/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
#define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
#include "gc/shared/gcCause.hpp"
#include "gc/shared/gcWhen.hpp"
#include "memory/allocation.hpp"
#include "runtime/handles.hpp"
#include "runtime/perfData.hpp"
#include "runtime/safepoint.hpp"
#include "utilities/debug.hpp"
#include "utilities/events.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/growableArray.hpp"
// A "CollectedHeap" is an implementation of a java heap for HotSpot. This
// is an abstract class: there may be many different kinds of heaps. This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.
class AdaptiveSizePolicy;
class BarrierSet;
class CollectorPolicy;
class GCHeapSummary;
class GCTimer;
class GCTracer;
class GCMemoryManager;
class MemoryPool;
class MetaspaceSummary;
class SoftRefPolicy;
class Thread;
class ThreadClosure;
class VirtualSpaceSummary;
class WorkGang;
class nmethod;
class GCMessage : public FormatBuffer<1024> {
public:
bool is_before;
public:
GCMessage() {}
};
class CollectedHeap;
class GCHeapLog : public EventLogBase<GCMessage> {
private:
void log_heap(CollectedHeap* heap, bool before);
public:
GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
void log_heap_before(CollectedHeap* heap) {
log_heap(heap, true);
}
void log_heap_after(CollectedHeap* heap) {
log_heap(heap, false);
}
};
//
// CollectedHeap
// GenCollectedHeap
// SerialHeap
// CMSHeap
// G1CollectedHeap
// ParallelScavengeHeap
//
class CollectedHeap : public CHeapObj<mtInternal> {
friend class VMStructs;
friend class JVMCIVMStructs;
friend class IsGCActiveMark; // Block structured external access to _is_gc_active
private:
#ifdef ASSERT
static int _fire_out_of_memory_count;
#endif
GCHeapLog* _gc_heap_log;
MemRegion _reserved;
protected:
bool _is_gc_active;
// Used for filler objects (static, but initialized in ctor).
static size_t _filler_array_max_size;
unsigned int _total_collections; // ... started
unsigned int _total_full_collections; // ... started
NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
// Reason for current garbage collection. Should be set to
// a value reflecting no collection between collections.
GCCause::Cause _gc_cause;
GCCause::Cause _gc_lastcause;
PerfStringVariable* _perf_gc_cause;
PerfStringVariable* _perf_gc_lastcause;
// Constructor
CollectedHeap();
// Create a new tlab. All TLAB allocations must go through this.
// To allow more flexible TLAB allocations min_size specifies
// the minimum size needed, while requested_size is the requested
// size based on ergonomics. The actually allocated size will be
// returned in actual_size.
virtual HeapWord* allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size);
// Accumulate statistics on all tlabs.
virtual void accumulate_statistics_all_tlabs();
// Reinitialize tlabs before resuming mutators.
virtual void resize_all_tlabs();
// Allocate from the current thread's TLAB, with broken-out slow path.
inline static HeapWord* allocate_from_tlab(Klass* klass, size_t size, TRAPS);
static HeapWord* allocate_from_tlab_slow(Klass* klass, size_t size, TRAPS);
inline static HeapWord* allocate_outside_tlab(Klass* klass, size_t size,
bool* gc_overhead_limit_was_exceeded, TRAPS);
// Raw memory allocation facilities
// The obj and array allocate methods are covers for these methods.
// mem_allocate() should never be
// called to allocate TLABs, only individual objects.
virtual HeapWord* mem_allocate(size_t size,
bool* gc_overhead_limit_was_exceeded) = 0;
// Allocate an uninitialized block of the given size, or returns NULL if
// this is impossible.
inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
// Like allocate_init, but the block returned by a successful allocation
// is guaranteed initialized to zeros.
inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
// Helper functions for (VM) allocation.
inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
inline static void post_allocation_setup_no_klass_install(Klass* klass,
HeapWord* objPtr);
inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
inline static void post_allocation_setup_array(Klass* klass,
HeapWord* obj, int length);
inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
// Clears an allocated object.
inline static void init_obj(HeapWord* obj, size_t size);
// Filler object utilities.
static inline size_t filler_array_hdr_size();
static inline size_t filler_array_min_size();
DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
// Fill with a single array; caller must ensure filler_array_min_size() <=
// words <= filler_array_max_size().
static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
// Fill with a single object (either an int array or a java.lang.Object).
static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
// Verification functions
virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
PRODUCT_RETURN;
virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
PRODUCT_RETURN;
debug_only(static void check_for_valid_allocation_state();)
public:
enum Name {
None,
Serial,
Parallel,
CMS,
G1,
Epsilon,
};
static inline size_t filler_array_max_size() {
return _filler_array_max_size;
}
virtual Name kind() const = 0;
virtual const char* name() const = 0;
/**
* Returns JNI error code JNI_ENOMEM if memory could not be allocated,
* and JNI_OK on success.
*/
virtual jint initialize() = 0;
// In many heaps, there will be a need to perform some initialization activities
// after the Universe is fully formed, but before general heap allocation is allowed.
// This is the correct place to place such initialization methods.
virtual void post_initialize();
// Stop any onging concurrent work and prepare for exit.
virtual void stop() {}
// Stop and resume concurrent GC threads interfering with safepoint operations
virtual void safepoint_synchronize_begin() {}
virtual void safepoint_synchronize_end() {}
void initialize_reserved_region(HeapWord *start, HeapWord *end);
MemRegion reserved_region() const { return _reserved; }
address base() const { return (address)reserved_region().start(); }
virtual size_t capacity() const = 0;
virtual size_t used() const = 0;
// Return "true" if the part of the heap that allocates Java
// objects has reached the maximal committed limit that it can
// reach, without a garbage collection.
virtual bool is_maximal_no_gc() const = 0;
// Support for java.lang.Runtime.maxMemory(): return the maximum amount of
// memory that the vm could make available for storing 'normal' java objects.
// This is based on the reserved address space, but should not include space
// that the vm uses internally for bookkeeping or temporary storage
// (e.g., in the case of the young gen, one of the survivor
// spaces).
virtual size_t max_capacity() const = 0;
// Returns "TRUE" if "p" points into the reserved area of the heap.
bool is_in_reserved(const void* p) const {
return _reserved.contains(p);
}
bool is_in_reserved_or_null(const void* p) const {
return p == NULL || is_in_reserved(p);
}
// Returns "TRUE" iff "p" points into the committed areas of the heap.
// This method can be expensive so avoid using it in performance critical
// code.
virtual bool is_in(const void* p) const = 0;
DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
// Let's define some terms: a "closed" subset of a heap is one that
//
// 1) contains all currently-allocated objects, and
//
// 2) is closed under reference: no object in the closed subset
// references one outside the closed subset.
//
// Membership in a heap's closed subset is useful for assertions.
// Clearly, the entire heap is a closed subset, so the default
// implementation is to use "is_in_reserved". But this may not be too
// liberal to perform useful checking. Also, the "is_in" predicate
// defines a closed subset, but may be too expensive, since "is_in"
// verifies that its argument points to an object head. The
// "closed_subset" method allows a heap to define an intermediate
// predicate, allowing more precise checking than "is_in_reserved" at
// lower cost than "is_in."
// One important case is a heap composed of disjoint contiguous spaces,
// such as the Garbage-First collector. Such heaps have a convenient
// closed subset consisting of the allocated portions of those
// contiguous spaces.
// Return "TRUE" iff the given pointer points into the heap's defined
// closed subset (which defaults to the entire heap).
virtual bool is_in_closed_subset(const void* p) const {
return is_in_reserved(p);
}
bool is_in_closed_subset_or_null(const void* p) const {
return p == NULL || is_in_closed_subset(p);
}
void set_gc_cause(GCCause::Cause v) {
if (UsePerfData) {
_gc_lastcause = _gc_cause;
_perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
_perf_gc_cause->set_value(GCCause::to_string(v));
}
_gc_cause = v;
}
GCCause::Cause gc_cause() { return _gc_cause; }
// General obj/array allocation facilities.
inline static oop obj_allocate(Klass* klass, int size, TRAPS);
inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
inline static oop class_allocate(Klass* klass, int size, TRAPS);
// Raw memory allocation. This may or may not use TLAB allocations to satisfy the
// allocation. A GC implementation may override this function to satisfy the allocation
// in any way. But the default is to try a TLAB allocation, and otherwise perform
// mem_allocate.
virtual HeapWord* obj_allocate_raw(Klass* klass, size_t size,
bool* gc_overhead_limit_was_exceeded, TRAPS);
// Utilities for turning raw memory into filler objects.
//
// min_fill_size() is the smallest region that can be filled.
// fill_with_objects() can fill arbitrary-sized regions of the heap using
// multiple objects. fill_with_object() is for regions known to be smaller
// than the largest array of integers; it uses a single object to fill the
// region and has slightly less overhead.
static size_t min_fill_size() {
return size_t(align_object_size(oopDesc::header_size()));
}
static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
static void fill_with_object(MemRegion region, bool zap = true) {
fill_with_object(region.start(), region.word_size(), zap);
}
static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
fill_with_object(start, pointer_delta(end, start), zap);
}
// Return the address "addr" aligned by "alignment_in_bytes" if such
// an address is below "end". Return NULL otherwise.
inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
HeapWord* end,
unsigned short alignment_in_bytes);
// Some heaps may offer a contiguous region for shared non-blocking
// allocation, via inlined code (by exporting the address of the top and
// end fields defining the extent of the contiguous allocation region.)
// This function returns "true" iff the heap supports this kind of
// allocation. (Default is "no".)
virtual bool supports_inline_contig_alloc() const {
return false;
}
// These functions return the addresses of the fields that define the
// boundaries of the contiguous allocation area. (These fields should be
// physically near to one another.)
virtual HeapWord* volatile* top_addr() const {
guarantee(false, "inline contiguous allocation not supported");
return NULL;
}
virtual HeapWord** end_addr() const {
guarantee(false, "inline contiguous allocation not supported");
return NULL;
}
// Some heaps may be in an unparseable state at certain times between
// collections. This may be necessary for efficient implementation of
// certain allocation-related activities. Calling this function before
// attempting to parse a heap ensures that the heap is in a parsable
// state (provided other concurrent activity does not introduce
// unparsability). It is normally expected, therefore, that this
// method is invoked with the world stopped.
// NOTE: if you override this method, make sure you call
// super::ensure_parsability so that the non-generational
// part of the work gets done. See implementation of
// CollectedHeap::ensure_parsability and, for instance,
// that of GenCollectedHeap::ensure_parsability().
// The argument "retire_tlabs" controls whether existing TLABs
// are merely filled or also retired, thus preventing further
// allocation from them and necessitating allocation of new TLABs.
virtual void ensure_parsability(bool retire_tlabs);
// Section on thread-local allocation buffers (TLABs)
// If the heap supports thread-local allocation buffers, it should override
// the following methods:
// Returns "true" iff the heap supports thread-local allocation buffers.
// The default is "no".
virtual bool supports_tlab_allocation() const = 0;
// The amount of space available for thread-local allocation buffers.
virtual size_t tlab_capacity(Thread *thr) const = 0;
// The amount of used space for thread-local allocation buffers for the given thread.
virtual size_t tlab_used(Thread *thr) const = 0;
virtual size_t max_tlab_size() const;
// An estimate of the maximum allocation that could be performed
// for thread-local allocation buffers without triggering any
// collection or expansion activity.
virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
guarantee(false, "thread-local allocation buffers not supported");
return 0;
}
// Perform a collection of the heap; intended for use in implementing
// "System.gc". This probably implies as full a collection as the
// "CollectedHeap" supports.
virtual void collect(GCCause::Cause cause) = 0;
// Perform a full collection
virtual void do_full_collection(bool clear_all_soft_refs) = 0;
// This interface assumes that it's being called by the
// vm thread. It collects the heap assuming that the
// heap lock is already held and that we are executing in
// the context of the vm thread.
virtual void collect_as_vm_thread(GCCause::Cause cause);
virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
size_t size,
Metaspace::MetadataType mdtype);
// Returns "true" iff there is a stop-world GC in progress. (I assume
// that it should answer "false" for the concurrent part of a concurrent
// collector -- dld).
bool is_gc_active() const { return _is_gc_active; }
// Total number of GC collections (started)
unsigned int total_collections() const { return _total_collections; }
unsigned int total_full_collections() const { return _total_full_collections;}
// Increment total number of GC collections (started)
// Should be protected but used by PSMarkSweep - cleanup for 1.4.2
void increment_total_collections(bool full = false) {
_total_collections++;
if (full) {
increment_total_full_collections();
}
}
void increment_total_full_collections() { _total_full_collections++; }
// Return the CollectorPolicy for the heap
virtual CollectorPolicy* collector_policy() const = 0;
// Return the SoftRefPolicy for the heap;
virtual SoftRefPolicy* soft_ref_policy() = 0;
virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
virtual GrowableArray<MemoryPool*> memory_pools() = 0;
// Iterate over all objects, calling "cl.do_object" on each.
virtual void object_iterate(ObjectClosure* cl) = 0;
// Similar to object_iterate() except iterates only
// over live objects.
virtual void safe_object_iterate(ObjectClosure* cl) = 0;
// NOTE! There is no requirement that a collector implement these
// functions.
//
// A CollectedHeap is divided into a dense sequence of "blocks"; that is,
// each address in the (reserved) heap is a member of exactly
// one block. The defining characteristic of a block is that it is
// possible to find its size, and thus to progress forward to the next
// block. (Blocks may be of different sizes.) Thus, blocks may
// represent Java objects, or they might be free blocks in a
// free-list-based heap (or subheap), as long as the two kinds are
// distinguishable and the size of each is determinable.
// Returns the address of the start of the "block" that contains the
// address "addr". We say "blocks" instead of "object" since some heaps
// may not pack objects densely; a chunk may either be an object or a
// non-object.
virtual HeapWord* block_start(const void* addr) const = 0;
// Requires "addr" to be the start of a chunk, and returns its size.
// "addr + size" is required to be the start of a new chunk, or the end
// of the active area of the heap.
virtual size_t block_size(const HeapWord* addr) const = 0;
// Requires "addr" to be the start of a block, and returns "TRUE" iff
// the block is an object.
virtual bool block_is_obj(const HeapWord* addr) const = 0;
// Returns the longest time (in ms) that has elapsed since the last
// time that any part of the heap was examined by a garbage collection.
virtual jlong millis_since_last_gc() = 0;
// Perform any cleanup actions necessary before allowing a verification.
virtual void prepare_for_verify() = 0;
// Generate any dumps preceding or following a full gc
private:
void full_gc_dump(GCTimer* timer, bool before);
virtual void initialize_serviceability() = 0;
public:
void pre_full_gc_dump(GCTimer* timer);
void post_full_gc_dump(GCTimer* timer);
virtual VirtualSpaceSummary create_heap_space_summary();
GCHeapSummary create_heap_summary();
MetaspaceSummary create_metaspace_summary();
// Print heap information on the given outputStream.
virtual void print_on(outputStream* st) const = 0;
// The default behavior is to call print_on() on tty.
virtual void print() const {
print_on(tty);
}
// Print more detailed heap information on the given
// outputStream. The default behavior is to call print_on(). It is
// up to each subclass to override it and add any additional output
// it needs.
virtual void print_extended_on(outputStream* st) const {
print_on(st);
}
virtual void print_on_error(outputStream* st) const;
// Print all GC threads (other than the VM thread)
// used by this heap.
virtual void print_gc_threads_on(outputStream* st) const = 0;
// The default behavior is to call print_gc_threads_on() on tty.
void print_gc_threads() {
print_gc_threads_on(tty);
}
// Iterator for all GC threads (other than VM thread)
virtual void gc_threads_do(ThreadClosure* tc) const = 0;
// Print any relevant tracing info that flags imply.
// Default implementation does nothing.
virtual void print_tracing_info() const = 0;
void print_heap_before_gc();
void print_heap_after_gc();
// An object is scavengable if its location may move during a scavenge.
// (A scavenge is a GC which is not a full GC.)
virtual bool is_scavengable(oop obj) = 0;
// Registering and unregistering an nmethod (compiled code) with the heap.
// Override with specific mechanism for each specialized heap type.
virtual void register_nmethod(nmethod* nm) {}
virtual void unregister_nmethod(nmethod* nm) {}
virtual void verify_nmethod(nmethod* nmethod) {}
void trace_heap_before_gc(const GCTracer* gc_tracer);
void trace_heap_after_gc(const GCTracer* gc_tracer);
// Heap verification
virtual void verify(VerifyOption option) = 0;
// Return true if concurrent phase control (via
// request_concurrent_phase_control) is supported by this collector.
// The default implementation returns false.
virtual bool supports_concurrent_phase_control() const;
// Return a NULL terminated array of concurrent phase names provided
// by this collector. Supports Whitebox testing. These are the
// names recognized by request_concurrent_phase(). The default
// implementation returns an array of one NULL element.
virtual const char* const* concurrent_phases() const;
// Request the collector enter the indicated concurrent phase, and
// wait until it does so. Supports WhiteBox testing. Only one
// request may be active at a time. Phases are designated by name;
// the set of names and their meaning is GC-specific. Once the
// requested phase has been reached, the collector will attempt to
// avoid transitioning to a new phase until a new request is made.
// [Note: A collector might not be able to remain in a given phase.
// For example, a full collection might cancel an in-progress
// concurrent collection.]
//
// Returns true when the phase is reached. Returns false for an
// unknown phase. The default implementation returns false.
virtual bool request_concurrent_phase(const char* phase);
// Provides a thread pool to SafepointSynchronize to use
// for parallel safepoint cleanup.
// GCs that use a GC worker thread pool may want to share
// it for use during safepoint cleanup. This is only possible
// if the GC can pause and resume concurrent work (e.g. G1
// concurrent marking) for an intermittent non-GC safepoint.
// If this method returns NULL, SafepointSynchronize will
// perform cleanup tasks serially in the VMThread.
virtual WorkGang* get_safepoint_workers() { return NULL; }
// Support for object pinning. This is used by JNI Get*Critical()
// and Release*Critical() family of functions. If supported, the GC
// must guarantee that pinned objects never move.
virtual bool supports_object_pinning() const;
virtual oop pin_object(JavaThread* thread, oop obj);
virtual void unpin_object(JavaThread* thread, oop obj);
// Deduplicate the string, iff the GC supports string deduplication.
virtual void deduplicate_string(oop str);
virtual bool is_oop(oop object) const;
// Non product verification and debugging.
#ifndef PRODUCT
// Support for PromotionFailureALot. Return true if it's time to cause a
// promotion failure. The no-argument version uses
// this->_promotion_failure_alot_count as the counter.
bool promotion_should_fail(volatile size_t* count);
bool promotion_should_fail();
// Reset the PromotionFailureALot counters. Should be called at the end of a
// GC in which promotion failure occurred.
void reset_promotion_should_fail(volatile size_t* count);
void reset_promotion_should_fail();
#endif // #ifndef PRODUCT
#ifdef ASSERT
static int fired_fake_oom() {
return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
}
#endif
};
// Class to set and reset the GC cause for a CollectedHeap.
class GCCauseSetter : StackObj {
CollectedHeap* _heap;
GCCause::Cause _previous_cause;
public:
GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
_heap = heap;
_previous_cause = _heap->gc_cause();
_heap->set_gc_cause(cause);
}
~GCCauseSetter() {
_heap->set_gc_cause(_previous_cause);
}
};
#endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP