8220623: [JVMCI] Update JVMCI to support JVMCI based Compiler compiled into shared library
Reviewed-by: dnsimon, never, stefank, rehn, neliasso, dholmes, kbarrett, coleenp
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/stringTable.hpp"
#include "code/codeCache.hpp"
#include "gc/shared/parallelCleaning.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "logging/log.hpp"
#if INCLUDE_JVMCI
#include "jvmci/jvmci.hpp"
#endif
StringDedupCleaningTask::StringDedupCleaningTask(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
bool resize_table) :
AbstractGangTask("String Dedup Cleaning"),
_dedup_closure(is_alive, keep_alive) {
if (StringDedup::is_enabled()) {
StringDedup::gc_prologue(resize_table);
}
}
StringDedupCleaningTask::~StringDedupCleaningTask() {
if (StringDedup::is_enabled()) {
StringDedup::gc_epilogue();
}
}
void StringDedupCleaningTask::work(uint worker_id) {
if (StringDedup::is_enabled()) {
StringDedup::parallel_unlink(&_dedup_closure, worker_id);
}
}
CodeCacheUnloadingTask::CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
_unloading_scope(is_alive),
_unloading_occurred(unloading_occurred),
_num_workers(num_workers),
_first_nmethod(NULL),
_claimed_nmethod(NULL) {
// Get first alive nmethod
CompiledMethodIterator iter(CompiledMethodIterator::only_alive);
if(iter.next()) {
_first_nmethod = iter.method();
}
_claimed_nmethod = _first_nmethod;
}
CodeCacheUnloadingTask::~CodeCacheUnloadingTask() {
CodeCache::verify_clean_inline_caches();
CodeCache::verify_icholder_relocations();
}
void CodeCacheUnloadingTask::claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
CompiledMethod* first;
CompiledMethodIterator last(CompiledMethodIterator::only_alive);
do {
*num_claimed_nmethods = 0;
first = _claimed_nmethod;
last = CompiledMethodIterator(CompiledMethodIterator::only_alive, first);
if (first != NULL) {
for (int i = 0; i < MaxClaimNmethods; i++) {
if (!last.next()) {
break;
}
claimed_nmethods[i] = last.method();
(*num_claimed_nmethods)++;
}
}
} while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
}
void CodeCacheUnloadingTask::work(uint worker_id) {
// The first nmethods is claimed by the first worker.
if (worker_id == 0 && _first_nmethod != NULL) {
_first_nmethod->do_unloading(_unloading_occurred);
_first_nmethod = NULL;
}
int num_claimed_nmethods;
CompiledMethod* claimed_nmethods[MaxClaimNmethods];
while (true) {
claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
if (num_claimed_nmethods == 0) {
break;
}
for (int i = 0; i < num_claimed_nmethods; i++) {
claimed_nmethods[i]->do_unloading(_unloading_occurred);
}
}
}
KlassCleaningTask::KlassCleaningTask() :
_clean_klass_tree_claimed(0),
_klass_iterator() {
}
bool KlassCleaningTask::claim_clean_klass_tree_task() {
if (_clean_klass_tree_claimed) {
return false;
}
return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
}
InstanceKlass* KlassCleaningTask::claim_next_klass() {
Klass* klass;
do {
klass =_klass_iterator.next_klass();
} while (klass != NULL && !klass->is_instance_klass());
// this can be null so don't call InstanceKlass::cast
return static_cast<InstanceKlass*>(klass);
}
void KlassCleaningTask::work() {
ResourceMark rm;
// One worker will clean the subklass/sibling klass tree.
if (claim_clean_klass_tree_task()) {
Klass::clean_subklass_tree();
}
// All workers will help cleaning the classes,
InstanceKlass* klass;
while ((klass = claim_next_klass()) != NULL) {
clean_klass(klass);
}
}
#if INCLUDE_JVMCI
JVMCICleaningTask::JVMCICleaningTask() :
_cleaning_claimed(0) {
}
bool JVMCICleaningTask::claim_cleaning_task() {
if (_cleaning_claimed) {
return false;
}
return Atomic::cmpxchg(1, &_cleaning_claimed, 0) == 0;
}
void JVMCICleaningTask::work(bool unloading_occurred) {
// One worker will clean JVMCI metadata handles.
if (unloading_occurred && EnableJVMCI && claim_cleaning_task()) {
JVMCI::do_unloading(unloading_occurred);
}
}
#endif // INCLUDE_JVMCI
ParallelCleaningTask::ParallelCleaningTask(BoolObjectClosure* is_alive,
uint num_workers,
bool unloading_occurred,
bool resize_dedup_table) :
AbstractGangTask("Parallel Cleaning"),
_unloading_occurred(unloading_occurred),
_string_dedup_task(is_alive, NULL, resize_dedup_table),
_code_cache_task(num_workers, is_alive, unloading_occurred),
JVMCI_ONLY(_jvmci_cleaning_task() COMMA)
_klass_cleaning_task() {
}
// The parallel work done by all worker threads.
void ParallelCleaningTask::work(uint worker_id) {
// Clean JVMCI metadata handles.
// Execute this task first because it is serial task.
JVMCI_ONLY(_jvmci_cleaning_task.work(_unloading_occurred);)
// Do first pass of code cache cleaning.
_code_cache_task.work(worker_id);
// Clean the string dedup data structures.
_string_dedup_task.work(worker_id);
// Clean all klasses that were not unloaded.
// The weak metadata in klass doesn't need to be
// processed if there was no unloading.
if (_unloading_occurred) {
_klass_cleaning_task.work();
}
}