hotspot/src/share/vm/oops/klass.cpp
author rbackman
Tue, 09 Oct 2012 07:41:27 +0200
changeset 13961 aeaa21c167d1
parent 13952 e3cf184080bc
child 14078 2b2b8833c422
permissions -rw-r--r--
Merge

/*
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/dictionary.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/oop.inline2.hpp"
#include "runtime/atomic.hpp"
#include "utilities/stack.hpp"
#ifndef SERIALGC
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#endif

void Klass::set_name(Symbol* n) {
  _name = n;
  if (_name != NULL) _name->increment_refcount();
}

bool Klass::is_subclass_of(Klass* k) const {
  // Run up the super chain and check
  if (this == k) return true;

  Klass* t = const_cast<Klass*>(this)->super();

  while (t != NULL) {
    if (t == k) return true;
    t = Klass::cast(t)->super();
  }
  return false;
}

bool Klass::search_secondary_supers(Klass* k) const {
  // Put some extra logic here out-of-line, before the search proper.
  // This cuts down the size of the inline method.

  // This is necessary, since I am never in my own secondary_super list.
  if (this == k)
    return true;
  // Scan the array-of-objects for a match
  int cnt = secondary_supers()->length();
  for (int i = 0; i < cnt; i++) {
    if (secondary_supers()->at(i) == k) {
      ((Klass*)this)->set_secondary_super_cache(k);
      return true;
    }
  }
  return false;
}

// Return self, except for abstract classes with exactly 1
// implementor.  Then return the 1 concrete implementation.
Klass *Klass::up_cast_abstract() {
  Klass *r = this;
  while( r->is_abstract() ) {   // Receiver is abstract?
    Klass *s = r->subklass();   // Check for exactly 1 subklass
    if( !s || s->next_sibling() ) // Oops; wrong count; give up
      return this;              // Return 'this' as a no-progress flag
    r = s;                    // Loop till find concrete class
  }
  return r;                   // Return the 1 concrete class
}

// Find LCA in class hierarchy
Klass *Klass::LCA( Klass *k2 ) {
  Klass *k1 = this;
  while( 1 ) {
    if( k1->is_subtype_of(k2) ) return k2;
    if( k2->is_subtype_of(k1) ) return k1;
    k1 = k1->super();
    k2 = k2->super();
  }
}


void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
  ResourceMark rm(THREAD);
  THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
            : vmSymbols::java_lang_InstantiationException(), external_name());
}


void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
  THROW(vmSymbols::java_lang_ArrayStoreException());
}


void Klass::initialize(TRAPS) {
  ShouldNotReachHere();
}

bool Klass::compute_is_subtype_of(Klass* k) {
  assert(k->is_klass(), "argument must be a class");
  return is_subclass_of(k);
}


Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
#ifdef ASSERT
  tty->print_cr("Error: uncached_lookup_method called on a klass oop."
                " Likely error: reflection method does not correctly"
                " wrap return value in a mirror object.");
#endif
  ShouldNotReachHere();
  return NULL;
}

void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) {
  return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
                             Metaspace::ClassType, CHECK_NULL);
}

Klass::Klass() {
  Klass* k = this;

  { // Preinitialize supertype information.
    // A later call to initialize_supers() may update these settings:
    set_super(NULL);
    for (juint i = 0; i < Klass::primary_super_limit(); i++) {
      _primary_supers[i] = NULL;
    }
    set_secondary_supers(NULL);
    _primary_supers[0] = k;
    set_super_check_offset(in_bytes(primary_supers_offset()));
  }

  set_java_mirror(NULL);
  set_modifier_flags(0);
  set_layout_helper(Klass::_lh_neutral_value);
  set_name(NULL);
  AccessFlags af;
  af.set_flags(0);
  set_access_flags(af);
  set_subklass(NULL);
  set_next_sibling(NULL);
  set_next_link(NULL);
  set_alloc_count(0);
  TRACE_SET_KLASS_TRACE_ID(this, 0);

  set_prototype_header(markOopDesc::prototype());
  set_biased_lock_revocation_count(0);
  set_last_biased_lock_bulk_revocation_time(0);

  // The klass doesn't have any references at this point.
  clear_modified_oops();
  clear_accumulated_modified_oops();
}

jint Klass::array_layout_helper(BasicType etype) {
  assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
  // Note that T_ARRAY is not allowed here.
  int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
  int  esize = type2aelembytes(etype);
  bool isobj = (etype == T_OBJECT);
  int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
  int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));

  assert(lh < (int)_lh_neutral_value, "must look like an array layout");
  assert(layout_helper_is_array(lh), "correct kind");
  assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
  assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
  assert(layout_helper_header_size(lh) == hsize, "correct decode");
  assert(layout_helper_element_type(lh) == etype, "correct decode");
  assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");

  return lh;
}

bool Klass::can_be_primary_super_slow() const {
  if (super() == NULL)
    return true;
  else if (super()->super_depth() >= primary_super_limit()-1)
    return false;
  else
    return true;
}

void Klass::initialize_supers(Klass* k, TRAPS) {
  if (FastSuperclassLimit == 0) {
    // None of the other machinery matters.
    set_super(k);
    return;
  }
  if (k == NULL) {
    set_super(NULL);
    _primary_supers[0] = this;
    assert(super_depth() == 0, "Object must already be initialized properly");
  } else if (k != super() || k == SystemDictionary::Object_klass()) {
    assert(super() == NULL || super() == SystemDictionary::Object_klass(),
           "initialize this only once to a non-trivial value");
    set_super(k);
    Klass* sup = k;
    int sup_depth = sup->super_depth();
    juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
    if (!can_be_primary_super_slow())
      my_depth = primary_super_limit();
    for (juint i = 0; i < my_depth; i++) {
      _primary_supers[i] = sup->_primary_supers[i];
    }
    Klass* *super_check_cell;
    if (my_depth < primary_super_limit()) {
      _primary_supers[my_depth] = this;
      super_check_cell = &_primary_supers[my_depth];
    } else {
      // Overflow of the primary_supers array forces me to be secondary.
      super_check_cell = &_secondary_super_cache;
    }
    set_super_check_offset((address)super_check_cell - (address) this);

#ifdef ASSERT
    {
      juint j = super_depth();
      assert(j == my_depth, "computed accessor gets right answer");
      Klass* t = this;
      while (!Klass::cast(t)->can_be_primary_super()) {
        t = Klass::cast(t)->super();
        j = Klass::cast(t)->super_depth();
      }
      for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
        assert(primary_super_of_depth(j1) == NULL, "super list padding");
      }
      while (t != NULL) {
        assert(primary_super_of_depth(j) == t, "super list initialization");
        t = Klass::cast(t)->super();
        --j;
      }
      assert(j == (juint)-1, "correct depth count");
    }
#endif
  }

  if (secondary_supers() == NULL) {
    KlassHandle this_kh (THREAD, this);

    // Now compute the list of secondary supertypes.
    // Secondaries can occasionally be on the super chain,
    // if the inline "_primary_supers" array overflows.
    int extras = 0;
    Klass* p;
    for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
      ++extras;
    }

    ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below

    // Compute the "real" non-extra secondaries.
    GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
    if (secondaries == NULL) {
      // secondary_supers set by compute_secondary_supers
      return;
    }

    GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);

    for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
      int i;                    // Scan for overflow primaries being duplicates of 2nd'arys

      // This happens frequently for very deeply nested arrays: the
      // primary superclass chain overflows into the secondary.  The
      // secondary list contains the element_klass's secondaries with
      // an extra array dimension added.  If the element_klass's
      // secondary list already contains some primary overflows, they
      // (with the extra level of array-ness) will collide with the
      // normal primary superclass overflows.
      for( i = 0; i < secondaries->length(); i++ ) {
        if( secondaries->at(i) == p )
          break;
      }
      if( i < secondaries->length() )
        continue;               // It's a dup, don't put it in
      primaries->push(p);
    }
    // Combine the two arrays into a metadata object to pack the array.
    // The primaries are added in the reverse order, then the secondaries.
    int new_length = primaries->length() + secondaries->length();
    Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
                                       class_loader_data(), new_length, CHECK);
    int fill_p = primaries->length();
    for (int j = 0; j < fill_p; j++) {
      s2->at_put(j, primaries->pop());  // add primaries in reverse order.
    }
    for( int j = 0; j < secondaries->length(); j++ ) {
      s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
    }

  #ifdef ASSERT
      // We must not copy any NULL placeholders left over from bootstrap.
    for (int j = 0; j < s2->length(); j++) {
      assert(s2->at(j) != NULL, "correct bootstrapping order");
    }
  #endif

    this_kh->set_secondary_supers(s2);
  }
}

GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
  assert(num_extra_slots == 0, "override for complex klasses");
  set_secondary_supers(Universe::the_empty_klass_array());
  return NULL;
}


Klass* Klass::subklass() const {
  return _subklass == NULL ? NULL : Klass::cast(_subklass);
}

InstanceKlass* Klass::superklass() const {
  assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
  return _super == NULL ? NULL : InstanceKlass::cast(_super);
}

Klass* Klass::next_sibling() const {
  return _next_sibling == NULL ? NULL : Klass::cast(_next_sibling);
}

void Klass::set_subklass(Klass* s) {
  assert(s != this, "sanity check");
  _subklass = s;
}

void Klass::set_next_sibling(Klass* s) {
  assert(s != this, "sanity check");
  _next_sibling = s;
}

void Klass::append_to_sibling_list() {
  debug_only(if (!SharedSkipVerify) verify();)
  // add ourselves to superklass' subklass list
  InstanceKlass* super = superklass();
  if (super == NULL) return;        // special case: class Object
  assert(SharedSkipVerify ||
         (!super->is_interface()    // interfaces cannot be supers
          && (super->superklass() == NULL || !is_interface())),
         "an interface can only be a subklass of Object");
  Klass* prev_first_subklass = super->subklass_oop();
  if (prev_first_subklass != NULL) {
    // set our sibling to be the superklass' previous first subklass
    set_next_sibling(prev_first_subklass);
  }
  // make ourselves the superklass' first subklass
  super->set_subklass(this);
  debug_only(if (!SharedSkipVerify) verify();)
}

void Klass::remove_from_sibling_list() {
  // remove receiver from sibling list
  InstanceKlass* super = superklass();
  assert(super != NULL || this == SystemDictionary::Object_klass(), "should have super");
  if (super == NULL) return;        // special case: class Object
  if (super->subklass() == this) {
    // first subklass
    super->set_subklass(_next_sibling);
  } else {
    Klass* sib = super->subklass();
    while (sib->next_sibling() != this) {
      sib = sib->next_sibling();
    };
    sib->set_next_sibling(_next_sibling);
  }
}

bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
  assert(is_metadata(), "p is not meta-data");
  assert(ClassLoaderDataGraph::contains((address)this), "is in the metaspace");
  // The class is alive iff the class loader is alive.
  oop loader = class_loader();
  return (loader == NULL) || is_alive->do_object_b(loader);
}

void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
  if (!ClassUnloading) {
    return;
  }

  Klass* root = SystemDictionary::Object_klass();
  Stack<Klass*, mtGC> stack;

  stack.push(root);
  while (!stack.is_empty()) {
    Klass* current = stack.pop();

    assert(current->is_loader_alive(is_alive), "just checking, this should be live");

    // Find and set the first alive subklass
    Klass* sub = current->subklass_oop();
    while (sub != NULL && !sub->is_loader_alive(is_alive)) {
#ifndef PRODUCT
        if (TraceClassUnloading && WizardMode) {
          ResourceMark rm;
        tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
        }
#endif
      sub = sub->next_sibling_oop();
    }
    current->set_subklass(sub);
    if (sub != NULL) {
      stack.push(sub);
    }

    // Find and set the first alive sibling
    Klass* sibling = current->next_sibling_oop();
    while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
          if (TraceClassUnloading && WizardMode) {
            ResourceMark rm;
        tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
          }
      sibling = sibling->next_sibling_oop();
      }
    current->set_next_sibling(sibling);
    if (sibling != NULL) {
      stack.push(sibling);
}

    // Clean the implementors list and method data.
    if (current->oop_is_instance()) {
      InstanceKlass* ik = InstanceKlass::cast(current);
      ik->clean_implementors_list(is_alive);
      ik->clean_method_data(is_alive);
    }
  }
}

void Klass::klass_update_barrier_set(oop v) {
  record_modified_oops();
}

void Klass::klass_update_barrier_set_pre(void* p, oop v) {
  // This barrier used by G1, where it's used remember the old oop values,
  // so that we don't forget any objects that were live at the snapshot at
  // the beginning. This function is only used when we write oops into
  // Klasses. Since the Klasses are used as roots in G1, we don't have to
  // do anything here.
}

void Klass::klass_oop_store(oop* p, oop v) {
  assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
  assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");

  // do the store
  if (always_do_update_barrier) {
    klass_oop_store((volatile oop*)p, v);
  } else {
    klass_update_barrier_set_pre((void*)p, v);
    *p = v;
    klass_update_barrier_set(v);
  }
}

void Klass::klass_oop_store(volatile oop* p, oop v) {
  assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
  assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");

  klass_update_barrier_set_pre((void*)p, v);
  OrderAccess::release_store_ptr(p, v);
  klass_update_barrier_set(v);
}

void Klass::oops_do(OopClosure* cl) {
  cl->do_oop(&_java_mirror);
}

void Klass::remove_unshareable_info() {
  set_subklass(NULL);
  set_next_sibling(NULL);
  // Clear the java mirror
  set_java_mirror(NULL);
  set_next_link(NULL);

  // Null out class_loader_data because we don't share that yet.
  set_class_loader_data(NULL);
}

void Klass::restore_unshareable_info(TRAPS) {
  ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
  // Restore class_loader_data to the null class loader data
  set_class_loader_data(loader_data);

  // Add to null class loader list first before creating the mirror
  // (same order as class file parsing)
  loader_data->add_class(this);

  // Recreate the class mirror
  java_lang_Class::create_mirror(this, CHECK);
}

Klass* Klass::array_klass_or_null(int rank) {
  EXCEPTION_MARK;
  // No exception can be thrown by array_klass_impl when called with or_null == true.
  // (In anycase, the execption mark will fail if it do so)
  return array_klass_impl(true, rank, THREAD);
}


Klass* Klass::array_klass_or_null() {
  EXCEPTION_MARK;
  // No exception can be thrown by array_klass_impl when called with or_null == true.
  // (In anycase, the execption mark will fail if it do so)
  return array_klass_impl(true, THREAD);
}


Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
  fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
  return NULL;
}


Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
  fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
  return NULL;
}


void Klass::with_array_klasses_do(void f(Klass* k)) {
  f(this);
}


oop Klass::class_loader() const { return class_loader_data()->class_loader(); }

const char* Klass::external_name() const {
  if (oop_is_instance()) {
    InstanceKlass* ik = (InstanceKlass*) this;
    if (ik->is_anonymous()) {
      assert(EnableInvokeDynamic, "");
      intptr_t hash = ik->java_mirror()->identity_hash();
      char     hash_buf[40];
      sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
      size_t   hash_len = strlen(hash_buf);

      size_t result_len = name()->utf8_length();
      char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
      name()->as_klass_external_name(result, (int) result_len + 1);
      assert(strlen(result) == result_len, "");
      strcpy(result + result_len, hash_buf);
      assert(strlen(result) == result_len + hash_len, "");
      return result;
    }
  }
  if (name() == NULL)  return "<unknown>";
  return name()->as_klass_external_name();
}


const char* Klass::signature_name() const {
  if (name() == NULL)  return "<unknown>";
  return name()->as_C_string();
}

// Unless overridden, modifier_flags is 0.
jint Klass::compute_modifier_flags(TRAPS) const {
  return 0;
}

int Klass::atomic_incr_biased_lock_revocation_count() {
  return (int) Atomic::add(1, &_biased_lock_revocation_count);
}

// Unless overridden, jvmti_class_status has no flags set.
jint Klass::jvmti_class_status() const {
  return 0;
}


// Printing

void Klass::print_on(outputStream* st) const {
  ResourceMark rm;
  // print title
  st->print("%s", internal_name());
  print_address_on(st);
  st->cr();
}

void Klass::oop_print_on(oop obj, outputStream* st) {
  ResourceMark rm;
  // print title
  st->print_cr("%s ", internal_name());
  obj->print_address_on(st);

  if (WizardMode) {
     // print header
     obj->mark()->print_on(st);
  }

  // print class
  st->print(" - klass: ");
  obj->klass()->print_value_on(st);
  st->cr();
}

void Klass::oop_print_value_on(oop obj, outputStream* st) {
  // print title
  ResourceMark rm;              // Cannot print in debug mode without this
  st->print("%s", internal_name());
  obj->print_address_on(st);
}


// Verification

void Klass::verify_on(outputStream* st) {
  guarantee(!Universe::heap()->is_in_reserved(this), "Shouldn't be");
  guarantee(this->is_metadata(), "should be in metaspace");

  assert(ClassLoaderDataGraph::contains((address)this), "Should be");

  guarantee(this->is_klass(),"should be klass");

  if (super() != NULL) {
    guarantee(super()->is_metadata(), "should be in metaspace");
    guarantee(super()->is_klass(), "should be klass");
  }
  if (secondary_super_cache() != NULL) {
    Klass* ko = secondary_super_cache();
    guarantee(ko->is_metadata(), "should be in metaspace");
    guarantee(ko->is_klass(), "should be klass");
  }
  for ( uint i = 0; i < primary_super_limit(); i++ ) {
    Klass* ko = _primary_supers[i];
    if (ko != NULL) {
      guarantee(ko->is_metadata(), "should be in metaspace");
      guarantee(ko->is_klass(), "should be klass");
    }
  }

  if (java_mirror() != NULL) {
    guarantee(java_mirror()->is_oop(), "should be instance");
  }
}

void Klass::oop_verify_on(oop obj, outputStream* st) {
  guarantee(obj->is_oop(),  "should be oop");
  guarantee(obj->klass()->is_metadata(), "should not be in Java heap");
  guarantee(obj->klass()->is_klass(), "klass field is not a klass");
}

#ifndef PRODUCT

void Klass::verify_vtable_index(int i) {
  if (oop_is_instance()) {
    assert(i>=0 && i<((InstanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
  } else {
    assert(oop_is_array(), "Must be");
    assert(i>=0 && i<((ArrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
  }
}

#endif