8233061: ZGC: Enforce memory ordering in segmented bit maps
Reviewed-by: pliden, stefank
/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#ifndef SHARE_GC_Z_ZLIST_INLINE_HPP
#define SHARE_GC_Z_ZLIST_INLINE_HPP
#include "gc/z/zList.hpp"
#include "utilities/debug.hpp"
template <typename T>
inline ZListNode<T>::ZListNode(ZListNode* next, ZListNode* prev) :
_next(next),
_prev(prev) {}
template <typename T>
inline void ZListNode<T>::set_unused() {
_next = NULL;
_prev = NULL;
}
template <typename T>
inline ZListNode<T>::ZListNode() {
set_unused();
}
template <typename T>
inline ZListNode<T>::~ZListNode() {
set_unused();
}
template <typename T>
inline bool ZListNode<T>::is_unused() const {
return _next == NULL && _prev == NULL;
}
template <typename T>
inline void ZList<T>::verify() const {
assert(_head._next->_prev == &_head, "List corrupt");
assert(_head._prev->_next == &_head, "List corrupt");
}
template <typename T>
inline void ZList<T>::insert(ZListNode<T>* before, ZListNode<T>* node) {
verify();
assert(node->is_unused(), "Already in a list");
node->_prev = before;
node->_next = before->_next;
before->_next = node;
node->_next->_prev = node;
_size++;
}
template <typename T>
inline ZListNode<T>* ZList<T>::cast_to_inner(T* elem) const {
return &elem->_node;
}
template <typename T>
inline T* ZList<T>::cast_to_outer(ZListNode<T>* node) const {
return (T*)((uintptr_t)node - offset_of(T, _node));
}
template <typename T>
inline ZList<T>::ZList() :
_head(&_head, &_head),
_size(0) {
verify();
}
template <typename T>
inline size_t ZList<T>::size() const {
verify();
return _size;
}
template <typename T>
inline bool ZList<T>::is_empty() const {
return _size == 0;
}
template <typename T>
inline T* ZList<T>::first() const {
return is_empty() ? NULL : cast_to_outer(_head._next);
}
template <typename T>
inline T* ZList<T>::last() const {
return is_empty() ? NULL : cast_to_outer(_head._prev);
}
template <typename T>
inline T* ZList<T>::next(T* elem) const {
verify();
ZListNode<T>* next = cast_to_inner(elem)->_next;
return (next == &_head) ? NULL : cast_to_outer(next);
}
template <typename T>
inline T* ZList<T>::prev(T* elem) const {
verify();
ZListNode<T>* prev = cast_to_inner(elem)->_prev;
return (prev == &_head) ? NULL : cast_to_outer(prev);
}
template <typename T>
inline void ZList<T>::insert_first(T* elem) {
insert(&_head, cast_to_inner(elem));
}
template <typename T>
inline void ZList<T>::insert_last(T* elem) {
insert(_head._prev, cast_to_inner(elem));
}
template <typename T>
inline void ZList<T>::insert_before(T* before, T* elem) {
insert(cast_to_inner(before)->_prev, cast_to_inner(elem));
}
template <typename T>
inline void ZList<T>::insert_after(T* after, T* elem) {
insert(cast_to_inner(after), cast_to_inner(elem));
}
template <typename T>
inline void ZList<T>::remove(T* elem) {
verify();
ZListNode<T>* const node = cast_to_inner(elem);
assert(!node->is_unused(), "Not in a list");
ZListNode<T>* const next = node->_next;
ZListNode<T>* const prev = node->_prev;
assert(next->_prev == node, "List corrupt");
assert(prev->_next == node, "List corrupt");
prev->_next = next;
next->_prev = prev;
node->set_unused();
_size--;
}
template <typename T>
inline T* ZList<T>::remove_first() {
T* elem = first();
if (elem != NULL) {
remove(elem);
}
return elem;
}
template <typename T>
inline T* ZList<T>::remove_last() {
T* elem = last();
if (elem != NULL) {
remove(elem);
}
return elem;
}
template <typename T>
inline void ZList<T>::transfer(ZList<T>* list) {
verify();
if (!list->is_empty()) {
list->_head._next->_prev = _head._prev;
list->_head._prev->_next = _head._prev->_next;
_head._prev->_next = list->_head._next;
_head._prev = list->_head._prev;
list->_head._next = &list->_head;
list->_head._prev = &list->_head;
_size += list->_size;
list->_size = 0;
list->verify();
verify();
}
}
template <typename T, bool forward>
inline ZListIteratorImpl<T, forward>::ZListIteratorImpl(const ZList<T>* list) :
_list(list),
_next(forward ? list->first() : list->last()) {}
template <typename T, bool forward>
inline bool ZListIteratorImpl<T, forward>::next(T** elem) {
if (_next != NULL) {
*elem = _next;
_next = forward ? _list->next(_next) : _list->prev(_next);
return true;
}
// No more elements
return false;
}
template <typename T>
inline ZListIterator<T>::ZListIterator(const ZList<T>* list) :
ZListIteratorImpl<T, ZLIST_FORWARD>(list) {}
template <typename T>
inline ZListReverseIterator<T>::ZListReverseIterator(const ZList<T>* list) :
ZListIteratorImpl<T, ZLIST_REVERSE>(list) {}
#endif // SHARE_GC_Z_ZLIST_INLINE_HPP