aese(v0, v23); __ aesmc(v0, v0);
__ aese(v0, v24); __ aesmc(v0, v0);
__ aese(v0, v25); __ aesmc(v0, v0);
__ aese(v0, v26); __ aesmc(v0, v0);
__ aese(v0, v27); __ aesmc(v0, v0);
__ aese(v0, v28); __ aesmc(v0, v0);
__ aese(v0, v29); __ aesmc(v0, v0);
__ aese(v0, v30);
__ eor(v0, __ T16B, v0, v31);
__ st1(v0, __ T16B, __ post(to, 16));
__ sub(len_reg, len_reg, 16);
__ cbnz(len_reg, L_aes_loop);
__ st1(v0, __ T16B, rvec);
__ mov(r0, rscratch2);
__ leave();
__ ret(lr);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - r vector byte array address
// c_rarg4 - input length
//
// Output:
// rax - input length
//
address generate_cipherBlockChaining_decryptAESCrypt() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
Label L_loadkeys_44, L_loadkeys_52, L_aes_loop, L_rounds_44, L_rounds_52;
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register rvec = c_rarg3; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
const Register keylen = rscratch1;
address start = __ pc();
__ enter();
__ mov(rscratch2, len_reg);
__ ldrw(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ ld1(v2, __ T16B, rvec);
__ ld1(v31, __ T16B, __ post(key, 16));
__ rev32(v31, __ T16B, v31);
__ cmpw(keylen, 52);
__ br(Assembler::CC, L_loadkeys_44);
__ br(Assembler::EQ, L_loadkeys_52);
__ ld1(v17, v18, __ T16B, __ post(key, 32));
__ rev32(v17, __ T16B, v17);
__ rev32(v18, __ T16B, v18);
__ BIND(L_loadkeys_52);
__ ld1(v19, v20, __ T16B, __ post(key, 32));
__ rev32(v19, __ T16B, v19);
__ rev32(v20, __ T16B, v20);
__ BIND(L_loadkeys_44);
__ ld1(v21, v22, v23, v24, __ T16B, __ post(key, 64));
__ rev32(v21, __ T16B, v21);
__ rev32(v22, __ T16B, v22);
__ rev32(v23, __ T16B, v23);
__ rev32(v24, __ T16B, v24);
__ ld1(v25, v26, v27, v28, __ T16B, __ post(key, 64));
__ rev32(v25, __ T16B, v25);
__ rev32(v26, __ T16B, v26);
__ rev32(v27, __ T16B, v27);
__ rev32(v28, __ T16B, v28);
__ ld1(v29, v30, __ T16B, key);
__ rev32(v29, __ T16B, v29);
__ rev32(v30, __ T16B, v30);
__ BIND(L_aes_loop);
__ ld1(v0, __ T16B, __ post(from, 16));
__ orr(v1, __ T16B, v0, v0);
__ br(Assembler::CC, L_rounds_44);
__ br(Assembler::EQ, L_rounds_52);
__ aesd(v0, v17); __ aesimc(v0, v0);
__ aesd(v0, v17); __ aesimc(v0, v0);
__ BIND(L_rounds_52);
__ aesd(v0, v19); __ aesimc(v0, v0);
__ aesd(v0, v20); __ aesimc(v0, v0);
__ BIND(L_rounds_44);
__ aesd(v0, v21); __ aesimc(v0, v0);
__ aesd(v0, v22); __ aesimc(v0, v0);
__ aesd(v0, v23); __ aesimc(v0, v0);
__ aesd(v0, v24); __ aesimc(v0, v0);
__ aesd(v0, v25); __ aesimc(v0, v0);
__ aesd(v0, v26); __ aesimc(v0, v0);
__ aesd(v0, v27); __ aesimc(v0, v0);
__ aesd(v0, v28); __ aesimc(v0, v0);
__ aesd(v0, v29); __ aesimc(v0, v0);
__ aesd(v0, v30);
__ eor(v0, __ T16B, v0, v31);
__ eor(v0, __ T16B, v0, v2);
__ st1(v0, __ T16B, __ post(to, 16));
__ orr(v2, __ T16B, v1, v1);
__ sub(len_reg, len_reg, 16);
__ cbnz(len_reg, L_aes_loop);
__ st1(v2, __ T16B, rvec);
__ mov(r0, rscratch2);
__ leave();
__ ret(lr);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - byte[] source+offset
// c_rarg1 - int[] SHA.state
// c_rarg2 - int offset
// c_rarg3 - int limit
//
address generate_sha1_implCompress(bool multi_block, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Register buf = c_rarg0;
Register state = c_rarg1;
Register ofs = c_rarg2;
Register limit = c_rarg3;
Label keys;
Label sha1_loop;
// load the keys into v0..v3
__ adr(rscratch1, keys);
__ ld4r(v0, v1, v2, v3, __ T4S, Address(rscratch1));
// load 5 words state into v6, v7
__ ldrq(v6, Address(state, 0));
__ ldrs(v7, Address(state, 16));
__ BIND(sha1_loop);
// load 64 bytes of data into v16..v19
__ ld1(v16, v17, v18, v19, __ T4S, multi_block ? __ post(buf, 64) : buf);
__ rev32(v16, __ T16B, v16);
__ rev32(v17, __ T16B, v17);
__ rev32(v18, __ T16B, v18);
__ rev32(v19, __ T16B, v19);
// do the sha1
__ addv(v4, __ T4S, v16, v0);
__ orr(v20, __ T16B, v6, v6);
FloatRegister d0 = v16;
FloatRegister d1 = v17;
FloatRegister d2 = v18;
FloatRegister d3 = v19;
for (int round = 0; round < 20; round++) {
FloatRegister tmp1 = (round & 1) ? v4 : v5;
FloatRegister tmp2 = (round & 1) ? v21 : v22;
FloatRegister tmp3 = round ? ((round & 1) ? v22 : v21) : v7;
FloatRegister tmp4 = (round & 1) ? v5 : v4;
FloatRegister key = (round < 4) ? v0 : ((round < 9) ? v1 : ((round < 14) ? v2 : v3));
if (round < 16) __ sha1su0(d0, __ T4S, d1, d2);
if (round < 19) __ addv(tmp1, __ T4S, d1, key);
__ sha1h(tmp2, __ T4S, v20);
if (round < 5)
__ sha1c(v20, __ T4S, tmp3, tmp4);
else if (round < 10 || round >= 15)
__ sha1p(v20, __ T4S, tmp3, tmp4);
else
__ sha1m(v20, __ T4S, tmp3, tmp4);
if (round < 16) __ sha1su1(d0, __ T4S, d3);
tmp1 = d0; d0 = d1; d1 = d2; d2 = d3; d3 = tmp1;
}
__ addv(v7, __ T2S, v7, v21);
__ addv(v6, __ T4S, v6, v20);
if (multi_block) {
__ add(ofs, ofs, 64);
__ cmp(ofs, limit);
__ br(Assembler::LE, sha1_loop);
__ mov(c_rarg0, ofs); // return ofs
}
__ strq(v6, Address(state, 0));
__ strs(v7, Address(state, 16));
__ ret(lr);
__ bind(keys);
__ emit_int32(0x5a827999);
__ emit_int32(0x6ed9eba1);
__ emit_int32(0x8f1bbcdc);
__ emit_int32(0xca62c1d6);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - byte[] source+offset
// c_rarg1 - int[] SHA.state
// c_rarg2 - int offset
// c_rarg3 - int limit
//
address generate_sha256_implCompress(bool multi_block, const char *name) {
static const uint32_t round_consts[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Register buf = c_rarg0;
Register state = c_rarg1;
Register ofs = c_rarg2;
Register limit = c_rarg3;
Label sha1_loop;
__ stpd(v8, v9, __ pre(sp, -32));
__ stpd(v10, v11, Address(sp, 16));
// dga == v0
// dgb == v1
// dg0 == v2
// dg1 == v3
// dg2 == v4
// t0 == v6
// t1 == v7
// load 16 keys to v16..v31
__ lea(rscratch1, ExternalAddress((address)round_consts));
__ ld1(v16, v17, v18, v19, __ T4S, __ post(rscratch1, 64));
__ ld1(v20, v21, v22, v23, __ T4S, __ post(rscratch1, 64));
__ ld1(v24, v25, v26, v27, __ T4S, __ post(rscratch1, 64));
__ ld1(v28, v29, v30, v31, __ T4S, rscratch1);
// load 8 words (256 bits) state
__ ldpq(v0, v1, state);
__ BIND(sha1_loop);
// load 64 bytes of data into v8..v11
__ ld1(v8, v9, v10, v11, __ T4S, multi_block ? __ post(buf, 64) : buf);
__ rev32(v8, __ T16B, v8);
__ rev32(v9, __ T16B, v9);
__ rev32(v10, __ T16B, v10);
__ rev32(v11, __ T16B, v11);
__ addv(v6, __ T4S, v8, v16);
__ orr(v2, __ T16B, v0, v0);
__ orr(v3, __ T16B, v1, v1);
FloatRegister d0 = v8;
FloatRegister d1 = v9;
FloatRegister d2 = v10;
FloatRegister d3 = v11;
for (int round = 0; round < 16; round++) {
FloatRegister tmp1 = (round & 1) ? v6 : v7;
FloatRegister tmp2 = (round & 1) ? v7 : v6;
FloatRegister tmp3 = (round & 1) ? v2 : v4;
FloatRegister tmp4 = (round & 1) ? v4 : v2;
if (round < 12) __ sha256su0(d0, __ T4S, d1);
__ orr(v4, __ T16B, v2, v2);
if (round < 15)
__ addv(tmp1, __ T4S, d1, as_FloatRegister(round + 17));
__ sha256h(v2, __ T4S, v3, tmp2);
__ sha256h2(v3, __ T4S, v4, tmp2);
if (round < 12) __ sha256su1(d0, __ T4S, d2, d3);
tmp1 = d0; d0 = d1; d1 = d2; d2 = d3; d3 = tmp1;
}
__ addv(v0, __ T4S, v0, v2);
__ addv(v1, __ T4S, v1, v3);
if (multi_block) {
__ add(ofs, ofs, 64);
__ cmp(ofs, limit);
__ br(Assembler::LE, sha1_loop);
__ mov(c_rarg0, ofs); // return ofs
}
__ ldpd(v10, v11, Address(sp, 16));
__ ldpd(v8, v9, __ post(sp, 32));
__ stpq(v0, v1, state);
__ ret(lr);
return start;
}
#ifndef BUILTIN_SIM
// Safefetch stubs.
void generate_safefetch(const char* name, int size, address* entry,
address* fault_pc, address* continuation_pc) {
// safefetch signatures:
// int SafeFetch32(int* adr, int errValue);
// intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
//
// arguments:
// c_rarg0 = adr
// c_rarg1 = errValue
//
// result:
// PPC_RET = *adr or errValue
StubCodeMark mark(this, "StubRoutines", name);
// Entry point, pc or function descriptor.
*entry = __ pc();
// Load *adr into c_rarg1, may fault.
*fault_pc = __ pc();
switch (size) {
case 4:
// int32_t
__ ldrw(c_rarg1, Address(c_rarg0, 0));
break;
case 8:
// int64_t
__ ldr(c_rarg1, Address(c_rarg0, 0));
break;
default:
ShouldNotReachHere();
}
// return errValue or *adr
*continuation_pc = __ pc();
__ mov(r0, c_rarg1);
__ ret(lr);
}
#endif
/**
* Arguments:
*
* Inputs:
* c_rarg0 - int crc
* c_rarg1 - byte* buf
* c_rarg2 - int length
*
* Ouput:
* rax - int crc result
*/
address generate_updateBytesCRC32() {
assert(UseCRC32Intrinsics, "what are we doing here?");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
address start = __ pc();
const Register crc = c_rarg0; // crc
const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // length
const Register table0 = c_rarg3; // crc_table address
const Register table1 = c_rarg4;
const Register table2 = c_rarg5;
const Register table3 = c_rarg6;
const Register tmp3 = c_rarg7;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ kernel_crc32(crc, buf, len,
table0, table1, table2, table3, rscratch1, rscratch2, tmp3);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(lr);
return start;
}
/**
* Arguments:
*
* Inputs:
* c_rarg0 - int crc
* c_rarg1 - byte* buf
* c_rarg2 - int length
* c_rarg3 - int* table
*
* Ouput:
* r0 - int crc result
*/
address generate_updateBytesCRC32C() {
assert(UseCRC32CIntrinsics, "what are we doing here?");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
address start = __ pc();
const Register crc = c_rarg0; // crc
const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // length
const Register table0 = c_rarg3; // crc_table address
const Register table1 = c_rarg4;
const Register table2 = c_rarg5;
const Register table3 = c_rarg6;
const Register tmp3 = c_rarg7;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ kernel_crc32c(crc, buf, len,
table0, table1, table2, table3, rscratch1, rscratch2, tmp3);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(lr);
return start;
}
/***
* Arguments:
*
* Inputs:
* c_rarg0 - int adler
* c_rarg1 - byte* buff
* c_rarg2 - int len
*
* Output:
* c_rarg0 - int adler result
*/
address generate_updateBytesAdler32() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesAdler32");
address start = __ pc();
Label L_simple_by1_loop, L_nmax, L_nmax_loop, L_by16, L_by16_loop, L_by1_loop, L_do_mod, L_combine, L_by1;
// Aliases
Register adler = c_rarg0;
Register s1 = c_rarg0;
Register s2 = c_rarg3;
Register buff = c_rarg1;
Register len = c_rarg2;
Register nmax = r4;
Register base = r5;
Register count = r6;
Register temp0 = rscratch1;
Register temp1 = rscratch2;
Register temp2 = r7;
// Max number of bytes we can process before having to take the mod
// 0x15B0 is 5552 in decimal, the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1
unsigned long BASE = 0xfff1;
unsigned long NMAX = 0x15B0;
__ mov(base, BASE);
__ mov(nmax, NMAX);
// s1 is initialized to the lower 16 bits of adler
// s2 is initialized to the upper 16 bits of adler
__ ubfx(s2, adler, 16, 16); // s2 = ((adler >> 16) & 0xffff)
__ uxth(s1, adler); // s1 = (adler & 0xffff)
// The pipelined loop needs at least 16 elements for 1 iteration
// It does check this, but it is more effective to skip to the cleanup loop
__ cmp(len, 16);
__ br(Assembler::HS, L_nmax);
__ cbz(len, L_combine);
__ bind(L_simple_by1_loop);
__ ldrb(temp0, Address(__ post(buff, 1)));
__ add(s1, s1, temp0);
__ add(s2, s2, s1);
__ subs(len, len, 1);
__ br(Assembler::HI, L_simple_by1_loop);
// s1 = s1 % BASE
__ subs(temp0, s1, base);
__ csel(s1, temp0, s1, Assembler::HS);
// s2 = s2 % BASE
__ lsr(temp0, s2, 16);
__ lsl(temp1, temp0, 4);
__ sub(temp1, temp1, temp0);
__ add(s2, temp1, s2, ext::uxth);
__ subs(temp0, s2, base);
__ csel(s2, temp0, s2, Assembler::HS);
__ b(L_combine);
__ bind(L_nmax);
__ subs(len, len, nmax);
__ sub(count, nmax, 16);
__ br(Assembler::LO, L_by16);
__ bind(L_nmax_loop);
__ ldp(temp0, temp1, Address(__ post(buff, 16)));
__ add(s1, s1, temp0, ext::uxtb);
__ ubfx(temp2, temp0, 8, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 16, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 24, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 32, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 40, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 48, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ add(s2, s2, s1);
__ add(s1, s1, temp0, Assembler::LSR, 56);
__ add(s2, s2, s1);
__ add(s1, s1, temp1, ext::uxtb);
__ ubfx(temp2, temp1, 8, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 16, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 24, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 32, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 40, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 48, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ add(s2, s2, s1);
__ add(s1, s1, temp1, Assembler::LSR, 56);
__ add(s2, s2, s1);
__ subs(count, count, 16);
__ br(Assembler::HS, L_nmax_loop);
// s1 = s1 % BASE
__ lsr(temp0, s1, 16);
__ lsl(temp1, temp0, 4);
__ sub(temp1, temp1, temp0);
__ add(temp1, temp1, s1, ext::uxth);
__ lsr(temp0, temp1, 16);
__ lsl(s1, temp0, 4);
__ sub(s1, s1, temp0);
__ add(s1, s1, temp1, ext:: uxth);
__ subs(temp0, s1, base);
__ csel(s1, temp0, s1, Assembler::HS);
// s2 = s2 % BASE
__ lsr(temp0, s2, 16);
__ lsl(temp1, temp0, 4);
__ sub(temp1, temp1, temp0);
__ add(temp1, temp1, s2, ext::uxth);
__ lsr(temp0, temp1, 16);
__ lsl(s2, temp0, 4);
__ sub(s2, s2, temp0);
__ add(s2, s2, temp1, ext:: uxth);
__ subs(temp0, s2, base);
__ csel(s2, temp0, s2, Assembler::HS);
__ subs(len, len, nmax);
__ sub(count, nmax, 16);
__ br(Assembler::HS, L_nmax_loop);
__ bind(L_by16);
__ adds(len, len, count);
__ br(Assembler::LO, L_by1);
__ bind(L_by16_loop);
__ ldp(temp0, temp1, Address(__ post(buff, 16)));
__ add(s1, s1, temp0, ext::uxtb);
__ ubfx(temp2, temp0, 8, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 16, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 24, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 32, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 40, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp0, 48, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ add(s2, s2, s1);
__ add(s1, s1, temp0, Assembler::LSR, 56);
__ add(s2, s2, s1);
__ add(s1, s1, temp1, ext::uxtb);
__ ubfx(temp2, temp1, 8, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 16, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 24, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 32, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 40, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ ubfx(temp2, temp1, 48, 8);
__ add(s2, s2, s1);
__ add(s1, s1, temp2);
__ add(s2, s2, s1);
__ add(s1, s1, temp1, Assembler::LSR, 56);
__ add(s2, s2, s1);
__ subs(len, len, 16);
__ br(Assembler::HS, L_by16_loop);
__ bind(L_by1);
__ adds(len, len, 15);
__ br(Assembler::LO, L_do_mod);
__ bind(L_by1_loop);
__ ldrb(temp0, Address(__ post(buff, 1)));
__ add(s1, temp0, s1);
__ add(s2, s2, s1);
__ subs(len, len, 1);
__ br(Assembler::HS, L_by1_loop);
__ bind(L_do_mod);
// s1 = s1 % BASE
__ lsr(temp0, s1, 16);
__ lsl(temp1, temp0, 4);
__ sub(temp1, temp1, temp0);
__ add(temp1, temp1, s1, ext::uxth);
__ lsr(temp0, temp1, 16);
__ lsl(s1, temp0, 4);
__ sub(s1, s1, temp0);
__ add(s1, s1, temp1, ext:: uxth);
__ subs(temp0, s1, base);
__ csel(s1, temp0, s1, Assembler::HS);
// s2 = s2 % BASE
__ lsr(temp0, s2, 16);
__ lsl(temp1, temp0, 4);
__ sub(temp1, temp1, temp0);
__ add(temp1, temp1, s2, ext::uxth);
__ lsr(temp0, temp1, 16);
__ lsl(s2, temp0, 4);
__ sub(s2, s2, temp0);
__ add(s2, s2, temp1, ext:: uxth);
__ subs(temp0, s2, base);
__ csel(s2, temp0, s2, Assembler::HS);
// Combine lower bits and higher bits
__ bind(L_combine);
__ orr(s1, s1, s2, Assembler::LSL, 16); // adler = s1 | (s2 << 16)
__ ret(lr);
return start;
}
/**
* Arguments:
*
* Input:
* c_rarg0 - x address
* c_rarg1 - x length
* c_rarg2 - y address
* c_rarg3 - y lenth
* c_rarg4 - z address
* c_rarg5 - z length
*/
address generate_multiplyToLen() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
address start = __ pc();
const Register x = r0;
const Register xlen = r1;
const Register y = r2;
const Register ylen = r3;
const Register z = r4;
const Register zlen = r5;
const Register tmp1 = r10;
const Register tmp2 = r11;
const Register tmp3 = r12;
const Register tmp4 = r13;
const Register tmp5 = r14;
const Register tmp6 = r15;
const Register tmp7 = r16;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(lr);
return start;
}
void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3, FloatRegister tmp4) {
// Karatsuba multiplication performs a 128*128 -> 256-bit
// multiplication in three 128-bit multiplications and a few
// additions.
//
// (C1:C0) = A1*B1, (D1:D0) = A0*B0, (E1:E0) = (A0+A1)(B0+B1)
// (A1:A0)(B1:B0) = C1:(C0+C1+D1+E1):(D1+C0+D0+E0):D0
//
// Inputs:
//
// A0 in a.d[0] (subkey)
// A1 in a.d[1]
// (A1+A0) in a1_xor_a0.d[0]
//
// B0 in b.d[0] (state)
// B1 in b.d[1]
__ ext(tmp1, __ T16B, b, b, 0x08);
__ pmull2(result_hi, __ T1Q, b, a, __ T2D); // A1*B1
__ eor(tmp1, __ T16B, tmp1, b); // (B1+B0)
__ pmull(result_lo, __ T1Q, b, a, __ T1D); // A0*B0
__ pmull(tmp2, __ T1Q, tmp1, a1_xor_a0, __ T1D); // (A1+A0)(B1+B0)
__ ext(tmp4, __ T16B, result_lo, result_hi, 0x08);
__ eor(tmp3, __ T16B, result_hi, result_lo); // A1*B1+A0*B0
__ eor(tmp2, __ T16B, tmp2, tmp4);
__ eor(tmp2, __ T16B, tmp2, tmp3);
// Register pair <result_hi:result_lo> holds the result of carry-less multiplication
__ ins(result_hi, __ D, tmp2, 0, 1);
__ ins(result_lo, __ D, tmp2, 1, 0);
}
void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
FloatRegister p, FloatRegister z, FloatRegister t1) {
const FloatRegister t0 = result;
// The GCM field polynomial f is z^128 + p(z), where p =
// z^7+z^2+z+1.
//
// z^128 === -p(z) (mod (z^128 + p(z)))
//
// so, given that the product we're reducing is
// a == lo + hi * z^128
// substituting,
// === lo - hi * p(z) (mod (z^128 + p(z)))
//
// we reduce by multiplying hi by p(z) and subtracting the result
// from (i.e. XORing it with) lo. Because p has no nonzero high
// bits we can do this with two 64-bit multiplications, lo*p and
// hi*p.
__ pmull2(t0, __ T1Q, hi, p, __ T2D);
__ ext(t1, __ T16B, t0, z, 8);
__ eor(hi, __ T16B, hi, t1);
__ ext(t1, __ T16B, z, t0, 8);
__ eor(lo, __ T16B, lo, t1);
__ pmull(t0, __ T1Q, hi, p, __ T1D);
__ eor(result, __ T16B, lo, t0);
}
/**
* Arguments:
*
* Input:
* c_rarg0 - current state address
* c_rarg1 - H key address
* c_rarg2 - data address
* c_rarg3 - number of blocks
*
* Output:
* Updated state at c_rarg0
*/
address generate_ghash_processBlocks() {
// Bafflingly, GCM uses little-endian for the byte order, but
// big-endian for the bit order. For example, the polynomial 1 is
// represented as the 16-byte string 80 00 00 00 | 12 bytes of 00.
//
// So, we must either reverse the bytes in each word and do
// everything big-endian or reverse the bits in each byte and do
// it little-endian. On AArch64 it's more idiomatic to reverse
// the bits in each byte (we have an instruction, RBIT, to do
// that) and keep the data in little-endian bit order throught the
// calculation, bit-reversing the inputs and outputs.
StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
__ align(wordSize * 2);
address p = __ pc();
__ emit_int64(0x87); // The low-order bits of the field
// polynomial (i.e. p = z^7+z^2+z+1)
// repeated in the low and high parts of a
// 128-bit vector
__ emit_int64(0x87);
__ align(CodeEntryAlignment);
address start = __ pc();
Register state = c_rarg0;
Register subkeyH = c_rarg1;
Register data = c_rarg2;
Register blocks = c_rarg3;
FloatRegister vzr = v30;
__ eor(vzr, __ T16B, vzr, vzr); // zero register
__ ldrq(v0, Address(state));
__ ldrq(v1, Address(subkeyH));
__ rev64(v0, __ T16B, v0); // Bit-reverse words in state and subkeyH
__ rbit(v0, __ T16B, v0);
__ rev64(v1, __ T16B, v1);
__ rbit(v1, __ T16B, v1);
__ ldrq(v26, p);
__ ext(v16, __ T16B, v1, v1, 0x08); // long-swap subkeyH into v1
__ eor(v16, __ T16B, v16, v1); // xor subkeyH into subkeyL (Karatsuba: (A1+A0))
{
Label L_ghash_loop;
__ bind(L_ghash_loop);
__ ldrq(v2, Address(__ post(data, 0x10))); // Load the data, bit
// reversing each byte
__ rbit(v2, __ T16B, v2);
__ eor(v2, __ T16B, v0, v2); // bit-swapped data ^ bit-swapped state
// Multiply state in v2 by subkey in v1
ghash_multiply(/*result_lo*/v5, /*result_hi*/v7,
/*a*/v1, /*b*/v2, /*a1_xor_a0*/v16,
/*temps*/v6, v20, v18, v21);
// Reduce v7:v5 by the field polynomial
ghash_reduce(v0, v5, v7, v26, vzr, v20);
__ sub(blocks, blocks, 1);
__ cbnz(blocks, L_ghash_loop);
}
// The bit-reversed result is at this point in v0
__ rev64(v1, __ T16B, v0);
__ rbit(v1, __ T16B, v1);
__ st1(v1, __ T16B, state);
__ ret(lr);
return start;
}
// Continuation point for throwing of implicit exceptions that are
// not handled in the current activation. Fabricates an exception
// oop and initiates normal exception dispatching in this
// frame. Since we need to preserve callee-saved values (currently
// only for C2, but done for C1 as well) we need a callee-saved oop
// map and therefore have to make these stubs into RuntimeStubs
// rather than BufferBlobs. If the compiler needs all registers to
// be preserved between the fault point and the exception handler
// then it must assume responsibility for that in
// AbstractCompiler::continuation_for_implicit_null_exception or
// continuation_for_implicit_division_by_zero_exception. All other
// implicit exceptions (e.g., NullPointerException or
// AbstractMethodError on entry) are either at call sites or
// otherwise assume that stack unwinding will be initiated, so
// caller saved registers were assumed volatile in the compiler.
#undef __
#define __ masm->
address generate_throw_exception(const char* name,
address runtime_entry,
Register arg1 = noreg,
Register arg2 = noreg) {
// Information about frame layout at time of blocking runtime call.
// Note that we only have to preserve callee-saved registers since
// the compilers are responsible for supplying a continuation point
// if they expect all registers to be preserved.
// n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0
enum layout {
rfp_off = 0,
rfp_off2,
return_off,
return_off2,
framesize // inclusive of return address
};
int insts_size = 512;
int locs_size = 64;
CodeBuffer code(name, insts_size, locs_size);
OopMapSet* oop_maps = new OopMapSet();
MacroAssembler* masm = new MacroAssembler(&code);
address start = __ pc();
// This is an inlined and slightly modified version of call_VM
// which has the ability to fetch the return PC out of
// thread-local storage and also sets up last_Java_sp slightly
// differently than the real call_VM
__ enter(); // Save FP and LR before call
assert(is_even(framesize/2), "sp not 16-byte aligned");
// lr and fp are already in place
__ sub(sp, rfp, ((unsigned)framesize-4) << LogBytesPerInt); // prolog
int frame_complete = __ pc() - start;
// Set up last_Java_sp and last_Java_fp
address the_pc = __ pc();
__ set_last_Java_frame(sp, rfp, (address)NULL, rscratch1);
// Call runtime
if (arg1 != noreg) {
assert(arg2 != c_rarg1, "clobbered");
__ mov(c_rarg1, arg1);
}
if (arg2 != noreg) {
__ mov(c_rarg2, arg2);
}
__ mov(c_rarg0, rthread);
BLOCK_COMMENT("call runtime_entry");
__ mov(rscratch1, runtime_entry);
__ blrt(rscratch1, 3 /* number_of_arguments */, 0, 1);
// Generate oop map
OopMap* map = new OopMap(framesize, 0);
oop_maps->add_gc_map(the_pc - start, map);
__ reset_last_Java_frame(true, true);
__ maybe_isb();
__ leave();
// check for pending exceptions
#ifdef ASSERT
Label L;
__ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
__ cbnz(rscratch1, L);
__ should_not_reach_here();
__ bind(L);
#endif // ASSERT
__ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
// codeBlob framesize is in words (not VMRegImpl::slot_size)
RuntimeStub* stub =
RuntimeStub::new_runtime_stub(name,
&code,
frame_complete,
(framesize >> (LogBytesPerWord - LogBytesPerInt)),
oop_maps, false);
return stub->entry_point();
}
class MontgomeryMultiplyGenerator : public MacroAssembler {
Register Pa_base, Pb_base, Pn_base, Pm_base, inv, Rlen, Ra, Rb, Rm, Rn,
Pa, Pb, Pn, Pm, Rhi_ab, Rlo_ab, Rhi_mn, Rlo_mn, t0, t1, t2, Ri, Rj;
RegSet _toSave;
bool _squaring;
public:
MontgomeryMultiplyGenerator (Assembler *as, bool squaring)
: MacroAssembler(as->code()), _squaring(squaring) {
// Register allocation
Register reg = c_rarg0;
Pa_base = reg; // Argument registers
if (squaring)
Pb_base = Pa_base;
else
Pb_base = ++reg;
Pn_base = ++reg;
Rlen= ++reg;
inv = ++reg;
Pm_base = ++reg;
// Working registers:
Ra = ++reg; // The current digit of a, b, n, and m.
Rb = ++reg;
Rm = ++reg;
Rn = ++reg;
Pa = ++reg; // Pointers to the current/next digit of a, b, n, and m.
Pb = ++reg;
Pm = ++reg;
Pn = ++reg;
t0 = ++reg; // Three registers which form a
t1 = ++reg; // triple-precision accumuator.
t2 = ++reg;
Ri = ++reg; // Inner and outer loop indexes.
Rj = ++reg;
Rhi_ab = ++reg; // Product registers: low and high parts
Rlo_ab = ++reg; // of a*b and m*n.
Rhi_mn = ++reg;
Rlo_mn = ++reg;
// r19 and up are callee-saved.
_toSave = RegSet::range(r19, reg) + Pm_base;
}
private:
void save_regs() {
push(_toSave, sp);
}
void restore_regs() {
pop(_toSave, sp);
}
template <typename T>
void unroll_2(Register count, T block) {
Label loop, end, odd;
tbnz(count, 0, odd);
cbz(count, end);
align(16);
bind(loop);
(this->*block)();
bind(odd);
(this->*block)();
subs(count, count, 2);
br(Assembler::GT, loop);
bind(end);
}
template <typename T>
void unroll_2(Register count, T block, Register d, Register s, Register tmp) {
Label loop, end, odd;
tbnz(count, 0, odd);
cbz(count, end);
align(16);
bind(loop);
(this->*block)(d, s, tmp);
bind(odd);
(this->*block)(d, s, tmp);
subs(count, count, 2);
br(Assembler::GT, loop);
bind(end);
}
void pre1(RegisterOrConstant i) {
block_comment("pre1");
// Pa = Pa_base;
// Pb = Pb_base + i;
// Pm = Pm_base;
// Pn = Pn_base + i;
// Ra = *Pa;
// Rb = *Pb;
// Rm = *Pm;
// Rn = *Pn;
ldr(Ra, Address(Pa_base));
ldr(Rb, Address(Pb_base, i, Address::uxtw(LogBytesPerWord)));
ldr(Rm, Address(Pm_base));
ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord)));
lea(Pa, Address(Pa_base));
lea(Pb, Address(Pb_base, i, Address::uxtw(LogBytesPerWord)));
lea(Pm, Address(Pm_base));
lea(Pn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord)));
// Zero the m*n result.
mov(Rhi_mn, zr);
mov(Rlo_mn, zr);
}
// The core multiply-accumulate step of a Montgomery
// multiplication. The idea is to schedule operations as a
// pipeline so that instructions with long latencies (loads and
// multiplies) have time to complete before their results are
// used. This most benefits in-order implementations of the
// architecture but out-of-order ones also benefit.
void step() {
block_comment("step");
// MACC(Ra, Rb, t0, t1, t2);
// Ra = *++Pa;
// Rb = *--Pb;
umulh(Rhi_ab, Ra, Rb);
mul(Rlo_ab, Ra, Rb);
ldr(Ra, pre(Pa, wordSize));
ldr(Rb, pre(Pb, -wordSize));
acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n from the
// previous iteration.
// MACC(Rm, Rn, t0, t1, t2);
// Rm = *++Pm;
// Rn = *--Pn;
umulh(Rhi_mn, Rm, Rn);
mul(Rlo_mn, Rm, Rn);
ldr(Rm, pre(Pm, wordSize));
ldr(Rn, pre(Pn, -wordSize));
acc(Rhi_ab, Rlo_ab, t0, t1, t2);
}
void post1() {
block_comment("post1");
// MACC(Ra, Rb, t0, t1, t2);
// Ra = *++Pa;
// Rb = *--Pb;
umulh(Rhi_ab, Ra, Rb);
mul(Rlo_ab, Ra, Rb);
acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n
acc(Rhi_ab, Rlo_ab, t0, t1, t2);
// *Pm = Rm = t0 * inv;
mul(Rm, t0, inv);
str(Rm, Address(Pm));
// MACC(Rm, Rn, t0, t1, t2);
// t0 = t1; t1 = t2; t2 = 0;
umulh(Rhi_mn, Rm, Rn);
#ifndef PRODUCT
// assert(m[i] * n[0] + t0 == 0, "broken Montgomery multiply");
{
mul(Rlo_mn, Rm, Rn);
add(Rlo_mn, t0, Rlo_mn);
Label ok;
cbz(Rlo_mn, ok); {
stop("broken Montgomery multiply");
} bind(ok);
}
#endif
// We have very carefully set things up so that
// m[i]*n[0] + t0 == 0 (mod b), so we don't have to calculate
// the lower half of Rm * Rn because we know the result already:
// it must be -t0. t0 + (-t0) must generate a carry iff
// t0 != 0. So, rather than do a mul and an adds we just set
// the carry flag iff t0 is nonzero.
//
// mul(Rlo_mn, Rm, Rn);
// adds(zr, t0, Rlo_mn);
subs(zr, t0, 1); // Set carry iff t0 is nonzero
adcs(t0, t1, Rhi_mn);
adc(t1, t2, zr);
mov(t2, zr);
}
void pre2(RegisterOrConstant i, RegisterOrConstant len) {
block_comment("pre2");
// Pa = Pa_base + i-len;
// Pb = Pb_base + len;
// Pm = Pm_base + i-len;
// Pn = Pn_base + len;
if (i.is_register()) {
sub(Rj, i.as_register(), len);
} else {
mov(Rj, i.as_constant());
sub(Rj, Rj, len);
}
// Rj == i-len
lea(Pa, Address(Pa_base, Rj, Address::uxtw(LogBytesPerWord)));
lea(Pb, Address(Pb_base, len, Address::uxtw(LogBytesPerWord)));
lea(Pm, Address(Pm_base, Rj, Address::uxtw(LogBytesPerWord)));
lea(Pn, Address(Pn_base, len, Address::uxtw(LogBytesPerWord)));
// Ra = *++Pa;
// Rb = *--Pb;
// Rm = *++Pm;
// Rn = *--Pn;
ldr(Ra, pre(Pa, wordSize));
ldr(Rb, pre(Pb, -wordSize));
ldr(Rm, pre(Pm, wordSize));
ldr(Rn, pre(Pn, -wordSize));
mov(Rhi_mn, zr);
mov(Rlo_mn, zr);
}
void post2(RegisterOrConstant i, RegisterOrConstant len) {
block_comment("post2");
if (i.is_constant()) {
mov(Rj, i.as_constant()-len.as_constant());
} else {
sub(Rj, i.as_register(), len);
}
adds(t0, t0, Rlo_mn); // The pending m*n, low part
// As soon as we know the least significant digit of our result,
// store it.
// Pm_base[i-len] = t0;
str(t0, Address(Pm_base, Rj, Address::uxtw(LogBytesPerWord)));
// t0 = t1; t1 = t2; t2 = 0;
adcs(t0, t1, Rhi_mn); // The pending m*n, high part
adc(t1, t2, zr);
mov(t2, zr);
}
// A carry in t0 after Montgomery multiplication means that we
// should subtract multiples of n from our result in m. We'll
// keep doing that until there is no carry.
void normalize(RegisterOrConstant len) {
block_comment("normalize");
// while (t0)
// t0 = sub(Pm_base, Pn_base, t0, len);
Label loop, post, again;
Register cnt = t1, i = t2; // Re-use registers; we're done with them now
cbz(t0, post); {
bind(again); {
mov(i, zr);
mov(cnt, len);
ldr(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord)));
ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord)));
subs(zr, zr, zr); // set carry flag, i.e. no borrow
align(16);
bind(loop); {
sbcs(Rm, Rm, Rn);
str(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord)));
add(i, i, 1);
ldr(Rm, Address(Pm_base, i, Address::uxtw(LogBytesPerWord)));
ldr(Rn, Address(Pn_base, i, Address::uxtw(LogBytesPerWord)));
sub(cnt, cnt, 1);
} cbnz(cnt, loop);
sbc(t0, t0, zr);
} cbnz(t0, again);
} bind(post);
}
// Move memory at s to d, reversing words.
// Increments d to end of copied memory
// Destroys tmp1, tmp2
// Preserves len
// Leaves s pointing to the address which was in d at start
void reverse(Register d, Register s, Register len, Register tmp1, Register tmp2) {
assert(tmp1 < r19 && tmp2 < r19, "register corruption");
lea(s, Address(s, len, Address::uxtw(LogBytesPerWord)));
mov(tmp1, len);
unroll_2(tmp1, &MontgomeryMultiplyGenerator::reverse1, d, s, tmp2);
sub(s, d, len, ext::uxtw, LogBytesPerWord);
}
// where
void reverse1(Register d, Register s, Register tmp) {
ldr(tmp, pre(s, -wordSize));
ror(tmp, tmp, 32);
str(tmp, post(d, wordSize));
}
void step_squaring() {
// An extra ACC
step();
acc(Rhi_ab, Rlo_ab, t0, t1, t2);
}
void last_squaring(RegisterOrConstant i) {
Label dont;
// if ((i & 1) == 0) {
tbnz(i.as_register(), 0, dont); {
// MACC(Ra, Rb, t0, t1, t2);
// Ra = *++Pa;
// Rb = *--Pb;
umulh(Rhi_ab, Ra, Rb);
mul(Rlo_ab, Ra, Rb);
acc(Rhi_ab, Rlo_ab, t0, t1, t2);
} bind(dont);
}
void extra_step_squaring() {
acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n
// MACC(Rm, Rn, t0, t1, t2);
// Rm = *++Pm;
// Rn = *--Pn;
umulh(Rhi_mn, Rm, Rn);
mul(Rlo_mn, Rm, Rn);
ldr(Rm, pre(Pm, wordSize));
ldr(Rn, pre(Pn, -wordSize));
}
void post1_squaring() {
acc(Rhi_mn, Rlo_mn, t0, t1, t2); // The pending m*n
// *Pm = Rm = t0 * inv;
mul(Rm, t0, inv);
str(Rm, Address(Pm));
// MACC(Rm, Rn, t0, t1, t2);
// t0 = t1; t1 = t2; t2 = 0;
umulh(Rhi_mn, Rm, Rn);
#ifndef PRODUCT
// assert(m[i] * n[0] + t0 == 0, "broken Montgomery multiply");
{
mul(Rlo_mn, Rm, Rn);
add(Rlo_mn, t0, Rlo_mn);
Label ok;
cbz(Rlo_mn, ok); {
stop("broken Montgomery multiply");
} bind(ok);
}
#endif
// We have very carefully set things up so that
// m[i]*n[0] + t0 == 0 (mod b), so we don't have to calculate
// the lower half of Rm * Rn because we know the result already:
// it must be -t0. t0 + (-t0) must generate a carry iff
// t0 != 0. So, rather than do a mul and an adds we just set
// the carry flag iff t0 is nonzero.
//
// mul(Rlo_mn, Rm, Rn);
// adds(zr, t0, Rlo_mn);
subs(zr, t0, 1); // Set carry iff t0 is nonzero
adcs(t0, t1, Rhi_mn);
adc(t1, t2, zr);
mov(t2, zr);
}
void acc(Register Rhi, Register Rlo,
Register t0, Register t1, Register t2) {
adds(t0, t0, Rlo);
adcs(t1, t1, Rhi);
adc(t2, t2, zr);
}
public:
/**
* Fast Montgomery multiplication. The derivation of the
* algorithm is in A Cryptographic Library for the Motorola
* DSP56000, Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
*
* Arguments:
*
* Inputs for multiplication:
* c_rarg0 - int array elements a
* c_rarg1 - int array elements b
* c_rarg2 - int array elements n (the modulus)
* c_rarg3 - int length
* c_rarg4 - int inv
* c_rarg5 - int array elements m (the result)
*
* Inputs for squaring:
* c_rarg0 - int array elements a
* c_rarg1 - int array elements n (the modulus)
* c_rarg2 - int length
* c_rarg3 - int inv
* c_rarg4 - int array elements m (the result)
*
*/
address generate_multiply() {
Label argh, nothing;
bind(argh);
stop("MontgomeryMultiply total_allocation must be <= 8192");
align(CodeEntryAlignment);
address entry = pc();
cbzw(Rlen, nothing);
enter();
// Make room.
cmpw(Rlen, 512);
br(Assembler::HI, argh);
sub(Ra, sp, Rlen, ext::uxtw, exact_log2(4 * sizeof (jint)));
andr(sp, Ra, -2 * wordSize);
lsrw(Rlen, Rlen, 1); // length in longwords = len/2
{
// Copy input args, reversing as we go. We use Ra as a
// temporary variable.
reverse(Ra, Pa_base, Rlen, t0, t1);
if (!_squaring)
reverse(Ra, Pb_base, Rlen, t0, t1);
reverse(Ra, Pn_base, Rlen, t0, t1);
}
// Push all call-saved registers and also Pm_base which we'll need
// at the end.
save_regs();
#ifndef PRODUCT
// assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
{
ldr(Rn, Address(Pn_base, 0));
mul(Rlo_mn, Rn, inv);
cmp(Rlo_mn, -1);
Label ok;
br(EQ, ok); {
stop("broken inverse in Montgomery multiply");
} bind(ok);
}
#endif
mov(Pm_base, Ra);
mov(t0, zr);
mov(t1, zr);
mov(t2, zr);
block_comment("for (int i = 0; i < len; i++) {");
mov(Ri, zr); {
Label loop, end;
cmpw(Ri, Rlen);
br(Assembler::GE, end);
bind(loop);
pre1(Ri);
block_comment(" for (j = i; j; j--) {"); {
movw(Rj, Ri);
unroll_2(Rj, &MontgomeryMultiplyGenerator::step);
} block_comment(" } // j");
post1();
addw(Ri, Ri, 1);
cmpw(Ri, Rlen);
br(Assembler::LT, loop);
bind(end);
block_comment("} // i");
}
block_comment("for (int i = len; i < 2*len; i++) {");
mov(Ri, Rlen); {
Label loop, end;
cmpw(Ri, Rlen, Assembler::LSL, 1);
br(Assembler::GE, end);
bind(loop);
pre2(Ri, Rlen);
block_comment(" for (j = len*2-i-1; j; j--) {"); {
lslw(Rj, Rlen, 1);
subw(Rj, Rj, Ri);
subw(Rj, Rj, 1);
unroll_2(Rj, &MontgomeryMultiplyGenerator::step);
} block_comment(" } // j");
post2(Ri, Rlen);
addw(Ri, Ri, 1);
cmpw(Ri, Rlen, Assembler::LSL, 1);
br(Assembler::LT, loop);
bind(end);
}
block_comment("} // i");
normalize(Rlen);
mov(Ra, Pm_base); // Save Pm_base in Ra
restore_regs(); // Restore caller's Pm_base
// Copy our result into caller's Pm_base
reverse(Pm_base, Ra, Rlen, t0, t1);
leave();
bind(nothing);
ret(lr);
return entry;
}
// In C, approximately:
// void
// montgomery_multiply(unsigned long Pa_base[], unsigned long Pb_base[],
// unsigned long Pn_base[], unsigned long Pm_base[],
// unsigned long inv, int len) {
// unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
// unsigned long *Pa, *Pb, *Pn, *Pm;
// unsigned long Ra, Rb, Rn, Rm;
// int i;
// assert(inv * Pn_base[0] == -1UL, "broken inverse in Montgomery multiply");
// for (i = 0; i < len; i++) {
// int j;
// Pa = Pa_base;
// Pb = Pb_base + i;
// Pm = Pm_base;
// Pn = Pn_base + i;
// Ra = *Pa;
// Rb = *Pb;
// Rm = *Pm;
// Rn = *Pn;
// int iters = i;
// for (j = 0; iters--; j++) {
// assert(Ra == Pa_base[j] && Rb == Pb_base[i-j], "must be");
// MACC(Ra, Rb, t0, t1, t2);
// Ra = *++Pa;
// Rb = *--Pb;
// assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
// MACC(Rm, Rn, t0, t1, t2);
// Rm = *++Pm;
// Rn = *--Pn;
// }
// assert(Ra == Pa_base[i] && Rb == Pb_base[0], "must be");
// MACC(Ra, Rb, t0, t1, t2);
// *Pm = Rm = t0 * inv;
// assert(Rm == Pm_base[i] && Rn == Pn_base[0], "must be");
// MACC(Rm, Rn, t0, t1, t2);
// assert(t0 == 0, "broken Montgomery multiply");
// t0 = t1; t1 = t2; t2 = 0;
// }
// for (i = len; i < 2*len; i++) {
// int j;
// Pa = Pa_base + i-len;
// Pb = Pb_base + len;
// Pm = Pm_base + i-len;
// Pn = Pn_base + len;
// Ra = *++Pa;
// Rb = *--Pb;
// Rm = *++Pm;
// Rn = *--Pn;
// int iters = len*2-i-1;
// for (j = i-len+1; iters--; j++) {
// assert(Ra == Pa_base[j] && Rb == Pb_base[i-j], "must be");
// MACC(Ra, Rb, t0, t1, t2);
// Ra = *++Pa;
// Rb = *--Pb;
// assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
// MACC(Rm, Rn, t0, t1, t2);
// Rm = *++Pm;
// Rn = *--Pn;
// }
// Pm_base[i-len] = t0;
// t0 = t1; t1 = t2; t2 = 0;
// }
// while (t0)
// t0 = sub(Pm_base, Pn_base, t0, len);
// }
/**
* Fast Montgomery squaring. This uses asymptotically 25% fewer
* multiplies than Montgomery multiplication so it should be up to
* 25% faster. However, its loop control is more complex and it
* may actually run slower on some machines.
*
* Arguments:
*
* Inputs:
* c_rarg0 - int array elements a
* c_rarg1 - int array elements n (the modulus)
* c_rarg2 - int length
* c_rarg3 - int inv
* c_rarg4 - int array elements m (the result)
*
*/
address generate_square() {
Label argh;
bind(argh);
stop("MontgomeryMultiply total_allocation must be <= 8192");
align(CodeEntryAlignment);
address entry = pc();
enter();
// Make room.
cmpw(Rlen, 512);
br(Assembler::HI, argh);
sub(Ra, sp, Rlen, ext::uxtw, exact_log2(4 * sizeof (jint)));
andr(sp, Ra, -2 * wordSize);
lsrw(Rlen, Rlen, 1); // length in longwords = len/2
{
// Copy input args, reversing as we go. We use Ra as a
// temporary variable.
reverse(Ra, Pa_base, Rlen, t0, t1);
reverse(Ra, Pn_base, Rlen, t0, t1);
}
// Push all call-saved registers and also Pm_base which we'll need
// at the end.
save_regs();
mov(Pm_base, Ra);
mov(t0, zr);
mov(t1, zr);
mov(t2, zr);
block_comment("for (int i = 0; i < len; i++) {");
mov(Ri, zr); {
Label loop, end;
bind(loop);
cmp(Ri, Rlen);
br(Assembler::GE, end);
pre1(Ri);
block_comment("for (j = (i+1)/2; j; j--) {"); {
add(Rj, Ri, 1);
lsr(Rj, Rj, 1);
unroll_2(Rj, &MontgomeryMultiplyGenerator::step_squaring);
} block_comment(" } // j");
last_squaring(Ri);
block_comment(" for (j = i/2; j; j--) {"); {
lsr(Rj, Ri, 1);
unroll_2(Rj, &MontgomeryMultiplyGenerator::extra_step_squaring);
} block_comment(" } // j");
post1_squaring();
add(Ri, Ri, 1);
cmp(Ri, Rlen);
br(Assembler::LT, loop);
bind(end);
block_comment("} // i");
}
block_comment("for (int i = len; i < 2*len; i++) {");
mov(Ri, Rlen); {
Label loop, end;
bind(loop);
cmp(Ri, Rlen, Assembler::LSL, 1);
br(Assembler::GE, end);
pre2(Ri, Rlen);
block_comment(" for (j = (2*len-i-1)/2; j; j--) {"); {
lsl(Rj, Rlen, 1);
sub(Rj, Rj, Ri);
sub(Rj, Rj, 1);
lsr(Rj, Rj, 1);
unroll_2(Rj, &MontgomeryMultiplyGenerator::step_squaring);
} block_comment(" } // j");
last_squaring(Ri);
block_comment(" for (j = (2*len-i)/2; j; j--) {"); {
lsl(Rj, Rlen, 1);
sub(Rj, Rj, Ri);
lsr(Rj, Rj, 1);
unroll_2(Rj, &MontgomeryMultiplyGenerator::extra_step_squaring);
} block_comment(" } // j");
post2(Ri, Rlen);
add(Ri, Ri, 1);
cmp(Ri, Rlen, Assembler::LSL, 1);
br(Assembler::LT, loop);
bind(end);
block_comment("} // i");
}
normalize(Rlen);
mov(Ra, Pm_base); // Save Pm_base in Ra
restore_regs(); // Restore caller's Pm_base
// Copy our result into caller's Pm_base
reverse(Pm_base, Ra, Rlen, t0, t1);
leave();
ret(lr);
return entry;
}
// In C, approximately:
// void
// montgomery_square(unsigned long Pa_base[], unsigned long Pn_base[],
// unsigned long Pm_base[], unsigned long inv, int len) {
// unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
// unsigned long *Pa, *Pb, *Pn, *Pm;
// unsigned long Ra, Rb, Rn, Rm;
// int i;
// assert(inv * Pn_base[0] == -1UL, "broken inverse in Montgomery multiply");
// for (i = 0; i < len; i++) {
// int j;
// Pa = Pa_base;
// Pb = Pa_base + i;
// Pm = Pm_base;
// Pn = Pn_base + i;
// Ra = *Pa;
// Rb = *Pb;
// Rm = *Pm;
// Rn = *Pn;
// int iters = (i+1)/2;
// for (j = 0; iters--; j++) {
// assert(Ra == Pa_base[j] && Rb == Pa_base[i-j], "must be");
// MACC2(Ra, Rb, t0, t1, t2);
// Ra = *++Pa;
// Rb = *--Pb;
// assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
// MACC(Rm, Rn, t0, t1, t2);
// Rm = *++Pm;
// Rn = *--Pn;
// }
// if ((i & 1) == 0) {
// assert(Ra == Pa_base[j], "must be");
// MACC(Ra, Ra, t0, t1, t2);
// }
// iters = i/2;
// assert(iters == i-j, "must be");
// for (; iters--; j++) {
// assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
// MACC(Rm, Rn, t0, t1, t2);
// Rm = *++Pm;
// Rn = *--Pn;
// }
// *Pm = Rm = t0 * inv;
// assert(Rm == Pm_base[i] && Rn == Pn_base[0], "must be");
// MACC(Rm, Rn, t0, t1, t2);
// assert(t0 == 0, "broken Montgomery multiply");
// t0 = t1; t1 = t2; t2 = 0;
// }
// for (i = len; i < 2*len; i++) {
// int start = i-len+1;
// int end = start + (len - start)/2;
// int j;
// Pa = Pa_base + i-len;
// Pb = Pa_base + len;
// Pm = Pm_base + i-len;
// Pn = Pn_base + len;
// Ra = *++Pa;
// Rb = *--Pb;
// Rm = *++Pm;
// Rn = *--Pn;
// int iters = (2*len-i-1)/2;
// assert(iters == end-start, "must be");
// for (j = start; iters--; j++) {
// assert(Ra == Pa_base[j] && Rb == Pa_base[i-j], "must be");
// MACC2(Ra, Rb, t0, t1, t2);
// Ra = *++Pa;
// Rb = *--Pb;
// assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
// MACC(Rm, Rn, t0, t1, t2);
// Rm = *++Pm;
// Rn = *--Pn;
// }
// if ((i & 1) == 0) {
// assert(Ra == Pa_base[j], "must be");
// MACC(Ra, Ra, t0, t1, t2);
// }
// iters = (2*len-i)/2;
// assert(iters == len-j, "must be");
// for (; iters--; j++) {
// assert(Rm == Pm_base[j] && Rn == Pn_base[i-j], "must be");
// MACC(Rm, Rn, t0, t1, t2);
// Rm = *++Pm;
// Rn = *--Pn;
// }
// Pm_base[i-len] = t0;
// t0 = t1; t1 = t2; t2 = 0;
// }
// while (t0)
// t0 = sub(Pm_base, Pn_base, t0, len);
// }
};
// Initialization
void generate_initial() {
// Generate initial stubs and initializes the entry points
// entry points that exist in all platforms Note: This is code
// that could be shared among different platforms - however the
// benefit seems to be smaller than the disadvantage of having a
// much more complicated generator structure. See also comment in
// stubRoutines.hpp.
StubRoutines::_forward_exception_entry = generate_forward_exception();
StubRoutines::_call_stub_entry =
generate_call_stub(StubRoutines::_call_stub_return_address);
// is referenced by megamorphic call
StubRoutines::_catch_exception_entry = generate_catch_exception();
// Build this early so it's available for the interpreter.
StubRoutines::_throw_StackOverflowError_entry =
generate_throw_exception("StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_StackOverflowError));
if (UseCRC32Intrinsics) {
// set table address before stub generation which use it
StubRoutines::_crc_table_adr = (address)StubRoutines::aarch64::_crc_table;
StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
}
}
void generate_all() {
// support for verify_oop (must happen after universe_init)
StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
StubRoutines::_throw_AbstractMethodError_entry =
generate_throw_exception("AbstractMethodError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_AbstractMethodError));
StubRoutines::_throw_IncompatibleClassChangeError_entry =
generate_throw_exception("IncompatibleClassChangeError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_IncompatibleClassChangeError));
StubRoutines::_throw_NullPointerException_at_call_entry =
generate_throw_exception("NullPointerException at call throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_NullPointerException_at_call));
// arraycopy stubs used by compilers
generate_arraycopy_stubs();
if (UseMultiplyToLenIntrinsic) {
StubRoutines::_multiplyToLen = generate_multiplyToLen();
}
if (UseMontgomeryMultiplyIntrinsic) {
StubCodeMark mark(this, "StubRoutines", "montgomeryMultiply");
MontgomeryMultiplyGenerator g(_masm, /*squaring*/false);
StubRoutines::_montgomeryMultiply = g.generate_multiply();
}
if (UseMontgomerySquareIntrinsic) {
StubCodeMark mark(this, "StubRoutines", "montgomerySquare");
MontgomeryMultiplyGenerator g(_masm, /*squaring*/true);
// We use generate_multiply() rather than generate_square()
// because it's faster for the sizes of modulus we care about.
StubRoutines::_montgomerySquare = g.generate_multiply();
}
#ifndef BUILTIN_SIM
// generate GHASH intrinsics code
if (UseGHASHIntrinsics) {
StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
}
if (UseAESIntrinsics) {
StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
}
if (UseSHA1Intrinsics) {
StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
}
if (UseSHA256Intrinsics) {
StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
}
if (UseCRC32CIntrinsics) {
StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C();
}
// generate Adler32 intrinsics code
if (UseAdler32Intrinsics) {
StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
}
// Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc,
&StubRoutines::_safefetch32_continuation_pc);
generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
&StubRoutines::_safefetchN_fault_pc,
&StubRoutines::_safefetchN_continuation_pc);
#endif
}
public:
StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
if (all) {
generate_all();
} else {
generate_initial();
}
}
}; // end class declaration
void StubGenerator_generate(CodeBuffer* code, bool all) {
StubGenerator g(code, all);
}