8029452: Fork/Join task ForEachOps.ForEachOrderedTask clarifications and minor improvements
Reviewed-by: mduigou, briangoetz
/*
* Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util.stream;
import java.util.IntSummaryStatistics;
import java.util.Objects;
import java.util.OptionalDouble;
import java.util.OptionalInt;
import java.util.PrimitiveIterator;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.BiConsumer;
import java.util.function.BinaryOperator;
import java.util.function.IntBinaryOperator;
import java.util.function.IntConsumer;
import java.util.function.IntFunction;
import java.util.function.IntPredicate;
import java.util.function.IntToDoubleFunction;
import java.util.function.IntToLongFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.ObjIntConsumer;
import java.util.function.Supplier;
/**
* Abstract base class for an intermediate pipeline stage or pipeline source
* stage implementing whose elements are of type {@code int}.
*
* @param <E_IN> type of elements in the upstream source
* @since 1.8
*/
abstract class IntPipeline<E_IN>
extends AbstractPipeline<E_IN, Integer, IntStream>
implements IntStream {
/**
* Constructor for the head of a stream pipeline.
*
* @param source {@code Supplier<Spliterator>} describing the stream source
* @param sourceFlags The source flags for the stream source, described in
* {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
IntPipeline(Supplier<? extends Spliterator<Integer>> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
/**
* Constructor for the head of a stream pipeline.
*
* @param source {@code Spliterator} describing the stream source
* @param sourceFlags The source flags for the stream source, described in
* {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
IntPipeline(Spliterator<Integer> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
/**
* Constructor for appending an intermediate operation onto an existing
* pipeline.
*
* @param upstream the upstream element source
* @param opFlags the operation flags for the new operation
*/
IntPipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
super(upstream, opFlags);
}
/**
* Adapt a {@code Sink<Integer> to an {@code IntConsumer}, ideally simply
* by casting.
*/
private static IntConsumer adapt(Sink<Integer> sink) {
if (sink instanceof IntConsumer) {
return (IntConsumer) sink;
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(AbstractPipeline.class,
"using IntStream.adapt(Sink<Integer> s)");
return sink::accept;
}
}
/**
* Adapt a {@code Spliterator<Integer>} to a {@code Spliterator.OfInt}.
*
* @implNote
* The implementation attempts to cast to a Spliterator.OfInt, and throws an
* exception if this cast is not possible.
*/
private static Spliterator.OfInt adapt(Spliterator<Integer> s) {
if (s instanceof Spliterator.OfInt) {
return (Spliterator.OfInt) s;
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(AbstractPipeline.class,
"using IntStream.adapt(Spliterator<Integer> s)");
throw new UnsupportedOperationException("IntStream.adapt(Spliterator<Integer> s)");
}
}
// Shape-specific methods
@Override
final StreamShape getOutputShape() {
return StreamShape.INT_VALUE;
}
@Override
final <P_IN> Node<Integer> evaluateToNode(PipelineHelper<Integer> helper,
Spliterator<P_IN> spliterator,
boolean flattenTree,
IntFunction<Integer[]> generator) {
return Nodes.collectInt(helper, spliterator, flattenTree);
}
@Override
final <P_IN> Spliterator<Integer> wrap(PipelineHelper<Integer> ph,
Supplier<Spliterator<P_IN>> supplier,
boolean isParallel) {
return new StreamSpliterators.IntWrappingSpliterator<>(ph, supplier, isParallel);
}
@Override
@SuppressWarnings("unchecked")
final Spliterator.OfInt lazySpliterator(Supplier<? extends Spliterator<Integer>> supplier) {
return new StreamSpliterators.DelegatingSpliterator.OfInt((Supplier<Spliterator.OfInt>) supplier);
}
@Override
final void forEachWithCancel(Spliterator<Integer> spliterator, Sink<Integer> sink) {
Spliterator.OfInt spl = adapt(spliterator);
IntConsumer adaptedSink = adapt(sink);
do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink));
}
@Override
final Node.Builder<Integer> makeNodeBuilder(long exactSizeIfKnown,
IntFunction<Integer[]> generator) {
return Nodes.intBuilder(exactSizeIfKnown);
}
// IntStream
@Override
public final PrimitiveIterator.OfInt iterator() {
return Spliterators.iterator(spliterator());
}
@Override
public final Spliterator.OfInt spliterator() {
return adapt(super.spliterator());
}
// Stateless intermediate ops from IntStream
@Override
public final LongStream asLongStream() {
return new LongPipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Long> sink) {
return new Sink.ChainedInt<Long>(sink) {
@Override
public void accept(int t) {
downstream.accept((long) t);
}
};
}
};
}
@Override
public final DoubleStream asDoubleStream() {
return new DoublePipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Double> sink) {
return new Sink.ChainedInt<Double>(sink) {
@Override
public void accept(int t) {
downstream.accept((double) t);
}
};
}
};
}
@Override
public final Stream<Integer> boxed() {
return mapToObj(Integer::valueOf);
}
@Override
public final IntStream map(IntUnaryOperator mapper) {
Objects.requireNonNull(mapper);
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
return new Sink.ChainedInt<Integer>(sink) {
@Override
public void accept(int t) {
downstream.accept(mapper.applyAsInt(t));
}
};
}
};
}
@Override
public final <U> Stream<U> mapToObj(IntFunction<? extends U> mapper) {
Objects.requireNonNull(mapper);
return new ReferencePipeline.StatelessOp<Integer, U>(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<U> sink) {
return new Sink.ChainedInt<U>(sink) {
@Override
public void accept(int t) {
downstream.accept(mapper.apply(t));
}
};
}
};
}
@Override
public final LongStream mapToLong(IntToLongFunction mapper) {
Objects.requireNonNull(mapper);
return new LongPipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Long> sink) {
return new Sink.ChainedInt<Long>(sink) {
@Override
public void accept(int t) {
downstream.accept(mapper.applyAsLong(t));
}
};
}
};
}
@Override
public final DoubleStream mapToDouble(IntToDoubleFunction mapper) {
Objects.requireNonNull(mapper);
return new DoublePipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Double> sink) {
return new Sink.ChainedInt<Double>(sink) {
@Override
public void accept(int t) {
downstream.accept(mapper.applyAsDouble(t));
}
};
}
};
}
@Override
public final IntStream flatMap(IntFunction<? extends IntStream> mapper) {
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
return new Sink.ChainedInt<Integer>(sink) {
@Override
public void begin(long size) {
downstream.begin(-1);
}
@Override
public void accept(int t) {
try (IntStream result = mapper.apply(t)) {
// We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
if (result != null)
result.sequential().forEach(i -> downstream.accept(i));
}
}
};
}
};
}
@Override
public IntStream unordered() {
if (!isOrdered())
return this;
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_ORDERED) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
return sink;
}
};
}
@Override
public final IntStream filter(IntPredicate predicate) {
Objects.requireNonNull(predicate);
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SIZED) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
return new Sink.ChainedInt<Integer>(sink) {
@Override
public void begin(long size) {
downstream.begin(-1);
}
@Override
public void accept(int t) {
if (predicate.test(t))
downstream.accept(t);
}
};
}
};
}
@Override
public final IntStream peek(IntConsumer action) {
Objects.requireNonNull(action);
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
0) {
@Override
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
return new Sink.ChainedInt<Integer>(sink) {
@Override
public void accept(int t) {
action.accept(t);
downstream.accept(t);
}
};
}
};
}
// Stateful intermediate ops from IntStream
@Override
public final IntStream limit(long maxSize) {
if (maxSize < 0)
throw new IllegalArgumentException(Long.toString(maxSize));
return SliceOps.makeInt(this, 0, maxSize);
}
@Override
public final IntStream skip(long n) {
if (n < 0)
throw new IllegalArgumentException(Long.toString(n));
if (n == 0)
return this;
else
return SliceOps.makeInt(this, n, -1);
}
@Override
public final IntStream sorted() {
return SortedOps.makeInt(this);
}
@Override
public final IntStream distinct() {
// While functional and quick to implement, this approach is not very efficient.
// An efficient version requires an int-specific map/set implementation.
return boxed().distinct().mapToInt(i -> i);
}
// Terminal ops from IntStream
@Override
public void forEach(IntConsumer action) {
evaluate(ForEachOps.makeInt(action, false));
}
@Override
public void forEachOrdered(IntConsumer action) {
evaluate(ForEachOps.makeInt(action, true));
}
@Override
public final int sum() {
return reduce(0, Integer::sum);
}
@Override
public final OptionalInt min() {
return reduce(Math::min);
}
@Override
public final OptionalInt max() {
return reduce(Math::max);
}
@Override
public final long count() {
return mapToLong(e -> 1L).sum();
}
@Override
public final OptionalDouble average() {
long[] avg = collect(() -> new long[2],
(ll, i) -> {
ll[0]++;
ll[1] += i;
},
(ll, rr) -> {
ll[0] += rr[0];
ll[1] += rr[1];
});
return avg[0] > 0
? OptionalDouble.of((double) avg[1] / avg[0])
: OptionalDouble.empty();
}
@Override
public final IntSummaryStatistics summaryStatistics() {
return collect(IntSummaryStatistics::new, IntSummaryStatistics::accept,
IntSummaryStatistics::combine);
}
@Override
public final int reduce(int identity, IntBinaryOperator op) {
return evaluate(ReduceOps.makeInt(identity, op));
}
@Override
public final OptionalInt reduce(IntBinaryOperator op) {
return evaluate(ReduceOps.makeInt(op));
}
@Override
public final <R> R collect(Supplier<R> supplier,
ObjIntConsumer<R> accumulator,
BiConsumer<R, R> combiner) {
BinaryOperator<R> operator = (left, right) -> {
combiner.accept(left, right);
return left;
};
return evaluate(ReduceOps.makeInt(supplier, accumulator, operator));
}
@Override
public final boolean anyMatch(IntPredicate predicate) {
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ANY));
}
@Override
public final boolean allMatch(IntPredicate predicate) {
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ALL));
}
@Override
public final boolean noneMatch(IntPredicate predicate) {
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.NONE));
}
@Override
public final OptionalInt findFirst() {
return evaluate(FindOps.makeInt(true));
}
@Override
public final OptionalInt findAny() {
return evaluate(FindOps.makeInt(false));
}
@Override
public final int[] toArray() {
return Nodes.flattenInt((Node.OfInt) evaluateToArrayNode(Integer[]::new))
.asPrimitiveArray();
}
//
/**
* Source stage of an IntStream.
*
* @param <E_IN> type of elements in the upstream source
* @since 1.8
*/
static class Head<E_IN> extends IntPipeline<E_IN> {
/**
* Constructor for the source stage of an IntStream.
*
* @param source {@code Supplier<Spliterator>} describing the stream
* source
* @param sourceFlags the source flags for the stream source, described
* in {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
Head(Supplier<? extends Spliterator<Integer>> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
/**
* Constructor for the source stage of an IntStream.
*
* @param source {@code Spliterator} describing the stream source
* @param sourceFlags the source flags for the stream source, described
* in {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
Head(Spliterator<Integer> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
@Override
final boolean opIsStateful() {
throw new UnsupportedOperationException();
}
@Override
final Sink<E_IN> opWrapSink(int flags, Sink<Integer> sink) {
throw new UnsupportedOperationException();
}
// Optimized sequential terminal operations for the head of the pipeline
@Override
public void forEach(IntConsumer action) {
if (!isParallel()) {
adapt(sourceStageSpliterator()).forEachRemaining(action);
}
else {
super.forEach(action);
}
}
@Override
public void forEachOrdered(IntConsumer action) {
if (!isParallel()) {
adapt(sourceStageSpliterator()).forEachRemaining(action);
}
else {
super.forEachOrdered(action);
}
}
}
/**
* Base class for a stateless intermediate stage of an IntStream
*
* @param <E_IN> type of elements in the upstream source
* @since 1.8
*/
abstract static class StatelessOp<E_IN> extends IntPipeline<E_IN> {
/**
* Construct a new IntStream by appending a stateless intermediate
* operation to an existing stream.
* @param upstream The upstream pipeline stage
* @param inputShape The stream shape for the upstream pipeline stage
* @param opFlags Operation flags for the new stage
*/
StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
StreamShape inputShape,
int opFlags) {
super(upstream, opFlags);
assert upstream.getOutputShape() == inputShape;
}
@Override
final boolean opIsStateful() {
return false;
}
}
/**
* Base class for a stateful intermediate stage of an IntStream.
*
* @param <E_IN> type of elements in the upstream source
* @since 1.8
*/
abstract static class StatefulOp<E_IN> extends IntPipeline<E_IN> {
/**
* Construct a new IntStream by appending a stateful intermediate
* operation to an existing stream.
* @param upstream The upstream pipeline stage
* @param inputShape The stream shape for the upstream pipeline stage
* @param opFlags Operation flags for the new stage
*/
StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
StreamShape inputShape,
int opFlags) {
super(upstream, opFlags);
assert upstream.getOutputShape() == inputShape;
}
@Override
final boolean opIsStateful() {
return true;
}
@Override
abstract <P_IN> Node<Integer> opEvaluateParallel(PipelineHelper<Integer> helper,
Spliterator<P_IN> spliterator,
IntFunction<Integer[]> generator);
}
}