langtools/src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/ClassReader.java
8048614: Add TypeMetadata to contain type annotations and other type information
Summary: Implement general framework for metadata on types
Reviewed-by: mcimadamore
/*
* Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.javac.jvm;
import java.io.*;
import java.net.URI;
import java.net.URISyntaxException;
import java.nio.CharBuffer;
import java.util.Arrays;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import javax.tools.JavaFileObject;
import javax.tools.JavaFileManager;
import com.sun.tools.javac.comp.Annotate;
import com.sun.tools.javac.code.*;
import com.sun.tools.javac.code.Lint.LintCategory;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.code.Scope.WriteableScope;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.code.Symtab;
import com.sun.tools.javac.file.BaseFileObject;
import com.sun.tools.javac.util.*;
import com.sun.tools.javac.util.DefinedBy.Api;
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
import static com.sun.tools.javac.code.Flags.*;
import static com.sun.tools.javac.code.Kinds.*;
import static com.sun.tools.javac.code.TypeTag.CLASS;
import static com.sun.tools.javac.code.TypeTag.TYPEVAR;
import static com.sun.tools.javac.jvm.ClassFile.*;
import static com.sun.tools.javac.jvm.ClassFile.Version.*;
import static com.sun.tools.javac.main.Option.*;
/** This class provides operations to read a classfile into an internal
* representation. The internal representation is anchored in a
* ClassSymbol which contains in its scope symbol representations
* for all other definitions in the classfile. Top-level Classes themselves
* appear as members of the scopes of PackageSymbols.
*
* <p><b>This is NOT part of any supported API.
* If you write code that depends on this, you do so at your own risk.
* This code and its internal interfaces are subject to change or
* deletion without notice.</b>
*/
public class ClassReader {
/** The context key for the class reader. */
protected static final Context.Key<ClassReader> classReaderKey = new Context.Key<>();
public static final int INITIAL_BUFFER_SIZE = 0x0fff0;
Annotate annotate;
/** Switch: verbose output.
*/
boolean verbose;
/** Switch: check class file for correct minor version, unrecognized
* attributes.
*/
boolean checkClassFile;
/** Switch: read constant pool and code sections. This switch is initially
* set to false but can be turned on from outside.
*/
public boolean readAllOfClassFile = false;
/** Switch: allow simplified varargs.
*/
boolean allowSimplifiedVarargs;
/** Lint option: warn about classfile issues
*/
boolean lintClassfile;
/** Switch: preserve parameter names from the variable table.
*/
public boolean saveParameterNames;
/**
* The currently selected profile.
*/
public final Profile profile;
/** The log to use for verbose output
*/
final Log log;
/** The symbol table. */
Symtab syms;
Types types;
/** The name table. */
final Names names;
/** Access to files
*/
private final JavaFileManager fileManager;
/** Factory for diagnostics
*/
JCDiagnostic.Factory diagFactory;
/** The current scope where type variables are entered.
*/
protected WriteableScope typevars;
/** The path name of the class file currently being read.
*/
protected JavaFileObject currentClassFile = null;
/** The class or method currently being read.
*/
protected Symbol currentOwner = null;
/** The buffer containing the currently read class file.
*/
byte[] buf = new byte[INITIAL_BUFFER_SIZE];
/** The current input pointer.
*/
protected int bp;
/** The objects of the constant pool.
*/
Object[] poolObj;
/** For every constant pool entry, an index into buf where the
* defining section of the entry is found.
*/
int[] poolIdx;
/** The major version number of the class file being read. */
int majorVersion;
/** The minor version number of the class file being read. */
int minorVersion;
/** A table to hold the constant pool indices for method parameter
* names, as given in LocalVariableTable attributes.
*/
int[] parameterNameIndices;
/**
* Whether or not any parameter names have been found.
*/
boolean haveParameterNameIndices;
/** Set this to false every time we start reading a method
* and are saving parameter names. Set it to true when we see
* MethodParameters, if it's set when we see a LocalVariableTable,
* then we ignore the parameter names from the LVT.
*/
boolean sawMethodParameters;
/**
* The set of attribute names for which warnings have been generated for the current class
*/
Set<Name> warnedAttrs = new HashSet<>();
/** Get the ClassReader instance for this invocation. */
public static ClassReader instance(Context context) {
ClassReader instance = context.get(classReaderKey);
if (instance == null)
instance = new ClassReader(context);
return instance;
}
/** Construct a new class reader. */
protected ClassReader(Context context) {
context.put(classReaderKey, this);
names = Names.instance(context);
syms = Symtab.instance(context);
types = Types.instance(context);
fileManager = context.get(JavaFileManager.class);
if (fileManager == null)
throw new AssertionError("FileManager initialization error");
diagFactory = JCDiagnostic.Factory.instance(context);
log = Log.instance(context);
Options options = Options.instance(context);
annotate = Annotate.instance(context);
verbose = options.isSet(VERBOSE);
checkClassFile = options.isSet("-checkclassfile");
Source source = Source.instance(context);
allowSimplifiedVarargs = source.allowSimplifiedVarargs();
saveParameterNames = options.isSet("save-parameter-names");
profile = Profile.instance(context);
typevars = WriteableScope.create(syms.noSymbol);
lintClassfile = Lint.instance(context).isEnabled(LintCategory.CLASSFILE);
initAttributeReaders();
}
/** Add member to class unless it is synthetic.
*/
private void enterMember(ClassSymbol c, Symbol sym) {
// Synthetic members are not entered -- reason lost to history (optimization?).
// Lambda methods must be entered because they may have inner classes (which reference them)
if ((sym.flags_field & (SYNTHETIC|BRIDGE)) != SYNTHETIC || sym.name.startsWith(names.lambda))
c.members_field.enter(sym);
}
/************************************************************************
* Error Diagnoses
***********************************************************************/
public ClassFinder.BadClassFile badClassFile(String key, Object... args) {
return new ClassFinder.BadClassFile (
currentOwner.enclClass(),
currentClassFile,
diagFactory.fragment(key, args),
diagFactory);
}
/************************************************************************
* Buffer Access
***********************************************************************/
/** Read a character.
*/
char nextChar() {
return (char)(((buf[bp++] & 0xFF) << 8) + (buf[bp++] & 0xFF));
}
/** Read a byte.
*/
int nextByte() {
return buf[bp++] & 0xFF;
}
/** Read an integer.
*/
int nextInt() {
return
((buf[bp++] & 0xFF) << 24) +
((buf[bp++] & 0xFF) << 16) +
((buf[bp++] & 0xFF) << 8) +
(buf[bp++] & 0xFF);
}
/** Extract a character at position bp from buf.
*/
char getChar(int bp) {
return
(char)(((buf[bp] & 0xFF) << 8) + (buf[bp+1] & 0xFF));
}
/** Extract an integer at position bp from buf.
*/
int getInt(int bp) {
return
((buf[bp] & 0xFF) << 24) +
((buf[bp+1] & 0xFF) << 16) +
((buf[bp+2] & 0xFF) << 8) +
(buf[bp+3] & 0xFF);
}
/** Extract a long integer at position bp from buf.
*/
long getLong(int bp) {
DataInputStream bufin =
new DataInputStream(new ByteArrayInputStream(buf, bp, 8));
try {
return bufin.readLong();
} catch (IOException e) {
throw new AssertionError(e);
}
}
/** Extract a float at position bp from buf.
*/
float getFloat(int bp) {
DataInputStream bufin =
new DataInputStream(new ByteArrayInputStream(buf, bp, 4));
try {
return bufin.readFloat();
} catch (IOException e) {
throw new AssertionError(e);
}
}
/** Extract a double at position bp from buf.
*/
double getDouble(int bp) {
DataInputStream bufin =
new DataInputStream(new ByteArrayInputStream(buf, bp, 8));
try {
return bufin.readDouble();
} catch (IOException e) {
throw new AssertionError(e);
}
}
/************************************************************************
* Constant Pool Access
***********************************************************************/
/** Index all constant pool entries, writing their start addresses into
* poolIdx.
*/
void indexPool() {
poolIdx = new int[nextChar()];
poolObj = new Object[poolIdx.length];
int i = 1;
while (i < poolIdx.length) {
poolIdx[i++] = bp;
byte tag = buf[bp++];
switch (tag) {
case CONSTANT_Utf8: case CONSTANT_Unicode: {
int len = nextChar();
bp = bp + len;
break;
}
case CONSTANT_Class:
case CONSTANT_String:
case CONSTANT_MethodType:
bp = bp + 2;
break;
case CONSTANT_MethodHandle:
bp = bp + 3;
break;
case CONSTANT_Fieldref:
case CONSTANT_Methodref:
case CONSTANT_InterfaceMethodref:
case CONSTANT_NameandType:
case CONSTANT_Integer:
case CONSTANT_Float:
case CONSTANT_InvokeDynamic:
bp = bp + 4;
break;
case CONSTANT_Long:
case CONSTANT_Double:
bp = bp + 8;
i++;
break;
default:
throw badClassFile("bad.const.pool.tag.at",
Byte.toString(tag),
Integer.toString(bp -1));
}
}
}
/** Read constant pool entry at start address i, use pool as a cache.
*/
Object readPool(int i) {
Object result = poolObj[i];
if (result != null) return result;
int index = poolIdx[i];
if (index == 0) return null;
byte tag = buf[index];
switch (tag) {
case CONSTANT_Utf8:
poolObj[i] = names.fromUtf(buf, index + 3, getChar(index + 1));
break;
case CONSTANT_Unicode:
throw badClassFile("unicode.str.not.supported");
case CONSTANT_Class:
poolObj[i] = readClassOrType(getChar(index + 1));
break;
case CONSTANT_String:
// FIXME: (footprint) do not use toString here
poolObj[i] = readName(getChar(index + 1)).toString();
break;
case CONSTANT_Fieldref: {
ClassSymbol owner = readClassSymbol(getChar(index + 1));
NameAndType nt = readNameAndType(getChar(index + 3));
poolObj[i] = new VarSymbol(0, nt.name, nt.uniqueType.type, owner);
break;
}
case CONSTANT_Methodref:
case CONSTANT_InterfaceMethodref: {
ClassSymbol owner = readClassSymbol(getChar(index + 1));
NameAndType nt = readNameAndType(getChar(index + 3));
poolObj[i] = new MethodSymbol(0, nt.name, nt.uniqueType.type, owner);
break;
}
case CONSTANT_NameandType:
poolObj[i] = new NameAndType(
readName(getChar(index + 1)),
readType(getChar(index + 3)), types);
break;
case CONSTANT_Integer:
poolObj[i] = getInt(index + 1);
break;
case CONSTANT_Float:
poolObj[i] = new Float(getFloat(index + 1));
break;
case CONSTANT_Long:
poolObj[i] = new Long(getLong(index + 1));
break;
case CONSTANT_Double:
poolObj[i] = new Double(getDouble(index + 1));
break;
case CONSTANT_MethodHandle:
skipBytes(4);
break;
case CONSTANT_MethodType:
skipBytes(3);
break;
case CONSTANT_InvokeDynamic:
skipBytes(5);
break;
default:
throw badClassFile("bad.const.pool.tag", Byte.toString(tag));
}
return poolObj[i];
}
/** Read signature and convert to type.
*/
Type readType(int i) {
int index = poolIdx[i];
return sigToType(buf, index + 3, getChar(index + 1));
}
/** If name is an array type or class signature, return the
* corresponding type; otherwise return a ClassSymbol with given name.
*/
Object readClassOrType(int i) {
int index = poolIdx[i];
int len = getChar(index + 1);
int start = index + 3;
Assert.check(buf[start] == '[' || buf[start + len - 1] != ';');
// by the above assertion, the following test can be
// simplified to (buf[start] == '[')
return (buf[start] == '[' || buf[start + len - 1] == ';')
? (Object)sigToType(buf, start, len)
: (Object)syms.enterClass(names.fromUtf(internalize(buf, start,
len)));
}
/** Read signature and convert to type parameters.
*/
List<Type> readTypeParams(int i) {
int index = poolIdx[i];
return sigToTypeParams(buf, index + 3, getChar(index + 1));
}
/** Read class entry.
*/
ClassSymbol readClassSymbol(int i) {
Object obj = readPool(i);
if (obj != null && !(obj instanceof ClassSymbol))
throw badClassFile("bad.const.pool.entry",
currentClassFile.toString(),
"CONSTANT_Class_info", i);
return (ClassSymbol)obj;
}
/** Read name.
*/
Name readName(int i) {
Object obj = readPool(i);
if (obj != null && !(obj instanceof Name))
throw badClassFile("bad.const.pool.entry",
currentClassFile.toString(),
"CONSTANT_Utf8_info or CONSTANT_String_info", i);
return (Name)obj;
}
/** Read name and type.
*/
NameAndType readNameAndType(int i) {
Object obj = readPool(i);
if (obj != null && !(obj instanceof NameAndType))
throw badClassFile("bad.const.pool.entry",
currentClassFile.toString(),
"CONSTANT_NameAndType_info", i);
return (NameAndType)obj;
}
/************************************************************************
* Reading Types
***********************************************************************/
/** The unread portion of the currently read type is
* signature[sigp..siglimit-1].
*/
byte[] signature;
int sigp;
int siglimit;
boolean sigEnterPhase = false;
/** Convert signature to type, where signature is a byte array segment.
*/
Type sigToType(byte[] sig, int offset, int len) {
signature = sig;
sigp = offset;
siglimit = offset + len;
return sigToType();
}
/** Convert signature to type, where signature is implicit.
*/
Type sigToType() {
switch ((char) signature[sigp]) {
case 'T':
sigp++;
int start = sigp;
while (signature[sigp] != ';') sigp++;
sigp++;
return sigEnterPhase
? Type.noType
: findTypeVar(names.fromUtf(signature, start, sigp - 1 - start));
case '+': {
sigp++;
Type t = sigToType();
return new WildcardType(t, BoundKind.EXTENDS, syms.boundClass);
}
case '*':
sigp++;
return new WildcardType(syms.objectType, BoundKind.UNBOUND,
syms.boundClass);
case '-': {
sigp++;
Type t = sigToType();
return new WildcardType(t, BoundKind.SUPER, syms.boundClass);
}
case 'B':
sigp++;
return syms.byteType;
case 'C':
sigp++;
return syms.charType;
case 'D':
sigp++;
return syms.doubleType;
case 'F':
sigp++;
return syms.floatType;
case 'I':
sigp++;
return syms.intType;
case 'J':
sigp++;
return syms.longType;
case 'L':
{
// int oldsigp = sigp;
Type t = classSigToType();
if (sigp < siglimit && signature[sigp] == '.')
throw badClassFile("deprecated inner class signature syntax " +
"(please recompile from source)");
/*
System.err.println(" decoded " +
new String(signature, oldsigp, sigp-oldsigp) +
" => " + t + " outer " + t.outer());
*/
return t;
}
case 'S':
sigp++;
return syms.shortType;
case 'V':
sigp++;
return syms.voidType;
case 'Z':
sigp++;
return syms.booleanType;
case '[':
sigp++;
return new ArrayType(sigToType(), syms.arrayClass);
case '(':
sigp++;
List<Type> argtypes = sigToTypes(')');
Type restype = sigToType();
List<Type> thrown = List.nil();
while (signature[sigp] == '^') {
sigp++;
thrown = thrown.prepend(sigToType());
}
// if there is a typevar in the throws clause we should state it.
for (List<Type> l = thrown; l.nonEmpty(); l = l.tail) {
if (l.head.hasTag(TYPEVAR)) {
l.head.tsym.flags_field |= THROWS;
}
}
return new MethodType(argtypes,
restype,
thrown.reverse(),
syms.methodClass);
case '<':
typevars = typevars.dup(currentOwner);
Type poly = new ForAll(sigToTypeParams(), sigToType());
typevars = typevars.leave();
return poly;
default:
throw badClassFile("bad.signature",
Convert.utf2string(signature, sigp, 10));
}
}
byte[] signatureBuffer = new byte[0];
int sbp = 0;
/** Convert class signature to type, where signature is implicit.
*/
Type classSigToType() {
if (signature[sigp] != 'L')
throw badClassFile("bad.class.signature",
Convert.utf2string(signature, sigp, 10));
sigp++;
Type outer = Type.noType;
int startSbp = sbp;
while (true) {
final byte c = signature[sigp++];
switch (c) {
case ';': { // end
ClassSymbol t = syms.enterClass(names.fromUtf(signatureBuffer,
startSbp,
sbp - startSbp));
try {
return (outer == Type.noType) ?
t.erasure(types) :
new ClassType(outer, List.<Type>nil(), t);
} finally {
sbp = startSbp;
}
}
case '<': // generic arguments
ClassSymbol t = syms.enterClass(names.fromUtf(signatureBuffer,
startSbp,
sbp - startSbp));
outer = new ClassType(outer, sigToTypes('>'), t) {
boolean completed = false;
@Override @DefinedBy(Api.LANGUAGE_MODEL)
public Type getEnclosingType() {
if (!completed) {
completed = true;
tsym.complete();
Type enclosingType = tsym.type.getEnclosingType();
if (enclosingType != Type.noType) {
List<Type> typeArgs =
super.getEnclosingType().allparams();
List<Type> typeParams =
enclosingType.allparams();
if (typeParams.length() != typeArgs.length()) {
// no "rare" types
super.setEnclosingType(types.erasure(enclosingType));
} else {
super.setEnclosingType(types.subst(enclosingType,
typeParams,
typeArgs));
}
} else {
super.setEnclosingType(Type.noType);
}
}
return super.getEnclosingType();
}
@Override
public void setEnclosingType(Type outer) {
throw new UnsupportedOperationException();
}
};
switch (signature[sigp++]) {
case ';':
if (sigp < signature.length && signature[sigp] == '.') {
// support old-style GJC signatures
// The signature produced was
// Lfoo/Outer<Lfoo/X;>;.Lfoo/Outer$Inner<Lfoo/Y;>;
// rather than say
// Lfoo/Outer<Lfoo/X;>.Inner<Lfoo/Y;>;
// so we skip past ".Lfoo/Outer$"
sigp += (sbp - startSbp) + // "foo/Outer"
3; // ".L" and "$"
signatureBuffer[sbp++] = (byte)'$';
break;
} else {
sbp = startSbp;
return outer;
}
case '.':
signatureBuffer[sbp++] = (byte)'$';
break;
default:
throw new AssertionError(signature[sigp-1]);
}
continue;
case '.':
//we have seen an enclosing non-generic class
if (outer != Type.noType) {
t = syms.enterClass(names.fromUtf(signatureBuffer,
startSbp,
sbp - startSbp));
outer = new ClassType(outer, List.<Type>nil(), t);
}
signatureBuffer[sbp++] = (byte)'$';
continue;
case '/':
signatureBuffer[sbp++] = (byte)'.';
continue;
default:
signatureBuffer[sbp++] = c;
continue;
}
}
}
/** Convert (implicit) signature to list of types
* until `terminator' is encountered.
*/
List<Type> sigToTypes(char terminator) {
List<Type> head = List.of(null);
List<Type> tail = head;
while (signature[sigp] != terminator)
tail = tail.setTail(List.of(sigToType()));
sigp++;
return head.tail;
}
/** Convert signature to type parameters, where signature is a byte
* array segment.
*/
List<Type> sigToTypeParams(byte[] sig, int offset, int len) {
signature = sig;
sigp = offset;
siglimit = offset + len;
return sigToTypeParams();
}
/** Convert signature to type parameters, where signature is implicit.
*/
List<Type> sigToTypeParams() {
List<Type> tvars = List.nil();
if (signature[sigp] == '<') {
sigp++;
int start = sigp;
sigEnterPhase = true;
while (signature[sigp] != '>')
tvars = tvars.prepend(sigToTypeParam());
sigEnterPhase = false;
sigp = start;
while (signature[sigp] != '>')
sigToTypeParam();
sigp++;
}
return tvars.reverse();
}
/** Convert (implicit) signature to type parameter.
*/
Type sigToTypeParam() {
int start = sigp;
while (signature[sigp] != ':') sigp++;
Name name = names.fromUtf(signature, start, sigp - start);
TypeVar tvar;
if (sigEnterPhase) {
tvar = new TypeVar(name, currentOwner, syms.botType);
typevars.enter(tvar.tsym);
} else {
tvar = (TypeVar)findTypeVar(name);
}
List<Type> bounds = List.nil();
boolean allInterfaces = false;
if (signature[sigp] == ':' && signature[sigp+1] == ':') {
sigp++;
allInterfaces = true;
}
while (signature[sigp] == ':') {
sigp++;
bounds = bounds.prepend(sigToType());
}
if (!sigEnterPhase) {
types.setBounds(tvar, bounds.reverse(), allInterfaces);
}
return tvar;
}
/** Find type variable with given name in `typevars' scope.
*/
Type findTypeVar(Name name) {
Symbol s = typevars.findFirst(name);
if (s != null) {
return s.type;
} else {
if (readingClassAttr) {
// While reading the class attribute, the supertypes
// might refer to a type variable from an enclosing element
// (method or class).
// If the type variable is defined in the enclosing class,
// we can actually find it in
// currentOwner.owner.type.getTypeArguments()
// However, until we have read the enclosing method attribute
// we don't know for sure if this owner is correct. It could
// be a method and there is no way to tell before reading the
// enclosing method attribute.
TypeVar t = new TypeVar(name, currentOwner, syms.botType);
missingTypeVariables = missingTypeVariables.prepend(t);
// System.err.println("Missing type var " + name);
return t;
}
throw badClassFile("undecl.type.var", name);
}
}
/************************************************************************
* Reading Attributes
***********************************************************************/
protected enum AttributeKind { CLASS, MEMBER }
protected abstract class AttributeReader {
protected AttributeReader(Name name, ClassFile.Version version, Set<AttributeKind> kinds) {
this.name = name;
this.version = version;
this.kinds = kinds;
}
protected boolean accepts(AttributeKind kind) {
if (kinds.contains(kind)) {
if (majorVersion > version.major || (majorVersion == version.major && minorVersion >= version.minor))
return true;
if (lintClassfile && !warnedAttrs.contains(name)) {
JavaFileObject prev = log.useSource(currentClassFile);
try {
log.warning(LintCategory.CLASSFILE, (DiagnosticPosition) null, "future.attr",
name, version.major, version.minor, majorVersion, minorVersion);
} finally {
log.useSource(prev);
}
warnedAttrs.add(name);
}
}
return false;
}
protected abstract void read(Symbol sym, int attrLen);
protected final Name name;
protected final ClassFile.Version version;
protected final Set<AttributeKind> kinds;
}
protected Set<AttributeKind> CLASS_ATTRIBUTE =
EnumSet.of(AttributeKind.CLASS);
protected Set<AttributeKind> MEMBER_ATTRIBUTE =
EnumSet.of(AttributeKind.MEMBER);
protected Set<AttributeKind> CLASS_OR_MEMBER_ATTRIBUTE =
EnumSet.of(AttributeKind.CLASS, AttributeKind.MEMBER);
protected Map<Name, AttributeReader> attributeReaders = new HashMap<>();
private void initAttributeReaders() {
AttributeReader[] readers = {
// v45.3 attributes
new AttributeReader(names.Code, V45_3, MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
if (readAllOfClassFile || saveParameterNames)
((MethodSymbol)sym).code = readCode(sym);
else
bp = bp + attrLen;
}
},
new AttributeReader(names.ConstantValue, V45_3, MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
Object v = readPool(nextChar());
// Ignore ConstantValue attribute if field not final.
if ((sym.flags() & FINAL) != 0)
((VarSymbol) sym).setData(v);
}
},
new AttributeReader(names.Deprecated, V45_3, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
sym.flags_field |= DEPRECATED;
}
},
new AttributeReader(names.Exceptions, V45_3, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
int nexceptions = nextChar();
List<Type> thrown = List.nil();
for (int j = 0; j < nexceptions; j++)
thrown = thrown.prepend(readClassSymbol(nextChar()).type);
if (sym.type.getThrownTypes().isEmpty())
sym.type.asMethodType().thrown = thrown.reverse();
}
},
new AttributeReader(names.InnerClasses, V45_3, CLASS_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
ClassSymbol c = (ClassSymbol) sym;
readInnerClasses(c);
}
},
new AttributeReader(names.LocalVariableTable, V45_3, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
int newbp = bp + attrLen;
if (saveParameterNames && !sawMethodParameters) {
// Pick up parameter names from the variable table.
// Parameter names are not explicitly identified as such,
// but all parameter name entries in the LocalVariableTable
// have a start_pc of 0. Therefore, we record the name
// indicies of all slots with a start_pc of zero in the
// parameterNameIndicies array.
// Note that this implicitly honors the JVMS spec that
// there may be more than one LocalVariableTable, and that
// there is no specified ordering for the entries.
int numEntries = nextChar();
for (int i = 0; i < numEntries; i++) {
int start_pc = nextChar();
int length = nextChar();
int nameIndex = nextChar();
int sigIndex = nextChar();
int register = nextChar();
if (start_pc == 0) {
// ensure array large enough
if (register >= parameterNameIndices.length) {
int newSize = Math.max(register, parameterNameIndices.length + 8);
parameterNameIndices =
Arrays.copyOf(parameterNameIndices, newSize);
}
parameterNameIndices[register] = nameIndex;
haveParameterNameIndices = true;
}
}
}
bp = newbp;
}
},
new AttributeReader(names.MethodParameters, V52, MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrlen) {
int newbp = bp + attrlen;
if (saveParameterNames) {
sawMethodParameters = true;
int numEntries = nextByte();
parameterNameIndices = new int[numEntries];
haveParameterNameIndices = true;
for (int i = 0; i < numEntries; i++) {
int nameIndex = nextChar();
int flags = nextChar();
parameterNameIndices[i] = nameIndex;
}
}
bp = newbp;
}
},
new AttributeReader(names.SourceFile, V45_3, CLASS_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
ClassSymbol c = (ClassSymbol) sym;
Name n = readName(nextChar());
c.sourcefile = new SourceFileObject(n, c.flatname);
// If the class is a toplevel class, originating from a Java source file,
// but the class name does not match the file name, then it is
// an auxiliary class.
String sn = n.toString();
if (c.owner.kind == Kinds.PCK &&
sn.endsWith(".java") &&
!sn.equals(c.name.toString()+".java")) {
c.flags_field |= AUXILIARY;
}
}
},
new AttributeReader(names.Synthetic, V45_3, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
sym.flags_field |= SYNTHETIC;
}
},
// standard v49 attributes
new AttributeReader(names.EnclosingMethod, V49, CLASS_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
int newbp = bp + attrLen;
readEnclosingMethodAttr(sym);
bp = newbp;
}
},
new AttributeReader(names.Signature, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
if (sym.kind == TYP) {
ClassSymbol c = (ClassSymbol) sym;
readingClassAttr = true;
try {
ClassType ct1 = (ClassType)c.type;
Assert.check(c == currentOwner);
ct1.typarams_field = readTypeParams(nextChar());
ct1.supertype_field = sigToType();
ListBuffer<Type> is = new ListBuffer<>();
while (sigp != siglimit) is.append(sigToType());
ct1.interfaces_field = is.toList();
} finally {
readingClassAttr = false;
}
} else {
List<Type> thrown = sym.type.getThrownTypes();
sym.type = readType(nextChar());
//- System.err.println(" # " + sym.type);
if (sym.kind == MTH && sym.type.getThrownTypes().isEmpty())
sym.type.asMethodType().thrown = thrown;
}
}
},
// v49 annotation attributes
new AttributeReader(names.AnnotationDefault, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
attachAnnotationDefault(sym);
}
},
new AttributeReader(names.RuntimeInvisibleAnnotations, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
attachAnnotations(sym);
}
},
new AttributeReader(names.RuntimeInvisibleParameterAnnotations, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
attachParameterAnnotations(sym);
}
},
new AttributeReader(names.RuntimeVisibleAnnotations, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
attachAnnotations(sym);
}
},
new AttributeReader(names.RuntimeVisibleParameterAnnotations, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
attachParameterAnnotations(sym);
}
},
// additional "legacy" v49 attributes, superceded by flags
new AttributeReader(names.Annotation, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
sym.flags_field |= ANNOTATION;
}
},
new AttributeReader(names.Bridge, V49, MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
sym.flags_field |= BRIDGE;
}
},
new AttributeReader(names.Enum, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
sym.flags_field |= ENUM;
}
},
new AttributeReader(names.Varargs, V49, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
sym.flags_field |= VARARGS;
}
},
new AttributeReader(names.RuntimeVisibleTypeAnnotations, V52, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
attachTypeAnnotations(sym);
}
},
new AttributeReader(names.RuntimeInvisibleTypeAnnotations, V52, CLASS_OR_MEMBER_ATTRIBUTE) {
protected void read(Symbol sym, int attrLen) {
attachTypeAnnotations(sym);
}
},
// The following attributes for a Code attribute are not currently handled
// StackMapTable
// SourceDebugExtension
// LineNumberTable
// LocalVariableTypeTable
};
for (AttributeReader r: readers)
attributeReaders.put(r.name, r);
}
/** Report unrecognized attribute.
*/
void unrecognized(Name attrName) {
if (checkClassFile)
printCCF("ccf.unrecognized.attribute", attrName);
}
protected void readEnclosingMethodAttr(Symbol sym) {
// sym is a nested class with an "Enclosing Method" attribute
// remove sym from it's current owners scope and place it in
// the scope specified by the attribute
sym.owner.members().remove(sym);
ClassSymbol self = (ClassSymbol)sym;
ClassSymbol c = readClassSymbol(nextChar());
NameAndType nt = readNameAndType(nextChar());
if (c.members_field == null)
throw badClassFile("bad.enclosing.class", self, c);
MethodSymbol m = findMethod(nt, c.members_field, self.flags());
if (nt != null && m == null)
throw badClassFile("bad.enclosing.method", self);
self.name = simpleBinaryName(self.flatname, c.flatname) ;
self.owner = m != null ? m : c;
if (self.name.isEmpty())
self.fullname = names.empty;
else
self.fullname = ClassSymbol.formFullName(self.name, self.owner);
if (m != null) {
((ClassType)sym.type).setEnclosingType(m.type);
} else if ((self.flags_field & STATIC) == 0) {
((ClassType)sym.type).setEnclosingType(c.type);
} else {
((ClassType)sym.type).setEnclosingType(Type.noType);
}
enterTypevars(self);
if (!missingTypeVariables.isEmpty()) {
ListBuffer<Type> typeVars = new ListBuffer<>();
for (Type typevar : missingTypeVariables) {
typeVars.append(findTypeVar(typevar.tsym.name));
}
foundTypeVariables = typeVars.toList();
} else {
foundTypeVariables = List.nil();
}
}
// See java.lang.Class
private Name simpleBinaryName(Name self, Name enclosing) {
String simpleBinaryName = self.toString().substring(enclosing.toString().length());
if (simpleBinaryName.length() < 1 || simpleBinaryName.charAt(0) != '$')
throw badClassFile("bad.enclosing.method", self);
int index = 1;
while (index < simpleBinaryName.length() &&
isAsciiDigit(simpleBinaryName.charAt(index)))
index++;
return names.fromString(simpleBinaryName.substring(index));
}
private MethodSymbol findMethod(NameAndType nt, Scope scope, long flags) {
if (nt == null)
return null;
MethodType type = nt.uniqueType.type.asMethodType();
for (Symbol sym : scope.getSymbolsByName(nt.name)) {
if (sym.kind == MTH && isSameBinaryType(sym.type.asMethodType(), type))
return (MethodSymbol)sym;
}
if (nt.name != names.init)
// not a constructor
return null;
if ((flags & INTERFACE) != 0)
// no enclosing instance
return null;
if (nt.uniqueType.type.getParameterTypes().isEmpty())
// no parameters
return null;
// A constructor of an inner class.
// Remove the first argument (the enclosing instance)
nt.setType(new MethodType(nt.uniqueType.type.getParameterTypes().tail,
nt.uniqueType.type.getReturnType(),
nt.uniqueType.type.getThrownTypes(),
syms.methodClass));
// Try searching again
return findMethod(nt, scope, flags);
}
/** Similar to Types.isSameType but avoids completion */
private boolean isSameBinaryType(MethodType mt1, MethodType mt2) {
List<Type> types1 = types.erasure(mt1.getParameterTypes())
.prepend(types.erasure(mt1.getReturnType()));
List<Type> types2 = mt2.getParameterTypes().prepend(mt2.getReturnType());
while (!types1.isEmpty() && !types2.isEmpty()) {
if (types1.head.tsym != types2.head.tsym)
return false;
types1 = types1.tail;
types2 = types2.tail;
}
return types1.isEmpty() && types2.isEmpty();
}
/**
* Character.isDigit answers <tt>true</tt> to some non-ascii
* digits. This one does not. <b>copied from java.lang.Class</b>
*/
private static boolean isAsciiDigit(char c) {
return '0' <= c && c <= '9';
}
/** Read member attributes.
*/
void readMemberAttrs(Symbol sym) {
readAttrs(sym, AttributeKind.MEMBER);
}
void readAttrs(Symbol sym, AttributeKind kind) {
char ac = nextChar();
for (int i = 0; i < ac; i++) {
Name attrName = readName(nextChar());
int attrLen = nextInt();
AttributeReader r = attributeReaders.get(attrName);
if (r != null && r.accepts(kind))
r.read(sym, attrLen);
else {
unrecognized(attrName);
bp = bp + attrLen;
}
}
}
private boolean readingClassAttr = false;
private List<Type> missingTypeVariables = List.nil();
private List<Type> foundTypeVariables = List.nil();
/** Read class attributes.
*/
void readClassAttrs(ClassSymbol c) {
readAttrs(c, AttributeKind.CLASS);
}
/** Read code block.
*/
Code readCode(Symbol owner) {
nextChar(); // max_stack
nextChar(); // max_locals
final int code_length = nextInt();
bp += code_length;
final char exception_table_length = nextChar();
bp += exception_table_length * 8;
readMemberAttrs(owner);
return null;
}
/************************************************************************
* Reading Java-language annotations
***********************************************************************/
/** Attach annotations.
*/
void attachAnnotations(final Symbol sym) {
int numAttributes = nextChar();
if (numAttributes != 0) {
ListBuffer<CompoundAnnotationProxy> proxies = new ListBuffer<>();
for (int i = 0; i<numAttributes; i++) {
CompoundAnnotationProxy proxy = readCompoundAnnotation();
if (proxy.type.tsym == syms.proprietaryType.tsym)
sym.flags_field |= PROPRIETARY;
else if (proxy.type.tsym == syms.profileType.tsym) {
if (profile != Profile.DEFAULT) {
for (Pair<Name,Attribute> v: proxy.values) {
if (v.fst == names.value && v.snd instanceof Attribute.Constant) {
Attribute.Constant c = (Attribute.Constant) v.snd;
if (c.type == syms.intType && ((Integer) c.value) > profile.value) {
sym.flags_field |= NOT_IN_PROFILE;
}
}
}
}
} else
proxies.append(proxy);
}
annotate.normal(new AnnotationCompleter(sym, proxies.toList()));
}
}
/** Attach parameter annotations.
*/
void attachParameterAnnotations(final Symbol method) {
final MethodSymbol meth = (MethodSymbol)method;
int numParameters = buf[bp++] & 0xFF;
List<VarSymbol> parameters = meth.params();
int pnum = 0;
while (parameters.tail != null) {
attachAnnotations(parameters.head);
parameters = parameters.tail;
pnum++;
}
if (pnum != numParameters) {
throw badClassFile("bad.runtime.invisible.param.annotations", meth);
}
}
void attachTypeAnnotations(final Symbol sym) {
int numAttributes = nextChar();
if (numAttributes != 0) {
ListBuffer<TypeAnnotationProxy> proxies = new ListBuffer<>();
for (int i = 0; i < numAttributes; i++)
proxies.append(readTypeAnnotation());
annotate.normal(new TypeAnnotationCompleter(sym, proxies.toList()));
}
}
/** Attach the default value for an annotation element.
*/
void attachAnnotationDefault(final Symbol sym) {
final MethodSymbol meth = (MethodSymbol)sym; // only on methods
final Attribute value = readAttributeValue();
// The default value is set later during annotation. It might
// be the case that the Symbol sym is annotated _after_ the
// repeating instances that depend on this default value,
// because of this we set an interim value that tells us this
// element (most likely) has a default.
//
// Set interim value for now, reset just before we do this
// properly at annotate time.
meth.defaultValue = value;
annotate.normal(new AnnotationDefaultCompleter(meth, value));
}
Type readTypeOrClassSymbol(int i) {
// support preliminary jsr175-format class files
if (buf[poolIdx[i]] == CONSTANT_Class)
return readClassSymbol(i).type;
return readType(i);
}
Type readEnumType(int i) {
// support preliminary jsr175-format class files
int index = poolIdx[i];
int length = getChar(index + 1);
if (buf[index + length + 2] != ';')
return syms.enterClass(readName(i)).type;
return readType(i);
}
CompoundAnnotationProxy readCompoundAnnotation() {
Type t = readTypeOrClassSymbol(nextChar());
int numFields = nextChar();
ListBuffer<Pair<Name,Attribute>> pairs = new ListBuffer<>();
for (int i=0; i<numFields; i++) {
Name name = readName(nextChar());
Attribute value = readAttributeValue();
pairs.append(new Pair<>(name, value));
}
return new CompoundAnnotationProxy(t, pairs.toList());
}
TypeAnnotationProxy readTypeAnnotation() {
TypeAnnotationPosition position = readPosition();
CompoundAnnotationProxy proxy = readCompoundAnnotation();
return new TypeAnnotationProxy(proxy, position);
}
TypeAnnotationPosition readPosition() {
int tag = nextByte(); // TargetType tag is a byte
if (!TargetType.isValidTargetTypeValue(tag))
throw badClassFile("bad.type.annotation.value", String.format("0x%02X", tag));
TargetType type = TargetType.fromTargetTypeValue(tag);
switch (type) {
// instanceof
case INSTANCEOF: {
final int offset = nextChar();
final TypeAnnotationPosition position =
TypeAnnotationPosition.instanceOf(readTypePath());
position.offset = offset;
return position;
}
// new expression
case NEW: {
final int offset = nextChar();
final TypeAnnotationPosition position =
TypeAnnotationPosition.newObj(readTypePath());
position.offset = offset;
return position;
}
// constructor/method reference receiver
case CONSTRUCTOR_REFERENCE: {
final int offset = nextChar();
final TypeAnnotationPosition position =
TypeAnnotationPosition.constructorRef(readTypePath());
position.offset = offset;
return position;
}
case METHOD_REFERENCE: {
final int offset = nextChar();
final TypeAnnotationPosition position =
TypeAnnotationPosition.methodRef(readTypePath());
position.offset = offset;
return position;
}
// local variable
case LOCAL_VARIABLE: {
final int table_length = nextChar();
final int[] newLvarOffset = new int[table_length];
final int[] newLvarLength = new int[table_length];
final int[] newLvarIndex = new int[table_length];
for (int i = 0; i < table_length; ++i) {
newLvarOffset[i] = nextChar();
newLvarLength[i] = nextChar();
newLvarIndex[i] = nextChar();
}
final TypeAnnotationPosition position =
TypeAnnotationPosition.localVariable(readTypePath());
position.lvarOffset = newLvarOffset;
position.lvarLength = newLvarLength;
position.lvarIndex = newLvarIndex;
return position;
}
// resource variable
case RESOURCE_VARIABLE: {
final int table_length = nextChar();
final int[] newLvarOffset = new int[table_length];
final int[] newLvarLength = new int[table_length];
final int[] newLvarIndex = new int[table_length];
for (int i = 0; i < table_length; ++i) {
newLvarOffset[i] = nextChar();
newLvarLength[i] = nextChar();
newLvarIndex[i] = nextChar();
}
final TypeAnnotationPosition position =
TypeAnnotationPosition.resourceVariable(readTypePath());
position.lvarOffset = newLvarOffset;
position.lvarLength = newLvarLength;
position.lvarIndex = newLvarIndex;
return position;
}
// exception parameter
case EXCEPTION_PARAMETER: {
final int exception_index = nextChar();
final TypeAnnotationPosition position =
TypeAnnotationPosition.exceptionParameter(readTypePath());
position.setExceptionIndex(exception_index);
return position;
}
// method receiver
case METHOD_RECEIVER:
return TypeAnnotationPosition.methodReceiver(readTypePath());
// type parameter
case CLASS_TYPE_PARAMETER: {
final int parameter_index = nextByte();
return TypeAnnotationPosition
.typeParameter(readTypePath(), parameter_index);
}
case METHOD_TYPE_PARAMETER: {
final int parameter_index = nextByte();
return TypeAnnotationPosition
.methodTypeParameter(readTypePath(), parameter_index);
}
// type parameter bound
case CLASS_TYPE_PARAMETER_BOUND: {
final int parameter_index = nextByte();
final int bound_index = nextByte();
return TypeAnnotationPosition
.typeParameterBound(readTypePath(), parameter_index,
bound_index);
}
case METHOD_TYPE_PARAMETER_BOUND: {
final int parameter_index = nextByte();
final int bound_index = nextByte();
return TypeAnnotationPosition
.methodTypeParameterBound(readTypePath(), parameter_index,
bound_index);
}
// class extends or implements clause
case CLASS_EXTENDS: {
final int type_index = nextChar();
return TypeAnnotationPosition.classExtends(readTypePath(),
type_index);
}
// throws
case THROWS: {
final int type_index = nextChar();
return TypeAnnotationPosition.methodThrows(readTypePath(),
type_index);
}
// method parameter
case METHOD_FORMAL_PARAMETER: {
final int parameter_index = nextByte();
return TypeAnnotationPosition.methodParameter(readTypePath(),
parameter_index);
}
// type cast
case CAST: {
final int offset = nextChar();
final int type_index = nextByte();
final TypeAnnotationPosition position =
TypeAnnotationPosition.typeCast(readTypePath(), type_index);
position.offset = offset;
return position;
}
// method/constructor/reference type argument
case CONSTRUCTOR_INVOCATION_TYPE_ARGUMENT: {
final int offset = nextChar();
final int type_index = nextByte();
final TypeAnnotationPosition position = TypeAnnotationPosition
.constructorInvocationTypeArg(readTypePath(), type_index);
position.offset = offset;
return position;
}
case METHOD_INVOCATION_TYPE_ARGUMENT: {
final int offset = nextChar();
final int type_index = nextByte();
final TypeAnnotationPosition position = TypeAnnotationPosition
.methodInvocationTypeArg(readTypePath(), type_index);
position.offset = offset;
return position;
}
case CONSTRUCTOR_REFERENCE_TYPE_ARGUMENT: {
final int offset = nextChar();
final int type_index = nextByte();
final TypeAnnotationPosition position = TypeAnnotationPosition
.constructorRefTypeArg(readTypePath(), type_index);
position.offset = offset;
return position;
}
case METHOD_REFERENCE_TYPE_ARGUMENT: {
final int offset = nextChar();
final int type_index = nextByte();
final TypeAnnotationPosition position = TypeAnnotationPosition
.methodRefTypeArg(readTypePath(), type_index);
position.offset = offset;
return position;
}
// We don't need to worry about these
case METHOD_RETURN:
return TypeAnnotationPosition.methodReturn(readTypePath());
case FIELD:
return TypeAnnotationPosition.field(readTypePath());
case UNKNOWN:
throw new AssertionError("jvm.ClassReader: UNKNOWN target type should never occur!");
default:
throw new AssertionError("jvm.ClassReader: Unknown target type for position: " + type);
}
}
List<TypeAnnotationPosition.TypePathEntry> readTypePath() {
int len = nextByte();
ListBuffer<Integer> loc = new ListBuffer<>();
for (int i = 0; i < len * TypeAnnotationPosition.TypePathEntry.bytesPerEntry; ++i)
loc = loc.append(nextByte());
return TypeAnnotationPosition.getTypePathFromBinary(loc.toList());
}
Attribute readAttributeValue() {
char c = (char) buf[bp++];
switch (c) {
case 'B':
return new Attribute.Constant(syms.byteType, readPool(nextChar()));
case 'C':
return new Attribute.Constant(syms.charType, readPool(nextChar()));
case 'D':
return new Attribute.Constant(syms.doubleType, readPool(nextChar()));
case 'F':
return new Attribute.Constant(syms.floatType, readPool(nextChar()));
case 'I':
return new Attribute.Constant(syms.intType, readPool(nextChar()));
case 'J':
return new Attribute.Constant(syms.longType, readPool(nextChar()));
case 'S':
return new Attribute.Constant(syms.shortType, readPool(nextChar()));
case 'Z':
return new Attribute.Constant(syms.booleanType, readPool(nextChar()));
case 's':
return new Attribute.Constant(syms.stringType, readPool(nextChar()).toString());
case 'e':
return new EnumAttributeProxy(readEnumType(nextChar()), readName(nextChar()));
case 'c':
return new Attribute.Class(types, readTypeOrClassSymbol(nextChar()));
case '[': {
int n = nextChar();
ListBuffer<Attribute> l = new ListBuffer<>();
for (int i=0; i<n; i++)
l.append(readAttributeValue());
return new ArrayAttributeProxy(l.toList());
}
case '@':
return readCompoundAnnotation();
default:
throw new AssertionError("unknown annotation tag '" + c + "'");
}
}
interface ProxyVisitor extends Attribute.Visitor {
void visitEnumAttributeProxy(EnumAttributeProxy proxy);
void visitArrayAttributeProxy(ArrayAttributeProxy proxy);
void visitCompoundAnnotationProxy(CompoundAnnotationProxy proxy);
}
static class EnumAttributeProxy extends Attribute {
Type enumType;
Name enumerator;
public EnumAttributeProxy(Type enumType, Name enumerator) {
super(null);
this.enumType = enumType;
this.enumerator = enumerator;
}
public void accept(Visitor v) { ((ProxyVisitor)v).visitEnumAttributeProxy(this); }
@Override @DefinedBy(Api.LANGUAGE_MODEL)
public String toString() {
return "/*proxy enum*/" + enumType + "." + enumerator;
}
}
static class ArrayAttributeProxy extends Attribute {
List<Attribute> values;
ArrayAttributeProxy(List<Attribute> values) {
super(null);
this.values = values;
}
public void accept(Visitor v) { ((ProxyVisitor)v).visitArrayAttributeProxy(this); }
@Override @DefinedBy(Api.LANGUAGE_MODEL)
public String toString() {
return "{" + values + "}";
}
}
/** A temporary proxy representing a compound attribute.
*/
static class CompoundAnnotationProxy extends Attribute {
final List<Pair<Name,Attribute>> values;
public CompoundAnnotationProxy(Type type,
List<Pair<Name,Attribute>> values) {
super(type);
this.values = values;
}
public void accept(Visitor v) { ((ProxyVisitor)v).visitCompoundAnnotationProxy(this); }
@Override @DefinedBy(Api.LANGUAGE_MODEL)
public String toString() {
StringBuilder buf = new StringBuilder();
buf.append("@");
buf.append(type.tsym.getQualifiedName());
buf.append("/*proxy*/{");
boolean first = true;
for (List<Pair<Name,Attribute>> v = values;
v.nonEmpty(); v = v.tail) {
Pair<Name,Attribute> value = v.head;
if (!first) buf.append(",");
first = false;
buf.append(value.fst);
buf.append("=");
buf.append(value.snd);
}
buf.append("}");
return buf.toString();
}
}
/** A temporary proxy representing a type annotation.
*/
static class TypeAnnotationProxy {
final CompoundAnnotationProxy compound;
final TypeAnnotationPosition position;
public TypeAnnotationProxy(CompoundAnnotationProxy compound,
TypeAnnotationPosition position) {
this.compound = compound;
this.position = position;
}
}
class AnnotationDeproxy implements ProxyVisitor {
private ClassSymbol requestingOwner = currentOwner.kind == MTH
? currentOwner.enclClass() : (ClassSymbol)currentOwner;
List<Attribute.Compound> deproxyCompoundList(List<CompoundAnnotationProxy> pl) {
// also must fill in types!!!!
ListBuffer<Attribute.Compound> buf = new ListBuffer<>();
for (List<CompoundAnnotationProxy> l = pl; l.nonEmpty(); l=l.tail) {
buf.append(deproxyCompound(l.head));
}
return buf.toList();
}
Attribute.Compound deproxyCompound(CompoundAnnotationProxy a) {
ListBuffer<Pair<Symbol.MethodSymbol,Attribute>> buf = new ListBuffer<>();
for (List<Pair<Name,Attribute>> l = a.values;
l.nonEmpty();
l = l.tail) {
MethodSymbol meth = findAccessMethod(a.type, l.head.fst);
buf.append(new Pair<>(meth, deproxy(meth.type.getReturnType(), l.head.snd)));
}
return new Attribute.Compound(a.type, buf.toList());
}
MethodSymbol findAccessMethod(Type container, Name name) {
CompletionFailure failure = null;
try {
for (Symbol sym : container.tsym.members().getSymbolsByName(name)) {
if (sym.kind == MTH && sym.type.getParameterTypes().length() == 0)
return (MethodSymbol) sym;
}
} catch (CompletionFailure ex) {
failure = ex;
}
// The method wasn't found: emit a warning and recover
JavaFileObject prevSource = log.useSource(requestingOwner.classfile);
try {
if (failure == null) {
log.warning("annotation.method.not.found",
container,
name);
} else {
log.warning("annotation.method.not.found.reason",
container,
name,
failure.getDetailValue());//diagnostic, if present
}
} finally {
log.useSource(prevSource);
}
// Construct a new method type and symbol. Use bottom
// type (typeof null) as return type because this type is
// a subtype of all reference types and can be converted
// to primitive types by unboxing.
MethodType mt = new MethodType(List.<Type>nil(),
syms.botType,
List.<Type>nil(),
syms.methodClass);
return new MethodSymbol(PUBLIC | ABSTRACT, name, mt, container.tsym);
}
Attribute result;
Type type;
Attribute deproxy(Type t, Attribute a) {
Type oldType = type;
try {
type = t;
a.accept(this);
return result;
} finally {
type = oldType;
}
}
// implement Attribute.Visitor below
public void visitConstant(Attribute.Constant value) {
// assert value.type == type;
result = value;
}
public void visitClass(Attribute.Class clazz) {
result = clazz;
}
public void visitEnum(Attribute.Enum e) {
throw new AssertionError(); // shouldn't happen
}
public void visitCompound(Attribute.Compound compound) {
throw new AssertionError(); // shouldn't happen
}
public void visitArray(Attribute.Array array) {
throw new AssertionError(); // shouldn't happen
}
public void visitError(Attribute.Error e) {
throw new AssertionError(); // shouldn't happen
}
public void visitEnumAttributeProxy(EnumAttributeProxy proxy) {
// type.tsym.flatName() should == proxy.enumFlatName
TypeSymbol enumTypeSym = proxy.enumType.tsym;
VarSymbol enumerator = null;
CompletionFailure failure = null;
try {
for (Symbol sym : enumTypeSym.members().getSymbolsByName(proxy.enumerator)) {
if (sym.kind == VAR) {
enumerator = (VarSymbol)sym;
break;
}
}
}
catch (CompletionFailure ex) {
failure = ex;
}
if (enumerator == null) {
if (failure != null) {
log.warning("unknown.enum.constant.reason",
currentClassFile, enumTypeSym, proxy.enumerator,
failure.getDiagnostic());
} else {
log.warning("unknown.enum.constant",
currentClassFile, enumTypeSym, proxy.enumerator);
}
result = new Attribute.Enum(enumTypeSym.type,
new VarSymbol(0, proxy.enumerator, syms.botType, enumTypeSym));
} else {
result = new Attribute.Enum(enumTypeSym.type, enumerator);
}
}
public void visitArrayAttributeProxy(ArrayAttributeProxy proxy) {
int length = proxy.values.length();
Attribute[] ats = new Attribute[length];
Type elemtype = types.elemtype(type);
int i = 0;
for (List<Attribute> p = proxy.values; p.nonEmpty(); p = p.tail) {
ats[i++] = deproxy(elemtype, p.head);
}
result = new Attribute.Array(type, ats);
}
public void visitCompoundAnnotationProxy(CompoundAnnotationProxy proxy) {
result = deproxyCompound(proxy);
}
}
class AnnotationDefaultCompleter extends AnnotationDeproxy implements Annotate.Worker {
final MethodSymbol sym;
final Attribute value;
final JavaFileObject classFile = currentClassFile;
@Override
public String toString() {
return " ClassReader store default for " + sym.owner + "." + sym + " is " + value;
}
AnnotationDefaultCompleter(MethodSymbol sym, Attribute value) {
this.sym = sym;
this.value = value;
}
// implement Annotate.Worker.run()
public void run() {
JavaFileObject previousClassFile = currentClassFile;
try {
// Reset the interim value set earlier in
// attachAnnotationDefault().
sym.defaultValue = null;
currentClassFile = classFile;
sym.defaultValue = deproxy(sym.type.getReturnType(), value);
} finally {
currentClassFile = previousClassFile;
}
}
}
class AnnotationCompleter extends AnnotationDeproxy implements Annotate.Worker {
final Symbol sym;
final List<CompoundAnnotationProxy> l;
final JavaFileObject classFile;
@Override
public String toString() {
return " ClassReader annotate " + sym.owner + "." + sym + " with " + l;
}
AnnotationCompleter(Symbol sym, List<CompoundAnnotationProxy> l) {
this.sym = sym;
this.l = l;
this.classFile = currentClassFile;
}
// implement Annotate.Worker.run()
public void run() {
JavaFileObject previousClassFile = currentClassFile;
try {
currentClassFile = classFile;
List<Attribute.Compound> newList = deproxyCompoundList(l);
if (sym.annotationsPendingCompletion()) {
sym.setDeclarationAttributes(newList);
} else {
sym.appendAttributes(newList);
}
} finally {
currentClassFile = previousClassFile;
}
}
}
class TypeAnnotationCompleter extends AnnotationCompleter {
List<TypeAnnotationProxy> proxies;
TypeAnnotationCompleter(Symbol sym,
List<TypeAnnotationProxy> proxies) {
super(sym, List.<CompoundAnnotationProxy>nil());
this.proxies = proxies;
}
List<Attribute.TypeCompound> deproxyTypeCompoundList(List<TypeAnnotationProxy> proxies) {
ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
for (TypeAnnotationProxy proxy: proxies) {
Attribute.Compound compound = deproxyCompound(proxy.compound);
Attribute.TypeCompound typeCompound = new Attribute.TypeCompound(compound, proxy.position);
buf.add(typeCompound);
}
return buf.toList();
}
@Override
public void run() {
JavaFileObject previousClassFile = currentClassFile;
try {
currentClassFile = classFile;
List<Attribute.TypeCompound> newList = deproxyTypeCompoundList(proxies);
sym.setTypeAttributes(newList.prependList(sym.getRawTypeAttributes()));
} finally {
currentClassFile = previousClassFile;
}
}
}
/************************************************************************
* Reading Symbols
***********************************************************************/
/** Read a field.
*/
VarSymbol readField() {
long flags = adjustFieldFlags(nextChar());
Name name = readName(nextChar());
Type type = readType(nextChar());
VarSymbol v = new VarSymbol(flags, name, type, currentOwner);
readMemberAttrs(v);
return v;
}
/** Read a method.
*/
MethodSymbol readMethod() {
long flags = adjustMethodFlags(nextChar());
Name name = readName(nextChar());
Type type = readType(nextChar());
if (currentOwner.isInterface() &&
(flags & ABSTRACT) == 0 && !name.equals(names.clinit)) {
if (majorVersion > Version.V52.major ||
(majorVersion == Version.V52.major && minorVersion >= Version.V52.minor)) {
if ((flags & STATIC) == 0) {
currentOwner.flags_field |= DEFAULT;
flags |= DEFAULT | ABSTRACT;
}
} else {
//protect against ill-formed classfiles
throw badClassFile((flags & STATIC) == 0 ? "invalid.default.interface" : "invalid.static.interface",
Integer.toString(majorVersion),
Integer.toString(minorVersion));
}
}
if (name == names.init && currentOwner.hasOuterInstance()) {
// Sometimes anonymous classes don't have an outer
// instance, however, there is no reliable way to tell so
// we never strip this$n
if (!currentOwner.name.isEmpty())
type = new MethodType(adjustMethodParams(flags, type.getParameterTypes()),
type.getReturnType(),
type.getThrownTypes(),
syms.methodClass);
}
MethodSymbol m = new MethodSymbol(flags, name, type, currentOwner);
if (types.isSignaturePolymorphic(m)) {
m.flags_field |= SIGNATURE_POLYMORPHIC;
}
if (saveParameterNames)
initParameterNames(m);
Symbol prevOwner = currentOwner;
currentOwner = m;
try {
readMemberAttrs(m);
} finally {
currentOwner = prevOwner;
}
if (saveParameterNames)
setParameterNames(m, type);
return m;
}
private List<Type> adjustMethodParams(long flags, List<Type> args) {
boolean isVarargs = (flags & VARARGS) != 0;
if (isVarargs) {
Type varargsElem = args.last();
ListBuffer<Type> adjustedArgs = new ListBuffer<>();
for (Type t : args) {
adjustedArgs.append(t != varargsElem ?
t :
((ArrayType)t).makeVarargs());
}
args = adjustedArgs.toList();
}
return args.tail;
}
/**
* Init the parameter names array.
* Parameter names are currently inferred from the names in the
* LocalVariableTable attributes of a Code attribute.
* (Note: this means parameter names are currently not available for
* methods without a Code attribute.)
* This method initializes an array in which to store the name indexes
* of parameter names found in LocalVariableTable attributes. It is
* slightly supersized to allow for additional slots with a start_pc of 0.
*/
void initParameterNames(MethodSymbol sym) {
// make allowance for synthetic parameters.
final int excessSlots = 4;
int expectedParameterSlots =
Code.width(sym.type.getParameterTypes()) + excessSlots;
if (parameterNameIndices == null
|| parameterNameIndices.length < expectedParameterSlots) {
parameterNameIndices = new int[expectedParameterSlots];
} else
Arrays.fill(parameterNameIndices, 0);
haveParameterNameIndices = false;
sawMethodParameters = false;
}
/**
* Set the parameter names for a symbol from the name index in the
* parameterNameIndicies array. The type of the symbol may have changed
* while reading the method attributes (see the Signature attribute).
* This may be because of generic information or because anonymous
* synthetic parameters were added. The original type (as read from
* the method descriptor) is used to help guess the existence of
* anonymous synthetic parameters.
* On completion, sym.savedParameter names will either be null (if
* no parameter names were found in the class file) or will be set to a
* list of names, one per entry in sym.type.getParameterTypes, with
* any missing names represented by the empty name.
*/
void setParameterNames(MethodSymbol sym, Type jvmType) {
// if no names were found in the class file, there's nothing more to do
if (!haveParameterNameIndices)
return;
// If we get parameter names from MethodParameters, then we
// don't need to skip.
int firstParam = 0;
if (!sawMethodParameters) {
firstParam = ((sym.flags() & STATIC) == 0) ? 1 : 0;
// the code in readMethod may have skipped the first
// parameter when setting up the MethodType. If so, we
// make a corresponding allowance here for the position of
// the first parameter. Note that this assumes the
// skipped parameter has a width of 1 -- i.e. it is not
// a double width type (long or double.)
if (sym.name == names.init && currentOwner.hasOuterInstance()) {
// Sometimes anonymous classes don't have an outer
// instance, however, there is no reliable way to tell so
// we never strip this$n
if (!currentOwner.name.isEmpty())
firstParam += 1;
}
if (sym.type != jvmType) {
// reading the method attributes has caused the
// symbol's type to be changed. (i.e. the Signature
// attribute.) This may happen if there are hidden
// (synthetic) parameters in the descriptor, but not
// in the Signature. The position of these hidden
// parameters is unspecified; for now, assume they are
// at the beginning, and so skip over them. The
// primary case for this is two hidden parameters
// passed into Enum constructors.
int skip = Code.width(jvmType.getParameterTypes())
- Code.width(sym.type.getParameterTypes());
firstParam += skip;
}
}
List<Name> paramNames = List.nil();
int index = firstParam;
for (Type t: sym.type.getParameterTypes()) {
int nameIdx = (index < parameterNameIndices.length
? parameterNameIndices[index] : 0);
Name name = nameIdx == 0 ? names.empty : readName(nameIdx);
paramNames = paramNames.prepend(name);
index += Code.width(t);
}
sym.savedParameterNames = paramNames.reverse();
}
/**
* skip n bytes
*/
void skipBytes(int n) {
bp = bp + n;
}
/** Skip a field or method
*/
void skipMember() {
bp = bp + 6;
char ac = nextChar();
for (int i = 0; i < ac; i++) {
bp = bp + 2;
int attrLen = nextInt();
bp = bp + attrLen;
}
}
/** Enter type variables of this classtype and all enclosing ones in
* `typevars'.
*/
protected void enterTypevars(Type t) {
if (t.getEnclosingType() != null && t.getEnclosingType().hasTag(CLASS))
enterTypevars(t.getEnclosingType());
for (List<Type> xs = t.getTypeArguments(); xs.nonEmpty(); xs = xs.tail)
typevars.enter(xs.head.tsym);
}
protected void enterTypevars(Symbol sym) {
if (sym.owner.kind == MTH) {
enterTypevars(sym.owner);
enterTypevars(sym.owner.owner);
}
enterTypevars(sym.type);
}
/** Read contents of a given class symbol `c'. Both external and internal
* versions of an inner class are read.
*/
void readClass(ClassSymbol c) {
ClassType ct = (ClassType)c.type;
// allocate scope for members
c.members_field = WriteableScope.create(c);
// prepare type variable table
typevars = typevars.dup(currentOwner);
if (ct.getEnclosingType().hasTag(CLASS))
enterTypevars(ct.getEnclosingType());
// read flags, or skip if this is an inner class
long flags = adjustClassFlags(nextChar());
if (c.owner.kind == PCK) c.flags_field = flags;
// read own class name and check that it matches
ClassSymbol self = readClassSymbol(nextChar());
if (c != self)
throw badClassFile("class.file.wrong.class",
self.flatname);
// class attributes must be read before class
// skip ahead to read class attributes
int startbp = bp;
nextChar();
char interfaceCount = nextChar();
bp += interfaceCount * 2;
char fieldCount = nextChar();
for (int i = 0; i < fieldCount; i++) skipMember();
char methodCount = nextChar();
for (int i = 0; i < methodCount; i++) skipMember();
readClassAttrs(c);
if (readAllOfClassFile) {
for (int i = 1; i < poolObj.length; i++) readPool(i);
c.pool = new Pool(poolObj.length, poolObj, types);
}
// reset and read rest of classinfo
bp = startbp;
int n = nextChar();
if (ct.supertype_field == null)
ct.supertype_field = (n == 0)
? Type.noType
: readClassSymbol(n).erasure(types);
n = nextChar();
List<Type> is = List.nil();
for (int i = 0; i < n; i++) {
Type _inter = readClassSymbol(nextChar()).erasure(types);
is = is.prepend(_inter);
}
if (ct.interfaces_field == null)
ct.interfaces_field = is.reverse();
Assert.check(fieldCount == nextChar());
for (int i = 0; i < fieldCount; i++) enterMember(c, readField());
Assert.check(methodCount == nextChar());
for (int i = 0; i < methodCount; i++) enterMember(c, readMethod());
typevars = typevars.leave();
}
/** Read inner class info. For each inner/outer pair allocate a
* member class.
*/
void readInnerClasses(ClassSymbol c) {
int n = nextChar();
for (int i = 0; i < n; i++) {
nextChar(); // skip inner class symbol
ClassSymbol outer = readClassSymbol(nextChar());
Name name = readName(nextChar());
if (name == null) name = names.empty;
long flags = adjustClassFlags(nextChar());
if (outer != null) { // we have a member class
if (name == names.empty)
name = names.one;
ClassSymbol member = syms.enterClass(name, outer);
if ((flags & STATIC) == 0) {
((ClassType)member.type).setEnclosingType(outer.type);
if (member.erasure_field != null)
((ClassType)member.erasure_field).setEnclosingType(types.erasure(outer.type));
}
if (c == outer) {
member.flags_field = flags;
enterMember(c, member);
}
}
}
}
/** Read a class definition from the bytes in buf.
*/
private void readClassBuffer(ClassSymbol c) throws IOException {
int magic = nextInt();
if (magic != JAVA_MAGIC)
throw badClassFile("illegal.start.of.class.file");
minorVersion = nextChar();
majorVersion = nextChar();
int maxMajor = Version.MAX().major;
int maxMinor = Version.MAX().minor;
if (majorVersion > maxMajor ||
majorVersion * 1000 + minorVersion <
Version.MIN().major * 1000 + Version.MIN().minor)
{
if (majorVersion == (maxMajor + 1))
log.warning("big.major.version",
currentClassFile,
majorVersion,
maxMajor);
else
throw badClassFile("wrong.version",
Integer.toString(majorVersion),
Integer.toString(minorVersion),
Integer.toString(maxMajor),
Integer.toString(maxMinor));
}
else if (checkClassFile &&
majorVersion == maxMajor &&
minorVersion > maxMinor)
{
printCCF("found.later.version",
Integer.toString(minorVersion));
}
indexPool();
if (signatureBuffer.length < bp) {
int ns = Integer.highestOneBit(bp) << 1;
signatureBuffer = new byte[ns];
}
readClass(c);
}
public void readClassFile(ClassSymbol c) {
currentOwner = c;
currentClassFile = c.classfile;
warnedAttrs.clear();
filling = true;
try {
bp = 0;
buf = readInputStream(buf, c.classfile.openInputStream());
readClassBuffer(c);
if (!missingTypeVariables.isEmpty() && !foundTypeVariables.isEmpty()) {
List<Type> missing = missingTypeVariables;
List<Type> found = foundTypeVariables;
missingTypeVariables = List.nil();
foundTypeVariables = List.nil();
filling = false;
ClassType ct = (ClassType)currentOwner.type;
ct.supertype_field =
types.subst(ct.supertype_field, missing, found);
ct.interfaces_field =
types.subst(ct.interfaces_field, missing, found);
} else if (missingTypeVariables.isEmpty() !=
foundTypeVariables.isEmpty()) {
Name name = missingTypeVariables.head.tsym.name;
throw badClassFile("undecl.type.var", name);
}
} catch (IOException ex) {
throw badClassFile("unable.to.access.file", ex.getMessage());
} catch (ArrayIndexOutOfBoundsException ex) {
throw badClassFile("bad.class.file", c.flatname);
} finally {
missingTypeVariables = List.nil();
foundTypeVariables = List.nil();
filling = false;
}
}
// where
private static byte[] readInputStream(byte[] buf, InputStream s) throws IOException {
try {
buf = ensureCapacity(buf, s.available());
int r = s.read(buf);
int bp = 0;
while (r != -1) {
bp += r;
buf = ensureCapacity(buf, bp);
r = s.read(buf, bp, buf.length - bp);
}
return buf;
} finally {
try {
s.close();
} catch (IOException e) {
/* Ignore any errors, as this stream may have already
* thrown a related exception which is the one that
* should be reported.
*/
}
}
}
/*
* ensureCapacity will increase the buffer as needed, taking note that
* the new buffer will always be greater than the needed and never
* exactly equal to the needed size or bp. If equal then the read (above)
* will infinitely loop as buf.length - bp == 0.
*/
private static byte[] ensureCapacity(byte[] buf, int needed) {
if (buf.length <= needed) {
byte[] old = buf;
buf = new byte[Integer.highestOneBit(needed) << 1];
System.arraycopy(old, 0, buf, 0, old.length);
}
return buf;
}
/** We can only read a single class file at a time; this
* flag keeps track of when we are currently reading a class
* file.
*/
public boolean filling = false;
/************************************************************************
* Adjusting flags
***********************************************************************/
long adjustFieldFlags(long flags) {
return flags;
}
long adjustMethodFlags(long flags) {
if ((flags & ACC_BRIDGE) != 0) {
flags &= ~ACC_BRIDGE;
flags |= BRIDGE;
}
if ((flags & ACC_VARARGS) != 0) {
flags &= ~ACC_VARARGS;
flags |= VARARGS;
}
return flags;
}
long adjustClassFlags(long flags) {
return flags & ~ACC_SUPER; // SUPER and SYNCHRONIZED bits overloaded
}
/** Output for "-checkclassfile" option.
* @param key The key to look up the correct internationalized string.
* @param arg An argument for substitution into the output string.
*/
private void printCCF(String key, Object arg) {
log.printLines(key, arg);
}
/**
* A subclass of JavaFileObject for the sourcefile attribute found in a classfile.
* The attribute is only the last component of the original filename, so is unlikely
* to be valid as is, so operations other than those to access the name throw
* UnsupportedOperationException
*/
private static class SourceFileObject extends BaseFileObject {
/** The file's name.
*/
private Name name;
private Name flatname;
public SourceFileObject(Name name, Name flatname) {
super(null); // no file manager; never referenced for this file object
this.name = name;
this.flatname = flatname;
}
@Override @DefinedBy(Api.COMPILER)
public URI toUri() {
try {
return new URI(null, name.toString(), null);
} catch (URISyntaxException e) {
throw new CannotCreateUriError(name.toString(), e);
}
}
@Override @DefinedBy(Api.COMPILER)
public String getName() {
return name.toString();
}
@Override
public String getShortName() {
return getName();
}
@Override @DefinedBy(Api.COMPILER)
public JavaFileObject.Kind getKind() {
return getKind(getName());
}
@Override @DefinedBy(Api.COMPILER)
public InputStream openInputStream() {
throw new UnsupportedOperationException();
}
@Override @DefinedBy(Api.COMPILER)
public OutputStream openOutputStream() {
throw new UnsupportedOperationException();
}
@Override @DefinedBy(Api.COMPILER)
public CharBuffer getCharContent(boolean ignoreEncodingErrors) {
throw new UnsupportedOperationException();
}
@Override @DefinedBy(Api.COMPILER)
public Reader openReader(boolean ignoreEncodingErrors) {
throw new UnsupportedOperationException();
}
@Override @DefinedBy(Api.COMPILER)
public Writer openWriter() {
throw new UnsupportedOperationException();
}
@Override @DefinedBy(Api.COMPILER)
public long getLastModified() {
throw new UnsupportedOperationException();
}
@Override @DefinedBy(Api.COMPILER)
public boolean delete() {
throw new UnsupportedOperationException();
}
@Override
protected String inferBinaryName(Iterable<? extends File> path) {
return flatname.toString();
}
@Override @DefinedBy(Api.COMPILER)
public boolean isNameCompatible(String simpleName, JavaFileObject.Kind kind) {
return true; // fail-safe mode
}
/**
* Check if two file objects are equal.
* SourceFileObjects are just placeholder objects for the value of a
* SourceFile attribute, and do not directly represent specific files.
* Two SourceFileObjects are equal if their names are equal.
*/
@Override
public boolean equals(Object other) {
if (this == other)
return true;
if (!(other instanceof SourceFileObject))
return false;
SourceFileObject o = (SourceFileObject) other;
return name.equals(o.name);
}
@Override
public int hashCode() {
return name.hashCode();
}
}
}