jdk/src/java.base/share/classes/java/lang/module/Configuration.java
author alanb
Thu, 01 Dec 2016 08:57:53 +0000
changeset 42338 a60f280f803c
parent 38457 3d019217e322
child 43712 5dfd0950317c
permissions -rw-r--r--
8169069: Module system implementation refresh (11/2016) Reviewed-by: plevart, chegar, psandoz, mchung, alanb, dfuchs, naoto, coffeys, weijun Contributed-by: alan.bateman@oracle.com, mandy.chung@oracle.com, claes.redestad@oracle.com, mark.reinhold@oracle.com

/*
 * Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.module;

import java.io.PrintStream;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Deque;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Objects;
import java.util.Optional;
import java.util.Set;
import java.util.stream.Collectors;
import java.util.stream.Stream;

/**
 * The configuration that is the result of resolution or resolution with
 * service binding.
 *
 * <h2><a name="resolution">Resolution</a></h2>
 *
 * <p> Resolution is the process of computing the transitive closure of a set
 * of root modules over a set of observable modules by resolving the
 * dependences expressed by {@code requires} clauses.
 *
 * The <em>dependence graph</em> is augmented with edges that take account of
 * implicitly declared dependences ({@code requires transitive}) to create a
 * <em>readability graph</em>. A {@code Configuration} encapsulates the
 * resulting graph of {@link ResolvedModule resolved modules}.
 *
 * <p> Suppose we have the following observable modules: </p>
 * <pre> {@code
 *     module m1 { requires m2; }
 *     module m2 { requires transitive m3; }
 *     module m3 { }
 *     module m4 { }
 * } </pre>
 *
 * <p> If the module {@code m1} is resolved then the resulting configuration
 * contains three modules ({@code m1}, {@code m2}, {@code m3}). The edges in
 * its readability graph are: </p>
 * <pre> {@code
 *     m1 --> m2  (meaning m1 reads m2)
 *     m1 --> m3
 *     m2 --> m3
 * } </pre>
 *
 * <p> Resolution is an additive process. When computing the transitive closure
 * then the dependence relation may include dependences on modules in parent
 * configurations. The result is a <em>relative configuration</em> that is
 * relative to one or more parent configurations and where the readability graph
 * may have edges from modules in the configuration to modules in parent
 * configurations.
 *
 * </p>
 *
 * <p> Suppose we have the following observable modules: </p>
 * <pre> {@code
 *     module m1 { requires m2; requires java.xml; }
 *     module m2 { }
 * } </pre>
 *
 * <p> If module {@code m1} is resolved with the configuration for the {@link
 * java.lang.reflect.Layer#boot() boot} layer as the parent then the resulting
 * configuration contains two modules ({@code m1}, {@code m2}). The edges in
 * its readability graph are:
 * <pre> {@code
 *     m1 --> m2
 *     m1 --> java.xml
 * } </pre>
 * where module {@code java.xml} is in the parent configuration. For
 * simplicity, this example omits the implicitly declared dependence on the
 * {@code java.base} module.
 *
 * <a name="automaticmoduleresolution"></a>
 * <p> {@link ModuleDescriptor#isAutomatic() Automatic} modules receive special
 * treatment during resolution. Each automatic module is resolved so that it
 * reads all other modules in the configuration and all parent configurations.
 * Each automatic module is also resolved as if it {@code requires transitive}
 * all other automatic modules in the configuration (and all automatic modules
 * in parent configurations). </p>

 * <h2><a name="servicebinding">Service binding</a></h2>
 *
 * <p> Service binding is the process of augmenting a graph of resolved modules
 * from the set of observable modules induced by the service-use dependence
 * ({@code uses} and {@code provides} clauses). Any module that was not
 * previously in the graph requires resolution to compute its transitive
 * closure. Service binding is an iterative process in that adding a module
 * that satisfies some service-use dependence may introduce new service-use
 * dependences. </p>
 *
 * <p> Suppose we have the following observable modules: </p>
 * <pre> {@code
 *     module m1 { exports p; uses p.S; }
 *     module m2 { requires m1; provides p.S with p2.S2; }
 *     module m3 { requires m1; requires m4; provides p.S with p3.S3; }
 *     module m4 { }
 * } </pre>
 *
 * <p> If the module {@code m1} is resolved then the resulting graph of modules
 * has one module ({@code m1}). If the graph is augmented with modules induced
 * by the service-use dependence relation then the configuration will contain
 * four modules ({@code m1}, {@code m2}, {@code m3}, {@code m4}). The edges in
 * its readability graph are: </p>
 * <pre> {@code
 *     m2 --> m1
 *     m3 --> m1
 *     m3 --> m4
 * } </pre>
 * <p> The edges in the conceptual service-use graph are: </p>
 * <pre> {@code
 *     m1 --> m2  (meaning m1 uses a service that is provided by m2)
 *     m1 --> m3
 * } </pre>
 *
 * <p> If this configuration is instantiated as a {@code Layer}, and if code in
 * module {@code m1} uses {@link java.util.ServiceLoader ServiceLoader} to
 * iterate over implementations of {@code p.S.class}, then it will iterate over
 * an instance of {@code p2.S2} and {@code p3.S3}. </p>
 *
 * <h3> Example </h3>
 *
 * <p> The following example uses the {@code resolveRequires} method to resolve
 * a module named <em>myapp</em> with the configuration for the boot layer as
 * the parent configuration. It prints the name of each resolved module and
 * the names of the modules that each module reads. </p>
 *
 * <pre>{@code
 *    ModuleFinder finder = ModuleFinder.of(dir1, dir2, dir3);
 *
 *    Configuration parent = Layer.boot().configuration();
 *
 *    Configuration cf = parent.resolveRequires(finder,
 *                                              ModuleFinder.of(),
 *                                              Set.of("myapp"));
 *    cf.modules().forEach(m -> {
 *        System.out.format("%s -> %s%n",
 *            m.name(),
 *            m.reads().stream()
 *                .map(ResolvedModule::name)
 *                .collect(Collectors.joining(", ")));
 *    });
 * }</pre>
 *
 * @since 9
 * @see java.lang.reflect.Layer
 */
public final class Configuration {

    // @see Configuration#empty()
    private static final Configuration EMPTY_CONFIGURATION = new Configuration();

    // parent configurations, in search order
    private final List<Configuration> parents;

    private final Map<ResolvedModule, Set<ResolvedModule>> graph;
    private final Set<ResolvedModule> modules;
    private final Map<String, ResolvedModule> nameToModule;

    private Configuration() {
        this.parents = Collections.emptyList();
        this.graph = Collections.emptyMap();
        this.modules = Collections.emptySet();
        this.nameToModule = Collections.emptyMap();
    }

    private Configuration(List<Configuration> parents,
                          Resolver resolver,
                          boolean check)
    {
        Map<ResolvedModule, Set<ResolvedModule>> g = resolver.finish(this, check);

        @SuppressWarnings(value = {"rawtypes", "unchecked"})
        Entry<String, ResolvedModule>[] nameEntries
            = (Entry<String, ResolvedModule>[])new Entry[g.size()];
        ResolvedModule[] moduleArray = new ResolvedModule[g.size()];
        int i = 0;
        for (ResolvedModule resolvedModule : g.keySet()) {
            moduleArray[i] = resolvedModule;
            nameEntries[i] = Map.entry(resolvedModule.name(), resolvedModule);
            i++;
        }

        this.parents = Collections.unmodifiableList(parents);
        this.graph = g;
        this.modules = Set.of(moduleArray);
        this.nameToModule = Map.ofEntries(nameEntries);
    }


    /**
     * Resolves a collection of root modules, with this configuration as its
     * parent, to create a new configuration. This method works exactly as
     * specified by the static {@link
     * #resolveRequires(ModuleFinder,List,ModuleFinder,Collection) resolveRequires}
     * method when invoked with this configuration as the parent. In other words,
     * if this configuration is {@code cf} then this method is equivalent to
     * invoking:
     * <pre> {@code
     *     Configuration.resolveRequires(before, List.of(cf), after, roots);
     * }</pre>
     *
     * @param  before
     *         The <em>before</em> module finder to find modules
     * @param  after
     *         The <em>after</em> module finder to locate modules when a
     *         module cannot be located by the {@code before} module finder
     *         and the module is not in this configuration
     * @param  roots
     *         The possibly-empty collection of module names of the modules
     *         to resolve
     *
     * @return The configuration that is the result of resolving the given
     *         root modules
     *
     * @throws ResolutionException
     *         If resolution or the post-resolution checks fail
     * @throws SecurityException
     *         If locating a module is denied by the security manager
     */
    public Configuration resolveRequires(ModuleFinder before,
                                         ModuleFinder after,
                                         Collection<String> roots)
    {
        return resolveRequires(before, List.of(this), after, roots);
    }


    /**
     * Resolves a collection of root modules, with service binding, and with
     * this configuration as its parent, to create a new configuration.
     * This method works exactly as specified by the static {@link
     * #resolveRequiresAndUses(ModuleFinder,List,ModuleFinder,Collection)
     * resolveRequiresAndUses} method when invoked with this configuration
     * as the parent. In other words, if this configuration is {@code cf} then
     * this method is equivalent to invoking:
     * <pre> {@code
     *     Configuration.resolveRequiresAndUses(before, List.of(cf), after, roots);
     * }</pre>
     *
     *
     * @param  before
     *         The <em>before</em> module finder to find modules
     * @param  after
     *         The <em>after</em> module finder to locate modules when not
     *         located by the {@code before} module finder and this
     *         configuration
     * @param  roots
     *         The possibly-empty collection of module names of the modules
     *         to resolve
     *
     * @return The configuration that is the result of resolving the given
     *         root modules
     *
     * @throws ResolutionException
     *         If resolution or the post-resolution checks fail
     * @throws SecurityException
     *         If locating a module is denied by the security manager
     */
    public Configuration resolveRequiresAndUses(ModuleFinder before,
                                                ModuleFinder after,
                                                Collection<String> roots)
    {
        return resolveRequiresAndUses(before, List.of(this), after, roots);
    }


    /**
     * Resolves a collection of root modules, with service binding, and with
     * the empty configuration as its parent. The post resolution checks
     * are optionally run.
     *
     * This method is used to create the configuration for the boot layer.
     */
    static Configuration resolveRequiresAndUses(ModuleFinder finder,
                                                Collection<String> roots,
                                                boolean check,
                                                PrintStream traceOutput)
    {
        List<Configuration> parents = List.of(empty());
        Resolver resolver = new Resolver(finder, parents, ModuleFinder.of(), traceOutput);
        resolver.resolveRequires(roots).resolveUses();

        return new Configuration(parents, resolver, check);
    }


    /**
     * Resolves a collection of root modules to create a configuration.
     *
     * <p> Each root module is located using the given {@code before} module
     * finder. If a module is not found then it is located in the parent
     * configuration as if by invoking the {@link #findModule(String)
     * findModule} method on each parent in iteration order. If not found then
     * the module is located using the given {@code after} module finder. The
     * same search order is used to locate transitive dependences. Root modules
     * or dependences that are located in a parent configuration are resolved
     * no further and are not included in the resulting configuration. </p>
     *
     * <p> When all modules have been resolved then the resulting dependency
     * graph is checked to ensure that it does not contain cycles. A
     * readability graph is constructed and in conjunction with the module
     * exports and service use, checked for consistency. </p>
     *
     * <p> Resolution and the (post-resolution) consistency checks may fail for
     * following reasons: </p>
     *
     * <ul>
     *     <li><p> A root module, or a direct or transitive dependency, is not
     *     found. </p></li>
     *
     *     <li><p> An error occurs when attempting to find a module.
     *     Possible errors include I/O errors, errors detected parsing a module
     *     descriptor ({@code module-info.class}) or two versions of the same
     *     module are found in the same directory. </p></li>
     *
     *     <li><p> A cycle is detected, say where module {@code m1} requires
     *     module {@code m2} and {@code m2} requires {@code m1}. </p></li>
     *
     *     <li><p> Two or more modules in the configuration export the same
     *     package to a module that reads both. This includes the case where a
     *     module {@code M} containing package {@code p} reads another module
     *     that exports {@code p} to {@code M}. </p></li>
     *
     *     <li><p> A module {@code M} declares that it "{@code uses p.S}" or
     *     "{@code provides p.S with ...}" but package {@code p} is neither in
     *     module {@code M} nor exported to {@code M} by any module that
     *     {@code M} reads. </p></li>
     *
     *     <li><p> A module {@code M} declares that it
     *     "{@code provides ... with q.T}" but package {@code q} is not in
     *     module {@code M}. </p></li>
     *
     *     <li><p> Two or more modules in the configuration are specific to
     *     different {@link ModuleDescriptor#osName() operating systems},
     *     {@link ModuleDescriptor#osArch() architectures}, or {@link
     *     ModuleDescriptor#osVersion() versions}. </p></li>
     *
     *     <li><p> Other implementation specific checks, for example referential
     *     integrity checks to ensure that different versions of tighly coupled
     *     modules cannot be combined in the same configuration. </p></li>
     *
     * </ul>
     *
     * @param  before
     *         The <em>before</em> module finder to find modules
     * @param  parents
     *         The list parent configurations in search order
     * @param  after
     *         The <em>after</em> module finder to locate modules when not
     *         located by the {@code before} module finder or in parent
     *         configurations
     * @param  roots
     *         The possibly-empty collection of module names of the modules
     *         to resolve
     *
     * @return The configuration that is the result of resolving the given
     *         root modules
     *
     * @throws ResolutionException
     *         If resolution or the post-resolution checks fail
     * @throws IllegalArgumentException
     *         If the list of parents is empty
     * @throws SecurityException
     *         If locating a module is denied by the security manager
     */
    public static Configuration resolveRequires(ModuleFinder before,
                                                List<Configuration> parents,
                                                ModuleFinder after,
                                                Collection<String> roots)
    {
        Objects.requireNonNull(before);
        Objects.requireNonNull(after);
        Objects.requireNonNull(roots);

        List<Configuration> parentList = new ArrayList<>(parents);
        if (parentList.isEmpty())
            throw new IllegalArgumentException("'parents' is empty");

        Resolver resolver = new Resolver(before, parentList, after, null);
        resolver.resolveRequires(roots);

        return new Configuration(parentList, resolver, true);
    }

    /**
     * Resolves a collection of root modules, with service binding, to create
     * configuration.
     *
     * <p> This method works exactly as specified by {@link
     * #resolveRequires(ModuleFinder,List,ModuleFinder,Collection)
     * resolveRequires} except that the graph of resolved modules is augmented
     * with modules induced by the service-use dependence relation. </p>
     *
     * <p> More specifically, the root modules are resolved as if by calling
     * {@code resolveRequires}. The resolved modules, and all modules in the
     * parent configurations, with {@link ModuleDescriptor#uses() service
     * dependences} are then examined. All modules found by the given module
     * finders that {@link ModuleDescriptor#provides() provide} an
     * implementation of one or more of the service types are added to the
     * module graph and then resolved as if by calling the {@code
     * resolveRequires} method. Adding modules to the module graph may
     * introduce new service-use dependences and so the process works
     * iteratively until no more modules are added. </p>
     *
     * <p> As service binding involves resolution then it may fail with {@link
     * ResolutionException} for exactly the same reasons specified in
     * {@code resolveRequires}.  </p>
     *
     * @param  before
     *         The <em>before</em> module finder to find modules
     * @param  parents
     *         The list parent configurations in search order
     * @param  after
     *         The <em>after</em> module finder to locate modules when not
     *         located by the {@code before} module finder or in parent
     *         configurations
     * @param  roots
     *         The possibly-empty collection of module names of the modules
     *         to resolve
     *
     * @return The configuration that is the result of resolving the given
     *         root modules
     *
     * @throws ResolutionException
     *         If resolution or the post-resolution checks fail
     * @throws IllegalArgumentException
     *         If the list of parents is empty
     * @throws SecurityException
     *         If locating a module is denied by the security manager
     */
    public static Configuration resolveRequiresAndUses(ModuleFinder before,
                                                       List<Configuration> parents,
                                                       ModuleFinder after,
                                                       Collection<String> roots)
    {
        Objects.requireNonNull(before);
        Objects.requireNonNull(after);
        Objects.requireNonNull(roots);

        List<Configuration> parentList = new ArrayList<>(parents);
        if (parentList.isEmpty())
            throw new IllegalArgumentException("'parents' is empty");

        Resolver resolver = new Resolver(before, parentList, after, null);
        resolver.resolveRequires(roots).resolveUses();

        return new Configuration(parentList, resolver, true);
    }


    /**
     * Returns the <em>empty</em> configuration. There are no modules in the
     * empty configuration. It has no parents.
     *
     * @return The empty configuration
     */
    public static Configuration empty() {
        return EMPTY_CONFIGURATION;
    }


    /**
     * Returns an unmodifiable list of this configuration's parents, in search
     * order. If this is the {@linkplain #empty empty configuration} then an
     * empty list is returned.
     *
     * @return A possibly-empty unmodifiable list of this parent configurations
     */
    public List<Configuration> parents() {
        return parents;
    }


    /**
     * Returns an immutable set of the resolved modules in this configuration.
     *
     * @return A possibly-empty unmodifiable set of the resolved modules
     *         in this configuration
     */
    public Set<ResolvedModule> modules() {
        return modules;
    }


    /**
     * Finds a resolved module in this configuration, or if not in this
     * configuration, the {@linkplain #parents parent} configurations.
     * Finding a module in parent configurations is equivalent to invoking
     * {@code findModule} on each parent, in search order, until the module
     * is found or all parents have been searched. In a <em>tree of
     * configurations</em> then this is equivalent to a depth-first search.
     *
     * @param  name
     *         The module name of the resolved module to find
     *
     * @return The resolved module with the given name or an empty {@code
     *         Optional} if there isn't a module with this name in this
     *         configuration or any parent configurations
     */
    public Optional<ResolvedModule> findModule(String name) {
        Objects.requireNonNull(name);
        ResolvedModule m = nameToModule.get(name);
        if (m != null)
            return Optional.of(m);

        if (!parents.isEmpty()) {
            return configurations()
                    .skip(1)  // skip this configuration
                    .map(cf -> cf.nameToModule)
                    .filter(map -> map.containsKey(name))
                    .map(map -> map.get(name))
                    .findFirst();
        }

        return Optional.empty();
    }


    Set<ModuleDescriptor> descriptors() {
        if (modules.isEmpty()) {
            return Collections.emptySet();
        } else {
            return modules.stream()
                    .map(ResolvedModule::reference)
                    .map(ModuleReference::descriptor)
                    .collect(Collectors.toSet());
        }
    }

    Set<ResolvedModule> reads(ResolvedModule m) {
        return Collections.unmodifiableSet(graph.get(m));
    }

    /**
     * Returns an ordered stream of configurations. The first element is this
     * configuration, the remaining elements are the parent configurations
     * in DFS order.
     *
     * @implNote For now, the assumption is that the number of elements will
     * be very low and so this method does not use a specialized spliterator.
     */
    Stream<Configuration> configurations() {
        List<Configuration> allConfigurations = this.allConfigurations;
        if (allConfigurations == null) {
            allConfigurations = new ArrayList<>();
            Set<Configuration> visited = new HashSet<>();
            Deque<Configuration> stack = new ArrayDeque<>();
            visited.add(this);
            stack.push(this);
            while (!stack.isEmpty()) {
                Configuration layer = stack.pop();
                allConfigurations.add(layer);

                // push in reverse order
                for (int i = layer.parents.size() - 1; i >= 0; i--) {
                    Configuration parent = layer.parents.get(i);
                    if (!visited.contains(parent)) {
                        visited.add(parent);
                        stack.push(parent);
                    }
                }
            }
            this.allConfigurations = Collections.unmodifiableList(allConfigurations);
        }
        return allConfigurations.stream();
    }

    private volatile List<Configuration> allConfigurations;


    /**
     * Returns a string describing this configuration.
     *
     * @return A possibly empty string describing this configuration
     */
    @Override
    public String toString() {
        return modules().stream()
                .map(ResolvedModule::name)
                .collect(Collectors.joining(", "));
    }
}