8233061: ZGC: Enforce memory ordering in segmented bit maps
Reviewed-by: pliden, stefank
/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#ifndef SHARE_GC_Z_ZPAGE_INLINE_HPP
#define SHARE_GC_Z_ZPAGE_INLINE_HPP
#include "gc/z/zAddress.inline.hpp"
#include "gc/z/zGlobals.hpp"
#include "gc/z/zLiveMap.inline.hpp"
#include "gc/z/zMark.hpp"
#include "gc/z/zNUMA.hpp"
#include "gc/z/zPage.hpp"
#include "gc/z/zPhysicalMemory.inline.hpp"
#include "gc/z/zVirtualMemory.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/os.hpp"
#include "utilities/align.hpp"
#include "utilities/debug.hpp"
inline uint8_t ZPage::type_from_size(size_t size) const {
switch (size) {
case ZPageSizeSmall:
return ZPageTypeSmall;
case ZPageSizeMedium:
return ZPageTypeMedium;
default:
return ZPageTypeLarge;
}
}
inline const char* ZPage::type_to_string() const {
switch (type()) {
case ZPageTypeSmall:
return "Small";
case ZPageTypeMedium:
return "Medium";
default:
assert(type() == ZPageTypeLarge, "Invalid page type");
return "Large";
}
}
inline uint32_t ZPage::object_max_count() const {
switch (type()) {
case ZPageTypeLarge:
// A large page can only contain a single
// object aligned to the start of the page.
return 1;
default:
return (uint32_t)(size() >> object_alignment_shift());
}
}
inline size_t ZPage::object_alignment_shift() const {
switch (type()) {
case ZPageTypeSmall:
return ZObjectAlignmentSmallShift;
case ZPageTypeMedium:
return ZObjectAlignmentMediumShift;
default:
assert(type() == ZPageTypeLarge, "Invalid page type");
return ZObjectAlignmentLargeShift;
}
}
inline size_t ZPage::object_alignment() const {
switch (type()) {
case ZPageTypeSmall:
return ZObjectAlignmentSmall;
case ZPageTypeMedium:
return ZObjectAlignmentMedium;
default:
assert(type() == ZPageTypeLarge, "Invalid page type");
return ZObjectAlignmentLarge;
}
}
inline uint8_t ZPage::type() const {
return _type;
}
inline uintptr_t ZPage::start() const {
return _virtual.start();
}
inline uintptr_t ZPage::end() const {
return _virtual.end();
}
inline size_t ZPage::size() const {
return _virtual.size();
}
inline uintptr_t ZPage::top() const {
return _top;
}
inline size_t ZPage::remaining() const {
return end() - top();
}
inline const ZPhysicalMemory& ZPage::physical_memory() const {
return _physical;
}
inline const ZVirtualMemory& ZPage::virtual_memory() const {
return _virtual;
}
inline uint8_t ZPage::numa_id() {
if (_numa_id == (uint8_t)-1) {
_numa_id = (uint8_t)ZNUMA::memory_id(ZAddress::good(start()));
}
return _numa_id;
}
inline bool ZPage::is_allocating() const {
return _seqnum == ZGlobalSeqNum;
}
inline bool ZPage::is_relocatable() const {
return _seqnum < ZGlobalSeqNum;
}
inline bool ZPage::is_mapped() const {
return _seqnum > 0;
}
inline void ZPage::set_pre_mapped() {
// The _seqnum variable is also used to signal that the virtual and physical
// memory has been mapped. So, we need to set it to non-zero when the memory
// has been pre-mapped.
_seqnum = 1;
}
inline uint64_t ZPage::last_used() const {
return _last_used;
}
inline void ZPage::set_last_used() {
_last_used = os::elapsedTime();
}
inline bool ZPage::is_in(uintptr_t addr) const {
const uintptr_t offset = ZAddress::offset(addr);
return offset >= start() && offset < top();
}
inline bool ZPage::is_marked() const {
assert(is_relocatable(), "Invalid page state");
return _livemap.is_marked();
}
inline bool ZPage::is_object_marked(uintptr_t addr) const {
const size_t index = ((ZAddress::offset(addr) - start()) >> object_alignment_shift()) * 2;
return _livemap.get(index);
}
inline bool ZPage::is_object_strongly_marked(uintptr_t addr) const {
const size_t index = ((ZAddress::offset(addr) - start()) >> object_alignment_shift()) * 2;
return _livemap.get(index + 1);
}
inline bool ZPage::is_object_live(uintptr_t addr) const {
return is_allocating() || is_object_marked(addr);
}
inline bool ZPage::is_object_strongly_live(uintptr_t addr) const {
return is_allocating() || is_object_strongly_marked(addr);
}
inline bool ZPage::mark_object(uintptr_t addr, bool finalizable, bool& inc_live) {
assert(ZAddress::is_marked(addr), "Invalid address");
assert(is_relocatable(), "Invalid page state");
assert(is_in(addr), "Invalid address");
// Set mark bit
const size_t index = ((ZAddress::offset(addr) - start()) >> object_alignment_shift()) * 2;
return _livemap.set_atomic(index, finalizable, inc_live);
}
inline void ZPage::inc_live_atomic(uint32_t objects, size_t bytes) {
_livemap.inc_live_atomic(objects, bytes);
}
inline uint32_t ZPage::live_objects() const {
assert(is_marked(), "Should be marked");
return _livemap.live_objects();
}
inline size_t ZPage::live_bytes() const {
assert(is_marked(), "Should be marked");
return _livemap.live_bytes();
}
inline void ZPage::object_iterate(ObjectClosure* cl) {
_livemap.iterate(cl, ZAddress::good(start()), object_alignment_shift());
}
inline uintptr_t ZPage::alloc_object(size_t size) {
assert(is_allocating(), "Invalid state");
const size_t aligned_size = align_up(size, object_alignment());
const uintptr_t addr = top();
const uintptr_t new_top = addr + aligned_size;
if (new_top > end()) {
// Not enough space left
return 0;
}
_top = new_top;
return ZAddress::good(addr);
}
inline uintptr_t ZPage::alloc_object_atomic(size_t size) {
assert(is_allocating(), "Invalid state");
const size_t aligned_size = align_up(size, object_alignment());
uintptr_t addr = top();
for (;;) {
const uintptr_t new_top = addr + aligned_size;
if (new_top > end()) {
// Not enough space left
return 0;
}
const uintptr_t prev_top = Atomic::cmpxchg(new_top, &_top, addr);
if (prev_top == addr) {
// Success
return ZAddress::good(addr);
}
// Retry
addr = prev_top;
}
}
inline bool ZPage::undo_alloc_object(uintptr_t addr, size_t size) {
assert(is_allocating(), "Invalid state");
const uintptr_t offset = ZAddress::offset(addr);
const size_t aligned_size = align_up(size, object_alignment());
const uintptr_t old_top = top();
const uintptr_t new_top = old_top - aligned_size;
if (new_top != offset) {
// Failed to undo allocation, not the last allocated object
return false;
}
_top = new_top;
// Success
return true;
}
inline bool ZPage::undo_alloc_object_atomic(uintptr_t addr, size_t size) {
assert(is_allocating(), "Invalid state");
const uintptr_t offset = ZAddress::offset(addr);
const size_t aligned_size = align_up(size, object_alignment());
uintptr_t old_top = top();
for (;;) {
const uintptr_t new_top = old_top - aligned_size;
if (new_top != offset) {
// Failed to undo allocation, not the last allocated object
return false;
}
const uintptr_t prev_top = Atomic::cmpxchg(new_top, &_top, old_top);
if (prev_top == old_top) {
// Success
return true;
}
// Retry
old_top = prev_top;
}
}
#endif // SHARE_GC_Z_ZPAGE_INLINE_HPP