8186089: Move Arena to its own header file
Summary: Move classes Chunk and Arena to new arena.hpp and arena.cpp files
Reviewed-by: coleenp, gtriantafill
/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
#define SHARE_VM_MEMORY_ALLOCATION_HPP
#include "runtime/globals.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include <new>
class AllocFailStrategy {
public:
enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
};
typedef AllocFailStrategy::AllocFailEnum AllocFailType;
// All classes in the virtual machine must be subclassed
// by one of the following allocation classes:
//
// For objects allocated in the resource area (see resourceArea.hpp).
// - ResourceObj
//
// For objects allocated in the C-heap (managed by: free & malloc).
// - CHeapObj
//
// For objects allocated on the stack.
// - StackObj
//
// For embedded objects.
// - ValueObj
//
// For classes used as name spaces.
// - AllStatic
//
// For classes in Metaspace (class data)
// - MetaspaceObj
//
// The printable subclasses are used for debugging and define virtual
// member functions for printing. Classes that avoid allocating the
// vtbl entries in the objects should therefore not be the printable
// subclasses.
//
// The following macros and function should be used to allocate memory
// directly in the resource area or in the C-heap, The _OBJ variants
// of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
// objects which are not inherited from CHeapObj, note constructor and
// destructor are not called. The preferable way to allocate objects
// is using the new operator.
//
// WARNING: The array variant must only be used for a homogenous array
// where all objects are of the exact type specified. If subtypes are
// stored in the array then must pay attention to calling destructors
// at needed.
//
// NEW_RESOURCE_ARRAY(type, size)
// NEW_RESOURCE_OBJ(type)
// NEW_C_HEAP_ARRAY(type, size)
// NEW_C_HEAP_OBJ(type, memflags)
// FREE_C_HEAP_ARRAY(type, old)
// FREE_C_HEAP_OBJ(objname, type, memflags)
// char* AllocateHeap(size_t size, const char* name);
// void FreeHeap(void* p);
//
// C-heap allocation can be traced using +PrintHeapAllocation.
// malloc and free should therefore never called directly.
// Base class for objects allocated in the C-heap.
// In non product mode we introduce a super class for all allocation classes
// that supports printing.
// We avoid the superclass in product mode since some C++ compilers add
// a word overhead for empty super classes.
#ifdef PRODUCT
#define ALLOCATION_SUPER_CLASS_SPEC
#else
#define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
class AllocatedObj {
public:
// Printing support
void print() const;
void print_value() const;
virtual void print_on(outputStream* st) const;
virtual void print_value_on(outputStream* st) const;
};
#endif
/*
* Memory types
*/
enum MemoryType {
// Memory type by sub systems. It occupies lower byte.
mtJavaHeap = 0x00, // Java heap
mtClass = 0x01, // memory class for Java classes
mtThread = 0x02, // memory for thread objects
mtThreadStack = 0x03,
mtCode = 0x04, // memory for generated code
mtGC = 0x05, // memory for GC
mtCompiler = 0x06, // memory for compiler
mtInternal = 0x07, // memory used by VM, but does not belong to
// any of above categories, and not used for
// native memory tracking
mtOther = 0x08, // memory not used by VM
mtSymbol = 0x09, // symbol
mtNMT = 0x0A, // memory used by native memory tracking
mtClassShared = 0x0B, // class data sharing
mtChunk = 0x0C, // chunk that holds content of arenas
mtTest = 0x0D, // Test type for verifying NMT
mtTracing = 0x0E, // memory used for Tracing
mtLogging = 0x0F, // memory for logging
mtArguments = 0x10, // memory for argument processing
mtModule = 0x11, // memory for module processing
mtNone = 0x12, // undefined
mt_number_of_types = 0x13 // number of memory types (mtDontTrack
// is not included as validate type)
};
typedef MemoryType MEMFLAGS;
#if INCLUDE_NMT
extern bool NMT_track_callsite;
#else
const bool NMT_track_callsite = false;
#endif // INCLUDE_NMT
class NativeCallStack;
template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
public:
NOINLINE void* operator new(size_t size, const NativeCallStack& stack) throw();
NOINLINE void* operator new(size_t size) throw();
NOINLINE void* operator new (size_t size, const std::nothrow_t& nothrow_constant,
const NativeCallStack& stack) throw();
NOINLINE void* operator new (size_t size, const std::nothrow_t& nothrow_constant)
throw();
NOINLINE void* operator new [](size_t size, const NativeCallStack& stack) throw();
NOINLINE void* operator new [](size_t size) throw();
NOINLINE void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
const NativeCallStack& stack) throw();
NOINLINE void* operator new [](size_t size, const std::nothrow_t& nothrow_constant)
throw();
void operator delete(void* p);
void operator delete [] (void* p);
};
// Base class for objects allocated on the stack only.
// Calling new or delete will result in fatal error.
class StackObj ALLOCATION_SUPER_CLASS_SPEC {
private:
void* operator new(size_t size) throw();
void* operator new [](size_t size) throw();
#ifdef __IBMCPP__
public:
#endif
void operator delete(void* p);
void operator delete [](void* p);
};
// Base class for objects used as value objects.
// Calling new or delete will result in fatal error.
//
// Portability note: Certain compilers (e.g. gcc) will
// always make classes bigger if it has a superclass, even
// if the superclass does not have any virtual methods or
// instance fields. The HotSpot implementation relies on this
// not to happen. So never make a ValueObj class a direct subclass
// of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
// like this:
//
// class A VALUE_OBJ_CLASS_SPEC {
// ...
// }
//
// With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
// be defined as a an empty string "".
//
class _ValueObj {
private:
void* operator new(size_t size) throw();
void operator delete(void* p);
void* operator new [](size_t size) throw();
void operator delete [](void* p);
};
// Base class for objects stored in Metaspace.
// Calling delete will result in fatal error.
//
// Do not inherit from something with a vptr because this class does
// not introduce one. This class is used to allocate both shared read-only
// and shared read-write classes.
//
class ClassLoaderData;
class MetaspaceClosure;
class MetaspaceObj {
public:
bool is_metaspace_object() const;
bool is_shared() const;
void print_address_on(outputStream* st) const; // nonvirtual address printing
#define METASPACE_OBJ_TYPES_DO(f) \
f(Unknown) \
f(Class) \
f(Symbol) \
f(TypeArrayU1) \
f(TypeArrayU2) \
f(TypeArrayU4) \
f(TypeArrayU8) \
f(TypeArrayOther) \
f(Method) \
f(ConstMethod) \
f(MethodData) \
f(ConstantPool) \
f(ConstantPoolCache) \
f(Annotations) \
f(MethodCounters)
#define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
#define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
enum Type {
// Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
_number_of_types
};
static const char * type_name(Type type) {
switch(type) {
METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
default:
ShouldNotReachHere();
return NULL;
}
}
static MetaspaceObj::Type array_type(size_t elem_size) {
switch (elem_size) {
case 1: return TypeArrayU1Type;
case 2: return TypeArrayU2Type;
case 4: return TypeArrayU4Type;
case 8: return TypeArrayU8Type;
default:
return TypeArrayOtherType;
}
}
void* operator new(size_t size, ClassLoaderData* loader_data,
size_t word_size,
Type type, Thread* thread) throw();
// can't use TRAPS from this header file.
void operator delete(void* p) { ShouldNotCallThis(); }
// Declare a *static* method with the same signature in any subclass of MetaspaceObj
// that should be read-only by default. See symbol.hpp for an example. This function
// is used by the templates in metaspaceClosure.hpp
static bool is_read_only_by_default() { return false; }
};
// Base class for classes that constitute name spaces.
class Arena;
class AllStatic {
public:
AllStatic() { ShouldNotCallThis(); }
~AllStatic() { ShouldNotCallThis(); }
};
extern char* resource_allocate_bytes(size_t size,
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
extern char* resource_allocate_bytes(Thread* thread, size_t size,
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
extern void resource_free_bytes( char *old, size_t size );
//----------------------------------------------------------------------
// Base class for objects allocated in the resource area per default.
// Optionally, objects may be allocated on the C heap with
// new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
// ResourceObj's can be allocated within other objects, but don't use
// new or delete (allocation_type is unknown). If new is used to allocate,
// use delete to deallocate.
class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
public:
enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
#ifdef ASSERT
private:
// When this object is allocated on stack the new() operator is not
// called but garbage on stack may look like a valid allocation_type.
// Store negated 'this' pointer when new() is called to distinguish cases.
// Use second array's element for verification value to distinguish garbage.
uintptr_t _allocation_t[2];
bool is_type_set() const;
public:
allocation_type get_allocation_type() const;
bool allocated_on_stack() const { return get_allocation_type() == STACK_OR_EMBEDDED; }
bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
bool allocated_on_C_heap() const { return get_allocation_type() == C_HEAP; }
bool allocated_on_arena() const { return get_allocation_type() == ARENA; }
ResourceObj(); // default constructor
ResourceObj(const ResourceObj& r); // default copy constructor
ResourceObj& operator=(const ResourceObj& r); // default copy assignment
~ResourceObj();
#endif // ASSERT
public:
void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
void* operator new(size_t size, const std::nothrow_t& nothrow_constant,
allocation_type type, MEMFLAGS flags) throw();
void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
allocation_type type, MEMFLAGS flags) throw();
void* operator new(size_t size, Arena *arena) throw();
void* operator new [](size_t size, Arena *arena) throw();
void* operator new(size_t size) throw() {
address res = (address)resource_allocate_bytes(size);
DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
return res;
}
void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
return res;
}
void* operator new [](size_t size) throw() {
address res = (address)resource_allocate_bytes(size);
DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
return res;
}
void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
return res;
}
void operator delete(void* p);
void operator delete [](void* p);
};
// One of the following macros must be used when allocating an array
// or object to determine whether it should reside in the C heap on in
// the resource area.
#define NEW_RESOURCE_ARRAY(type, size)\
(type*) resource_allocate_bytes((size) * sizeof(type))
#define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
(type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
#define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
(type*) resource_allocate_bytes(thread, (size) * sizeof(type))
#define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
(type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
#define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
(type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
#define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
(type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
(new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
#define FREE_RESOURCE_ARRAY(type, old, size)\
resource_free_bytes((char*)(old), (size) * sizeof(type))
#define FREE_FAST(old)\
/* nop */
#define NEW_RESOURCE_OBJ(type)\
NEW_RESOURCE_ARRAY(type, 1)
#define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
#define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
(type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
#define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
(type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
#define NEW_C_HEAP_ARRAY(type, size, memflags)\
(type*) (AllocateHeap((size) * sizeof(type), memflags))
#define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
#define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
#define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
(type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
#define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
(type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
#define FREE_C_HEAP_ARRAY(type, old) \
FreeHeap((char*)(old))
// allocate type in heap without calling ctor
#define NEW_C_HEAP_OBJ(type, memflags)\
NEW_C_HEAP_ARRAY(type, 1, memflags)
#define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
// deallocate obj of type in heap without calling dtor
#define FREE_C_HEAP_OBJ(objname)\
FreeHeap((char*)objname);
// for statistics
#ifndef PRODUCT
class AllocStats : StackObj {
julong start_mallocs, start_frees;
julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
public:
AllocStats();
julong num_mallocs(); // since creation of receiver
julong alloc_bytes();
julong num_frees();
julong free_bytes();
julong resource_bytes();
void print();
};
#endif
//------------------------------ReallocMark---------------------------------
// Code which uses REALLOC_RESOURCE_ARRAY should check an associated
// ReallocMark, which is declared in the same scope as the reallocated
// pointer. Any operation that could __potentially__ cause a reallocation
// should check the ReallocMark.
class ReallocMark: public StackObj {
protected:
NOT_PRODUCT(int _nesting;)
public:
ReallocMark() PRODUCT_RETURN;
void check() PRODUCT_RETURN;
};
// Helper class to allocate arrays that may become large.
// Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
// and uses mapped memory for larger allocations.
// Most OS mallocs do something similar but Solaris malloc does not revert
// to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
// is set so that we always use malloc except for Solaris where we set the
// limit to get mapped memory.
template <class E>
class ArrayAllocator : public AllStatic {
private:
static bool should_use_malloc(size_t length);
static E* allocate_malloc(size_t length, MEMFLAGS flags);
static E* allocate_mmap(size_t length, MEMFLAGS flags);
static void free_malloc(E* addr, size_t length);
static void free_mmap(E* addr, size_t length);
public:
static E* allocate(size_t length, MEMFLAGS flags);
static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
static void free(E* addr, size_t length);
};
// Uses mmaped memory for all allocations. All allocations are initially
// zero-filled. No pre-touching.
template <class E>
class MmapArrayAllocator : public AllStatic {
private:
static size_t size_for(size_t length);
public:
static E* allocate_or_null(size_t length, MEMFLAGS flags);
static E* allocate(size_t length, MEMFLAGS flags);
static void free(E* addr, size_t length);
};
// Uses malloc:ed memory for all allocations.
template <class E>
class MallocArrayAllocator : public AllStatic {
public:
static size_t size_for(size_t length);
static E* allocate(size_t length, MEMFLAGS flags);
static void free(E* addr, size_t length);
};
#endif // SHARE_VM_MEMORY_ALLOCATION_HPP