8175368: [s390] Provide intrinsic implementation for CRC32C
Reviewed-by: mdoerr, simonis
/*
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_Instruction.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_LIRGenerator.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArray.hpp"
#include "ci/ciObjArrayKlass.hpp"
#include "ci/ciTypeArrayKlass.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "vmreg_s390.inline.hpp"
#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif
void LIRItem::load_byte_item() {
// Byte loads use same registers as other loads.
load_item();
}
void LIRItem::load_nonconstant(int bits) {
LIR_Opr r = value()->operand();
if (_gen->can_inline_as_constant(value(), bits)) {
if (!r->is_constant()) {
r = LIR_OprFact::value_type(value()->type());
}
_result = r;
} else {
load_item();
}
}
//--------------------------------------------------------------
// LIRGenerator
//--------------------------------------------------------------
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::as_oop_opr(Z_EXC_OOP); }
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::as_opr(Z_EXC_PC); }
LIR_Opr LIRGenerator::divInOpr() { return FrameMap::Z_R11_opr; }
LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::Z_R11_opr; }
LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::Z_R10_opr; }
LIR_Opr LIRGenerator::ldivInOpr() { return FrameMap::Z_R11_long_opr; }
LIR_Opr LIRGenerator::ldivOutOpr() { return FrameMap::Z_R11_long_opr; }
LIR_Opr LIRGenerator::lremOutOpr() { return FrameMap::Z_R10_long_opr; }
LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); }
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::Z_R13_opr; }
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
LIR_Opr LIRGenerator::result_register_for (ValueType* type, bool callee) {
LIR_Opr opr;
switch (type->tag()) {
case intTag: opr = FrameMap::Z_R2_opr; break;
case objectTag: opr = FrameMap::Z_R2_oop_opr; break;
case longTag: opr = FrameMap::Z_R2_long_opr; break;
case floatTag: opr = FrameMap::Z_F0_opr; break;
case doubleTag: opr = FrameMap::Z_F0_double_opr; break;
case addressTag:
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
}
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
return opr;
}
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
return new_register(T_INT);
}
//--------- Loading items into registers. --------------------------------
// z/Architecture cannot inline all constants.
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
if (v->type()->as_IntConstant() != NULL) {
return Immediate::is_simm16(v->type()->as_IntConstant()->value());
} else if (v->type()->as_LongConstant() != NULL) {
return Immediate::is_simm16(v->type()->as_LongConstant()->value());
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else {
return false;
}
}
bool LIRGenerator::can_inline_as_constant(Value i, int bits) const {
if (i->type()->as_IntConstant() != NULL) {
return Assembler::is_simm(i->type()->as_IntConstant()->value(), bits);
} else if (i->type()->as_LongConstant() != NULL) {
return Assembler::is_simm(i->type()->as_LongConstant()->value(), bits);
} else {
return can_store_as_constant(i, as_BasicType(i->type()));
}
}
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
if (c->type() == T_INT) {
return Immediate::is_simm20(c->as_jint());
} else if (c->type() == T_LONG) {
return Immediate::is_simm20(c->as_jlong());
}
return false;
}
LIR_Opr LIRGenerator::safepoint_poll_register() {
return new_register(longType);
}
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
int shift, int disp, BasicType type) {
assert(base->is_register(), "must be");
if (index->is_constant()) {
intptr_t large_disp = ((intx)(index->as_constant_ptr()->as_jint()) << shift) + disp;
if (Displacement::is_validDisp(large_disp)) {
return new LIR_Address(base, large_disp, type);
}
// Index is illegal so replace it with the displacement loaded into a register.
index = new_pointer_register();
__ move(LIR_OprFact::intptrConst(large_disp), index);
return new LIR_Address(base, index, type);
} else {
if (shift > 0) {
LIR_Opr tmp = new_pointer_register();
__ shift_left(index, shift, tmp);
index = tmp;
}
return new LIR_Address(base, index, disp, type);
}
}
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
BasicType type, bool needs_card_mark) {
int elem_size = type2aelembytes(type);
int shift = exact_log2(elem_size);
int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
LIR_Address* addr;
if (index_opr->is_constant()) {
addr = new LIR_Address(array_opr,
offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
} else {
if (index_opr->type() == T_INT) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index_opr, tmp);
index_opr = tmp;
}
if (shift > 0) {
__ shift_left(index_opr, shift, index_opr);
}
addr = new LIR_Address(array_opr,
index_opr,
offset_in_bytes, type);
}
if (needs_card_mark) {
// This store will need a precise card mark, so go ahead and
// compute the full adddres instead of computing once for the
// store and again for the card mark.
LIR_Opr tmp = new_pointer_register();
__ leal(LIR_OprFact::address(addr), tmp);
return new LIR_Address(tmp, type);
} else {
return addr;
}
}
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
LIR_Opr r = LIR_OprFact::illegalOpr;
if (type == T_LONG) {
r = LIR_OprFact::longConst(x);
} else if (type == T_INT) {
r = LIR_OprFact::intConst(x);
} else {
ShouldNotReachHere();
}
return r;
}
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
LIR_Opr pointer = new_pointer_register();
__ move(LIR_OprFact::intptrConst(counter), pointer);
LIR_Address* addr = new LIR_Address(pointer, type);
increment_counter(addr, step);
}
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
__ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
}
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
LIR_Opr scratch = FrameMap::Z_R1_opr;
__ load(new LIR_Address(base, disp, T_INT), scratch, info);
__ cmp(condition, scratch, c);
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
}
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
if (tmp->is_valid()) {
if (is_power_of_2(c + 1)) {
__ move(left, tmp);
__ shift_left(left, log2_intptr(c + 1), left);
__ sub(left, tmp, result);
return true;
} else if (is_power_of_2(c - 1)) {
__ move(left, tmp);
__ shift_left(left, log2_intptr(c - 1), left);
__ add(left, tmp, result);
return true;
}
}
return false;
}
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
BasicType type = item->type();
__ store(item, new LIR_Address(FrameMap::Z_SP_opr, in_bytes(offset_from_sp), type));
}
//----------------------------------------------------------------------
// visitor functions
//----------------------------------------------------------------------
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
assert(x->is_pinned(),"");
bool needs_range_check = x->compute_needs_range_check();
bool use_length = x->length() != NULL;
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
!get_jobject_constant(x->value())->is_null_object() ||
x->should_profile());
LIRItem array(x->array(), this);
LIRItem index(x->index(), this);
LIRItem value(x->value(), this);
LIRItem length(this);
array.load_item();
index.load_nonconstant(20);
if (use_length && needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
if (needs_store_check) {
value.load_item();
} else {
value.load_for_store(x->elt_type());
}
set_no_result(x);
// The CodeEmitInfo must be duplicated for each different
// LIR-instruction because spilling can occur anywhere between two
// instructions and so the debug information must be different.
CodeEmitInfo* range_check_info = state_for (x);
CodeEmitInfo* null_check_info = NULL;
if (x->needs_null_check()) {
null_check_info = new CodeEmitInfo(range_check_info);
}
// Emit array address setup early so it schedules better.
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
if (value.result()->is_constant() && array_addr->index()->is_valid()) {
// Constants cannot be stored with index register on ZARCH_64 (see LIR_Assembler::const2mem()).
LIR_Opr tmp = new_pointer_register();
__ leal(LIR_OprFact::address(array_addr), tmp);
array_addr = new LIR_Address(tmp, x->elt_type());
}
if (GenerateRangeChecks && needs_range_check) {
if (use_length) {
__ cmp(lir_cond_belowEqual, length.result(), index.result());
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
} else {
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
// Range_check also does the null check.
null_check_info = NULL;
}
}
if (GenerateArrayStoreCheck && needs_store_check) {
LIR_Opr tmp1 = new_register(objectType);
LIR_Opr tmp2 = new_register(objectType);
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
__ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
}
if (obj_store) {
// Needs GC write barriers.
pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
true /* do_load */, false /* patch */, NULL);
__ move(value.result(), array_addr, null_check_info);
// Seems to be a precise.
post_barrier(LIR_OprFact::address(array_addr), value.result());
} else {
__ move(value.result(), array_addr, null_check_info);
}
}
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.load_item();
set_no_result(x);
// "lock" stores the address of the monitor stack slot, so this is not an oop.
LIR_Opr lock = new_register(T_INT);
CodeEmitInfo* info_for_exception = NULL;
if (x->needs_null_check()) {
info_for_exception = state_for (x);
}
// This CodeEmitInfo must not have the xhandlers because here the
// object is already locked (xhandlers expect object to be unlocked).
CodeEmitInfo* info = state_for (x, x->state(), true);
monitor_enter(obj.result(), lock, syncTempOpr(), LIR_OprFact::illegalOpr,
x->monitor_no(), info_for_exception, info);
}
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.dont_load_item();
LIR_Opr lock = new_register(T_INT);
LIR_Opr obj_temp = new_register(T_INT);
set_no_result(x);
monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
}
// _ineg, _lneg, _fneg, _dneg
void LIRGenerator::do_NegateOp(NegateOp* x) {
LIRItem value(x->x(), this);
value.load_item();
LIR_Opr reg = rlock_result(x);
__ negate(value.result(), reg);
}
// for _fadd, _fmul, _fsub, _fdiv, _frem
// _dadd, _dmul, _dsub, _ddiv, _drem
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
assert(!left.is_stack(), "can't both be memory operands");
left.load_item();
if (right.is_register() || right.is_constant()) {
right.load_item();
} else {
right.dont_load_item();
}
if ((x->op() == Bytecodes::_frem) || (x->op() == Bytecodes::_drem)) {
address entry;
switch (x->op()) {
case Bytecodes::_frem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
break;
case Bytecodes::_drem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
set_result(x, result);
} else {
LIR_Opr reg = rlock(x);
LIR_Opr tmp = LIR_OprFact::illegalOpr;
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
set_result(x, reg);
}
}
// for _ladd, _lmul, _lsub, _ldiv, _lrem
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
// Use shifts if divisior is a power of 2 otherwise use DSGR instruction.
// Instruction: DSGR R1, R2
// input : R1+1: dividend (R1, R1+1 designate a register pair, R1 must be even)
// R2: divisor
//
// output: R1+1: quotient
// R1: remainder
//
// Register selection: R1: Z_R10
// R1+1: Z_R11
// R2: to be chosen by register allocator (linear scan)
// R1, and R1+1 will be destroyed.
LIRItem right(x->y(), this);
LIRItem left(x->x() , this); // Visit left second, so that the is_register test is valid.
// Call state_for before load_item_force because state_for may
// force the evaluation of other instructions that are needed for
// correct debug info. Otherwise the live range of the fix
// register might be too long.
CodeEmitInfo* info = state_for (x);
LIR_Opr result = rlock_result(x);
LIR_Opr result_reg = result;
LIR_Opr tmp = LIR_OprFact::illegalOpr;
LIR_Opr divisor_opr = right.result();
if (divisor_opr->is_constant() && is_power_of_2(divisor_opr->as_jlong())) {
left.load_item();
right.dont_load_item();
} else {
left.load_item_force(ldivInOpr());
right.load_item();
// DSGR instruction needs register pair.
if (x->op() == Bytecodes::_ldiv) {
result_reg = ldivOutOpr();
tmp = lremOutOpr();
} else {
result_reg = lremOutOpr();
tmp = ldivOutOpr();
}
}
if (!ImplicitDiv0Checks) {
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
// Idiv/irem cannot trap (passing info would generate an assertion).
info = NULL;
}
if (x->op() == Bytecodes::_lrem) {
__ irem(left.result(), right.result(), result_reg, tmp, info);
} else if (x->op() == Bytecodes::_ldiv) {
__ idiv(left.result(), right.result(), result_reg, tmp, info);
} else {
ShouldNotReachHere();
}
if (result_reg != result) {
__ move(result_reg, result);
}
} else {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_nonconstant(32);
rlock_result(x);
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
}
}
// for: _iadd, _imul, _isub, _idiv, _irem
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
// Use shifts if divisior is a power of 2 otherwise use DSGFR instruction.
// Instruction: DSGFR R1, R2
// input : R1+1: dividend (R1, R1+1 designate a register pair, R1 must be even)
// R2: divisor
//
// output: R1+1: quotient
// R1: remainder
//
// Register selection: R1: Z_R10
// R1+1: Z_R11
// R2: To be chosen by register allocator (linear scan).
// R1, and R1+1 will be destroyed.
LIRItem right(x->y(), this);
LIRItem left(x->x() , this); // Visit left second, so that the is_register test is valid.
// Call state_for before load_item_force because state_for may
// force the evaluation of other instructions that are needed for
// correct debug info. Otherwise the live range of the fix
// register might be too long.
CodeEmitInfo* info = state_for (x);
LIR_Opr result = rlock_result(x);
LIR_Opr result_reg = result;
LIR_Opr tmp = LIR_OprFact::illegalOpr;
LIR_Opr divisor_opr = right.result();
if (divisor_opr->is_constant() && is_power_of_2(divisor_opr->as_jint())) {
left.load_item();
right.dont_load_item();
} else {
left.load_item_force(divInOpr());
right.load_item();
// DSGFR instruction needs register pair.
if (x->op() == Bytecodes::_idiv) {
result_reg = divOutOpr();
tmp = remOutOpr();
} else {
result_reg = remOutOpr();
tmp = divOutOpr();
}
}
if (!ImplicitDiv0Checks) {
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
__ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
// Idiv/irem cannot trap (passing info would generate an assertion).
info = NULL;
}
if (x->op() == Bytecodes::_irem) {
__ irem(left.result(), right.result(), result_reg, tmp, info);
} else if (x->op() == Bytecodes::_idiv) {
__ idiv(left.result(), right.result(), result_reg, tmp, info);
} else {
ShouldNotReachHere();
}
if (result_reg != result) {
__ move(result_reg, result);
}
} else {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
if (x->is_commutative() && left.is_stack() && right.is_register()) {
// swap them if left is real stack (or cached) and right is real register(not cached)
left_arg = &right;
right_arg = &left;
}
left_arg->load_item();
// Do not need to load right, as we can handle stack and constants.
if (x->op() == Bytecodes::_imul) {
bool use_tmp = false;
if (right_arg->is_constant()) {
int iconst = right_arg->get_jint_constant();
if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
use_tmp = true;
}
}
right_arg->dont_load_item();
LIR_Opr tmp = LIR_OprFact::illegalOpr;
if (use_tmp) {
tmp = new_register(T_INT);
}
rlock_result(x);
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
} else {
right_arg->dont_load_item();
rlock_result(x);
LIR_Opr tmp = LIR_OprFact::illegalOpr;
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
}
}
}
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
// If an operand with use count 1 is the left operand, then it is
// likely that no move for 2-operand-LIR-form is necessary.
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
x->swap_operands();
}
ValueTag tag = x->type()->tag();
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
switch (tag) {
case floatTag:
case doubleTag: do_ArithmeticOp_FPU(x); return;
case longTag: do_ArithmeticOp_Long(x); return;
case intTag: do_ArithmeticOp_Int(x); return;
}
ShouldNotReachHere();
}
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
// count must always be in rcx
LIRItem value(x->x(), this);
LIRItem count(x->y(), this);
ValueTag elemType = x->type()->tag();
bool must_load_count = !count.is_constant();
if (must_load_count) {
count.load_item();
} else {
count.dont_load_item();
}
value.load_item();
LIR_Opr reg = rlock_result(x);
shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
}
// _iand, _land, _ior, _lor, _ixor, _lxor
void LIRGenerator::do_LogicOp(LogicOp* x) {
// IF an operand with use count 1 is the left operand, then it is
// likely that no move for 2-operand-LIR-form is necessary.
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
x->swap_operands();
}
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_nonconstant(32);
LIR_Opr reg = rlock_result(x);
logic_op(x->op(), reg, left.result(), right.result());
}
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
void LIRGenerator::do_CompareOp(CompareOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_item();
LIR_Opr reg = rlock_result(x);
if (x->x()->type()->is_float_kind()) {
Bytecodes::Code code = x->op();
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
} else if (x->x()->type()->tag() == longTag) {
__ lcmp2int(left.result(), right.result(), reg);
} else {
ShouldNotReachHere();
}
}
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
assert(x->number_of_arguments() == 4, "wrong type");
LIRItem obj (x->argument_at(0), this); // object
LIRItem offset(x->argument_at(1), this); // offset of field
LIRItem cmp (x->argument_at(2), this); // Value to compare with field.
LIRItem val (x->argument_at(3), this); // Replace field with val if matches cmp.
// Get address of field.
obj.load_item();
offset.load_nonconstant(20);
cmp.load_item();
val.load_item();
LIR_Opr addr = new_pointer_register();
LIR_Address* a;
if (offset.result()->is_constant()) {
assert(Immediate::is_simm20(offset.result()->as_jlong()), "should have been loaded into register");
a = new LIR_Address(obj.result(),
offset.result()->as_jlong(),
as_BasicType(type));
} else {
a = new LIR_Address(obj.result(),
offset.result(),
0,
as_BasicType(type));
}
__ leal(LIR_OprFact::address(a), addr);
if (type == objectType) { // Write-barrier needed for Object fields.
pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
true /* do_load */, false /* patch */, NULL);
}
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
if (type == objectType) {
__ cas_obj(addr, cmp.result(), val.result(), new_register(T_OBJECT), new_register(T_OBJECT));
} else if (type == intType) {
__ cas_int(addr, cmp.result(), val.result(), ill, ill);
} else if (type == longType) {
__ cas_long(addr, cmp.result(), val.result(), ill, ill);
} else {
ShouldNotReachHere();
}
// Generate conditional move of boolean result.
LIR_Opr result = rlock_result(x);
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
result, as_BasicType(type));
if (type == objectType) { // Write-barrier needed for Object fields.
// Precise card mark since could either be object or array
post_barrier(addr, val.result());
}
}
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
switch (x->id()) {
case vmIntrinsics::_dabs:
case vmIntrinsics::_dsqrt: {
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem value(x->argument_at(0), this);
value.load_item();
LIR_Opr dst = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_dsqrt: {
__ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
break;
}
case vmIntrinsics::_dabs: {
__ abs(value.result(), dst, LIR_OprFact::illegalOpr);
break;
}
}
break;
}
case vmIntrinsics::_dlog10: // fall through
case vmIntrinsics::_dlog: // fall through
case vmIntrinsics::_dsin: // fall through
case vmIntrinsics::_dtan: // fall through
case vmIntrinsics::_dcos: // fall through
case vmIntrinsics::_dexp: {
assert(x->number_of_arguments() == 1, "wrong type");
address runtime_entry = NULL;
switch (x->id()) {
case vmIntrinsics::_dsin:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
break;
case vmIntrinsics::_dcos:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
break;
case vmIntrinsics::_dtan:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
break;
case vmIntrinsics::_dlog:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
break;
case vmIntrinsics::_dlog10:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
break;
case vmIntrinsics::_dexp:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
set_result(x, result);
break;
}
case vmIntrinsics::_dpow: {
assert(x->number_of_arguments() == 2, "wrong type");
address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
set_result(x, result);
break;
}
}
}
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
assert(x->number_of_arguments() == 5, "wrong type");
// Copy stubs possibly call C code, e.g. G1 barriers, so we need to reserve room
// for the C ABI (see frame::z_abi_160).
BasicTypeArray sig; // Empty signature is precise enough.
frame_map()->c_calling_convention(&sig);
// Make all state_for calls early since they can emit code.
CodeEmitInfo* info = state_for (x, x->state());
LIRItem src(x->argument_at(0), this);
LIRItem src_pos(x->argument_at(1), this);
LIRItem dst(x->argument_at(2), this);
LIRItem dst_pos(x->argument_at(3), this);
LIRItem length(x->argument_at(4), this);
// Operands for arraycopy must use fixed registers, otherwise
// LinearScan will fail allocation (because arraycopy always needs a
// call).
src.load_item_force (FrameMap::as_oop_opr(Z_ARG1));
src_pos.load_item_force (FrameMap::as_opr(Z_ARG2));
dst.load_item_force (FrameMap::as_oop_opr(Z_ARG3));
dst_pos.load_item_force (FrameMap::as_opr(Z_ARG4));
length.load_item_force (FrameMap::as_opr(Z_ARG5));
LIR_Opr tmp = FrameMap::as_opr(Z_R7);
set_no_result(x);
int flags;
ciArrayKlass* expected_type;
arraycopy_helper(x, &flags, &expected_type);
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
length.result(), tmp, expected_type, flags, info); // does add_safepoint
}
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
// _i2b, _i2c, _i2s
void LIRGenerator::do_Convert(Convert* x) {
LIRItem value(x->value(), this);
value.load_item();
LIR_Opr reg = rlock_result(x);
__ convert(x->op(), value.result(), reg);
}
void LIRGenerator::do_NewInstance(NewInstance* x) {
print_if_not_loaded(x);
// This instruction can be deoptimized in the slow path : use
// Z_R2 as result register.
const LIR_Opr reg = result_register_for (x->type());
CodeEmitInfo* info = state_for (x, x->state());
LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
LIR_Opr tmp3 = reg;
LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
CodeEmitInfo* info = state_for (x, x->state());
LIRItem length(x->length(), this);
length.load_item();
LIR_Opr reg = result_register_for (x->type());
LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
LIR_Opr tmp3 = reg;
LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
LIR_Opr len = length.result();
BasicType elem_type = x->elt_type();
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
// Evaluate state_for early since it may emit code.
CodeEmitInfo* info = state_for (x, x->state());
// In case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
// and therefore provide the state before the parameters have been consumed.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for (x, x->state_before());
}
LIRItem length(x->length(), this);
length.load_item();
const LIR_Opr reg = result_register_for (x->type());
LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
LIR_Opr len = length.result();
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
ciKlass* obj = ciObjArrayKlass::make(x->klass());
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
}
klass2reg_with_patching(klass_reg, obj, patching_info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
Values* dims = x->dims();
int i = dims->length();
LIRItemList* items = new LIRItemList(i, i, NULL);
while (i-- > 0) {
LIRItem* size = new LIRItem(dims->at(i), this);
items->at_put(i, size);
}
// Evaluate state_for early since it may emit code.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for (x, x->state_before());
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
// clone all handlers (NOTE: Usually this is handled transparently
// by the CodeEmitInfo cloning logic in CodeStub constructors but
// is done explicitly here because a stub isn't being used).
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
}
CodeEmitInfo* info = state_for (x, x->state());
i = dims->length();
while (--i >= 0) {
LIRItem* size = items->at(i);
size->load_nonconstant(32);
// FrameMap::_reserved_argument_area_size includes the dimensions varargs, because
// it's initialized to hir()->max_stack() when the FrameMap is created.
store_stack_parameter(size->result(), in_ByteSize(i*sizeof(jint) + FrameMap::first_available_sp_in_frame));
}
LIR_Opr klass_reg = FrameMap::Z_R3_metadata_opr;
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
LIR_Opr rank = FrameMap::Z_R4_opr;
__ move(LIR_OprFact::intConst(x->rank()), rank);
LIR_Opr varargs = FrameMap::Z_R5_opr;
__ leal(LIR_OprFact::address(new LIR_Address(FrameMap::Z_SP_opr, FrameMap::first_available_sp_in_frame, T_INT)),
varargs);
LIR_OprList* args = new LIR_OprList(3);
args->append(klass_reg);
args->append(rank);
args->append(varargs);
LIR_Opr reg = result_register_for (x->type());
__ call_runtime(Runtime1::entry_for (Runtime1::new_multi_array_id),
LIR_OprFact::illegalOpr,
reg, args, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
// Nothing to do.
}
void LIRGenerator::do_CheckCast(CheckCast* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
// Must do this before locking the destination register as an oop register,
// and before the obj is loaded (the latter is for deoptimization).
patching_info = state_for (x, x->state_before());
}
obj.load_item();
// info for exceptions
CodeEmitInfo* info_for_exception = state_for (x);
CodeStub* stub;
if (x->is_incompatible_class_change_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
} else {
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
}
LIR_Opr reg = rlock_result(x);
LIR_Opr tmp1 = new_register(objectType);
LIR_Opr tmp2 = new_register(objectType);
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
__ checkcast(reg, obj.result(), x->klass(),
tmp1, tmp2, tmp3,
x->direct_compare(), info_for_exception, patching_info, stub,
x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for (x, x->state_before());
}
// Ensure the result register is not the input register because the
// result is initialized before the patching safepoint.
obj.load_item();
LIR_Opr out_reg = rlock_result(x);
LIR_Opr tmp1 = new_register(objectType);
LIR_Opr tmp2 = new_register(objectType);
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
__ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
x->direct_compare(), patching_info,
x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_If (If* x) {
assert(x->number_of_sux() == 2, "inconsistency");
ValueTag tag = x->x()->type()->tag();
bool is_safepoint = x->is_safepoint();
If::Condition cond = x->cond();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
if (tag == longTag) {
// For longs, only conditions "eql", "neq", "lss", "geq" are valid;
// mirror for other conditions.
if (cond == If::gtr || cond == If::leq) {
cond = Instruction::mirror(cond);
xin = &yitem;
yin = &xitem;
}
xin->set_destroys_register();
}
xin->load_item();
// TODO: don't load long constants != 0L
if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
// inline long zero
yin->dont_load_item();
} else if (tag == longTag || tag == floatTag || tag == doubleTag) {
// Longs cannot handle constants at right side.
yin->load_item();
} else {
yin->dont_load_item();
}
// Add safepoint before generating condition code so it can be recomputed.
if (x->is_safepoint()) {
// Increment backedge counter if needed.
increment_backedge_counter(state_for (x, x->state_before()), x->profiled_bci());
// Use safepoint_poll_register() instead of LIR_OprFact::illegalOpr.
__ safepoint(safepoint_poll_register(), state_for (x, x->state_before()));
}
set_no_result(x);
LIR_Opr left = xin->result();
LIR_Opr right = yin->result();
__ cmp(lir_cond(cond), left, right);
// Generate branch profiling. Profiling code doesn't kill flags.
profile_branch(x, cond);
move_to_phi(x->state());
if (x->x()->type()->is_float_kind()) {
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
} else {
__ branch(lir_cond(cond), right->type(), x->tsux());
}
assert(x->default_sux() == x->fsux(), "wrong destination above");
__ jump(x->default_sux());
}
LIR_Opr LIRGenerator::getThreadPointer() {
return FrameMap::as_pointer_opr(Z_thread);
}
void LIRGenerator::trace_block_entry(BlockBegin* block) {
__ move(LIR_OprFact::intConst(block->block_id()), FrameMap::Z_R2_opr);
LIR_OprList* args = new LIR_OprList(1);
args->append(FrameMap::Z_R2_opr);
address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
__ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
}
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
CodeEmitInfo* info) {
__ store(value, address, info);
}
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
CodeEmitInfo* info) {
__ load(address, result, info);
}
void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
BasicType type, bool is_volatile) {
LIR_Address* addr = new LIR_Address(src, offset, type);
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
if (is_obj) {
// Do the pre-write barrier, if any.
pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
true /* do_load */, false /* patch */, NULL);
__ move(data, addr);
assert(src->is_register(), "must be register");
// Seems to be a precise address.
post_barrier(LIR_OprFact::address(addr), data);
} else {
__ move(data, addr);
}
}
void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
BasicType type, bool is_volatile) {
LIR_Address* addr = new LIR_Address(src, offset, type);
__ load(addr, dst);
}
void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
BasicType type = x->basic_type();
assert (x->is_add() && type != T_ARRAY && type != T_OBJECT, "not supported");
LIRItem src(x->object(), this);
LIRItem off(x->offset(), this);
LIRItem value(x->value(), this);
src.load_item();
value.load_item();
off.load_nonconstant(20);
LIR_Opr dst = rlock_result(x, type);
LIR_Opr data = value.result();
LIR_Opr offset = off.result();
LIR_Address* addr;
if (offset->is_constant()) {
assert(Immediate::is_simm20(offset->as_jlong()), "should have been loaded into register");
addr = new LIR_Address(src.result(), offset->as_jlong(), type);
} else {
addr = new LIR_Address(src.result(), offset, type);
}
__ xadd(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
}
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
assert(UseCRC32Intrinsics, "or should not be here");
LIR_Opr result = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_updateCRC32: {
LIRItem crc(x->argument_at(0), this);
LIRItem val(x->argument_at(1), this);
// Registers destroyed by update_crc32.
crc.set_destroys_register();
val.set_destroys_register();
crc.load_item();
val.load_item();
__ update_crc32(crc.result(), val.result(), result);
break;
}
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32: {
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
LIRItem crc(x->argument_at(0), this);
LIRItem buf(x->argument_at(1), this);
LIRItem off(x->argument_at(2), this);
LIRItem len(x->argument_at(3), this);
buf.load_item();
off.load_nonconstant();
LIR_Opr index = off.result();
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
if (off.result()->is_constant()) {
index = LIR_OprFact::illegalOpr;
offset += off.result()->as_jint();
}
LIR_Opr base_op = buf.result();
if (index->is_valid()) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index, tmp);
index = tmp;
}
LIR_Address* a = new LIR_Address(base_op, index, offset, T_BYTE);
BasicTypeList signature(3);
signature.append(T_INT);
signature.append(T_ADDRESS);
signature.append(T_INT);
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
const LIR_Opr result_reg = result_register_for (x->type());
LIR_Opr arg1 = cc->at(0);
LIR_Opr arg2 = cc->at(1);
LIR_Opr arg3 = cc->at(2);
crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32 stub doesn't care about high bits.
__ leal(LIR_OprFact::address(a), arg2);
len.load_item_force(arg3); // We skip int->long conversion here, because CRC32 stub expects int.
__ call_runtime_leaf(StubRoutines::updateBytesCRC32(), LIR_OprFact::illegalOpr, result_reg, cc->args());
__ move(result_reg, result);
break;
}
default: {
ShouldNotReachHere();
}
}
}
void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
assert(UseCRC32CIntrinsics, "or should not be here");
LIR_Opr result = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_updateBytesCRC32C:
case vmIntrinsics::_updateDirectByteBufferCRC32C: {
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
LIRItem crc(x->argument_at(0), this);
LIRItem buf(x->argument_at(1), this);
LIRItem off(x->argument_at(2), this);
LIRItem len(x->argument_at(3), this);
buf.load_item();
off.load_nonconstant();
LIR_Opr index = off.result();
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
if (off.result()->is_constant()) {
index = LIR_OprFact::illegalOpr;
offset += off.result()->as_jint();
}
LIR_Opr base_op = buf.result();
if (index->is_valid()) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index, tmp);
index = tmp;
}
LIR_Address* a = new LIR_Address(base_op, index, offset, T_BYTE);
BasicTypeList signature(3);
signature.append(T_INT);
signature.append(T_ADDRESS);
signature.append(T_INT);
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
const LIR_Opr result_reg = result_register_for (x->type());
LIR_Opr arg1 = cc->at(0);
LIR_Opr arg2 = cc->at(1);
LIR_Opr arg3 = cc->at(2);
crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32C stub doesn't care about high bits.
__ leal(LIR_OprFact::address(a), arg2);
len.load_item_force(arg3); // We skip int->long conversion here, because CRC32C stub expects int.
__ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), LIR_OprFact::illegalOpr, result_reg, cc->args());
__ move(result_reg, result);
break;
}
default: {
ShouldNotReachHere();
}
}
}
void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
assert(x->number_of_arguments() == 3, "wrong type");
assert(UseFMA, "Needs FMA instructions support.");
LIRItem value(x->argument_at(0), this);
LIRItem value1(x->argument_at(1), this);
LIRItem value2(x->argument_at(2), this);
value2.set_destroys_register();
value.load_item();
value1.load_item();
value2.load_item();
LIR_Opr calc_input = value.result();
LIR_Opr calc_input1 = value1.result();
LIR_Opr calc_input2 = value2.result();
LIR_Opr calc_result = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
default: ShouldNotReachHere();
}
}
void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
fatal("vectorizedMismatch intrinsic is not implemented on this platform");
}