/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/arguments.hpp"
#include "runtime/flags/jvmFlag.hpp"
#include "runtime/flags/jvmFlagConstraintList.hpp"
#include "runtime/flags/jvmFlagWriteableList.hpp"
#include "runtime/flags/jvmFlagRangeList.hpp"
#include "runtime/globals_extension.hpp"
#include "trace/tracing.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/stringUtils.hpp"
#define DEFAULT_RANGE_STR_CHUNK_SIZE 64
static char* create_range_str(const char *fmt, ...) {
static size_t string_length = DEFAULT_RANGE_STR_CHUNK_SIZE;
static char* range_string = NEW_C_HEAP_ARRAY(char, string_length, mtLogging);
int size_needed = 0;
do {
va_list args;
va_start(args, fmt);
size_needed = jio_vsnprintf(range_string, string_length, fmt, args);
va_end(args);
if (size_needed < 0) {
string_length += DEFAULT_RANGE_STR_CHUNK_SIZE;
range_string = REALLOC_C_HEAP_ARRAY(char, range_string, string_length, mtLogging);
guarantee(range_string != NULL, "create_range_str string should not be NULL");
}
} while (size_needed < 0);
return range_string;
}
const char* JVMFlag::get_int_default_range_str() {
return create_range_str("[ " INT32_FORMAT_W(-25) " ... " INT32_FORMAT_W(25) " ]", INT_MIN, INT_MAX);
}
const char* JVMFlag::get_uint_default_range_str() {
return create_range_str("[ " UINT32_FORMAT_W(-25) " ... " UINT32_FORMAT_W(25) " ]", 0, UINT_MAX);
}
const char* JVMFlag::get_intx_default_range_str() {
return create_range_str("[ " INTX_FORMAT_W(-25) " ... " INTX_FORMAT_W(25) " ]", min_intx, max_intx);
}
const char* JVMFlag::get_uintx_default_range_str() {
return create_range_str("[ " UINTX_FORMAT_W(-25) " ... " UINTX_FORMAT_W(25) " ]", 0, max_uintx);
}
const char* JVMFlag::get_uint64_t_default_range_str() {
return create_range_str("[ " UINT64_FORMAT_W(-25) " ... " UINT64_FORMAT_W(25) " ]", 0, uint64_t(max_juint));
}
const char* JVMFlag::get_size_t_default_range_str() {
return create_range_str("[ " SIZE_FORMAT_W(-25) " ... " SIZE_FORMAT_W(25) " ]", 0, SIZE_MAX);
}
const char* JVMFlag::get_double_default_range_str() {
return create_range_str("[ %-25.3f ... %25.3f ]", DBL_MIN, DBL_MAX);
}
static bool is_product_build() {
#ifdef PRODUCT
return true;
#else
return false;
#endif
}
JVMFlag::Error JVMFlag::check_writable(bool changed) {
if (is_constant_in_binary()) {
fatal("flag is constant: %s", _name);
}
JVMFlag::Error error = JVMFlag::SUCCESS;
if (changed) {
JVMFlagWriteable* writeable = JVMFlagWriteableList::find(_name);
if (writeable) {
if (writeable->is_writeable() == false) {
switch (writeable->type())
{
case JVMFlagWriteable::Once:
error = JVMFlag::SET_ONLY_ONCE;
jio_fprintf(defaultStream::error_stream(), "Error: %s may not be set more than once\n", _name);
break;
case JVMFlagWriteable::CommandLineOnly:
error = JVMFlag::COMMAND_LINE_ONLY;
jio_fprintf(defaultStream::error_stream(), "Error: %s may be modified only from commad line\n", _name);
break;
default:
ShouldNotReachHere();
break;
}
}
writeable->mark_once();
}
}
return error;
}
bool JVMFlag::is_bool() const {
return strcmp(_type, "bool") == 0;
}
bool JVMFlag::get_bool() const {
return *((bool*) _addr);
}
JVMFlag::Error JVMFlag::set_bool(bool value) {
JVMFlag::Error error = check_writable(value!=get_bool());
if (error == JVMFlag::SUCCESS) {
*((bool*) _addr) = value;
}
return error;
}
bool JVMFlag::is_int() const {
return strcmp(_type, "int") == 0;
}
int JVMFlag::get_int() const {
return *((int*) _addr);
}
JVMFlag::Error JVMFlag::set_int(int value) {
JVMFlag::Error error = check_writable(value!=get_int());
if (error == JVMFlag::SUCCESS) {
*((int*) _addr) = value;
}
return error;
}
bool JVMFlag::is_uint() const {
return strcmp(_type, "uint") == 0;
}
uint JVMFlag::get_uint() const {
return *((uint*) _addr);
}
JVMFlag::Error JVMFlag::set_uint(uint value) {
JVMFlag::Error error = check_writable(value!=get_uint());
if (error == JVMFlag::SUCCESS) {
*((uint*) _addr) = value;
}
return error;
}
bool JVMFlag::is_intx() const {
return strcmp(_type, "intx") == 0;
}
intx JVMFlag::get_intx() const {
return *((intx*) _addr);
}
JVMFlag::Error JVMFlag::set_intx(intx value) {
JVMFlag::Error error = check_writable(value!=get_intx());
if (error == JVMFlag::SUCCESS) {
*((intx*) _addr) = value;
}
return error;
}
bool JVMFlag::is_uintx() const {
return strcmp(_type, "uintx") == 0;
}
uintx JVMFlag::get_uintx() const {
return *((uintx*) _addr);
}
JVMFlag::Error JVMFlag::set_uintx(uintx value) {
JVMFlag::Error error = check_writable(value!=get_uintx());
if (error == JVMFlag::SUCCESS) {
*((uintx*) _addr) = value;
}
return error;
}
bool JVMFlag::is_uint64_t() const {
return strcmp(_type, "uint64_t") == 0;
}
uint64_t JVMFlag::get_uint64_t() const {
return *((uint64_t*) _addr);
}
JVMFlag::Error JVMFlag::set_uint64_t(uint64_t value) {
JVMFlag::Error error = check_writable(value!=get_uint64_t());
if (error == JVMFlag::SUCCESS) {
*((uint64_t*) _addr) = value;
}
return error;
}
bool JVMFlag::is_size_t() const {
return strcmp(_type, "size_t") == 0;
}
size_t JVMFlag::get_size_t() const {
return *((size_t*) _addr);
}
JVMFlag::Error JVMFlag::set_size_t(size_t value) {
JVMFlag::Error error = check_writable(value!=get_size_t());
if (error == JVMFlag::SUCCESS) {
*((size_t*) _addr) = value;
}
return error;
}
bool JVMFlag::is_double() const {
return strcmp(_type, "double") == 0;
}
double JVMFlag::get_double() const {
return *((double*) _addr);
}
JVMFlag::Error JVMFlag::set_double(double value) {
JVMFlag::Error error = check_writable(value!=get_double());
if (error == JVMFlag::SUCCESS) {
*((double*) _addr) = value;
}
return error;
}
bool JVMFlag::is_ccstr() const {
return strcmp(_type, "ccstr") == 0 || strcmp(_type, "ccstrlist") == 0;
}
bool JVMFlag::ccstr_accumulates() const {
return strcmp(_type, "ccstrlist") == 0;
}
ccstr JVMFlag::get_ccstr() const {
return *((ccstr*) _addr);
}
JVMFlag::Error JVMFlag::set_ccstr(ccstr value) {
JVMFlag::Error error = check_writable(value!=get_ccstr());
if (error == JVMFlag::SUCCESS) {
*((ccstr*) _addr) = value;
}
return error;
}
JVMFlag::Flags JVMFlag::get_origin() {
return Flags(_flags & VALUE_ORIGIN_MASK);
}
void JVMFlag::set_origin(Flags origin) {
assert((origin & VALUE_ORIGIN_MASK) == origin, "sanity");
Flags new_origin = Flags((origin == COMMAND_LINE) ? Flags(origin | ORIG_COMMAND_LINE) : origin);
_flags = Flags((_flags & ~VALUE_ORIGIN_MASK) | new_origin);
}
bool JVMFlag::is_default() {
return (get_origin() == DEFAULT);
}
bool JVMFlag::is_ergonomic() {
return (get_origin() == ERGONOMIC);
}
bool JVMFlag::is_command_line() {
return (_flags & ORIG_COMMAND_LINE) != 0;
}
void JVMFlag::set_command_line() {
_flags = Flags(_flags | ORIG_COMMAND_LINE);
}
bool JVMFlag::is_product() const {
return (_flags & KIND_PRODUCT) != 0;
}
bool JVMFlag::is_manageable() const {
return (_flags & KIND_MANAGEABLE) != 0;
}
bool JVMFlag::is_diagnostic() const {
return (_flags & KIND_DIAGNOSTIC) != 0;
}
bool JVMFlag::is_experimental() const {
return (_flags & KIND_EXPERIMENTAL) != 0;
}
bool JVMFlag::is_notproduct() const {
return (_flags & KIND_NOT_PRODUCT) != 0;
}
bool JVMFlag::is_develop() const {
return (_flags & KIND_DEVELOP) != 0;
}
bool JVMFlag::is_read_write() const {
return (_flags & KIND_READ_WRITE) != 0;
}
bool JVMFlag::is_commercial() const {
return (_flags & KIND_COMMERCIAL) != 0;
}
/**
* Returns if this flag is a constant in the binary. Right now this is
* true for notproduct and develop flags in product builds.
*/
bool JVMFlag::is_constant_in_binary() const {
#ifdef PRODUCT
return is_notproduct() || is_develop();
#else
return false;
#endif
}
bool JVMFlag::is_unlocker() const {
return strcmp(_name, "UnlockDiagnosticVMOptions") == 0 ||
strcmp(_name, "UnlockExperimentalVMOptions") == 0 ||
is_unlocker_ext();
}
bool JVMFlag::is_unlocked() const {
if (is_diagnostic()) {
return UnlockDiagnosticVMOptions;
}
if (is_experimental()) {
return UnlockExperimentalVMOptions;
}
return is_unlocked_ext();
}
void JVMFlag::clear_diagnostic() {
assert(is_diagnostic(), "sanity");
_flags = Flags(_flags & ~KIND_DIAGNOSTIC);
assert(!is_diagnostic(), "sanity");
}
// Get custom message for this locked flag, or NULL if
// none is available. Returns message type produced.
JVMFlag::MsgType JVMFlag::get_locked_message(char* buf, int buflen) const {
buf[0] = '\0';
if (is_diagnostic() && !is_unlocked()) {
jio_snprintf(buf, buflen,
"Error: VM option '%s' is diagnostic and must be enabled via -XX:+UnlockDiagnosticVMOptions.\n"
"Error: The unlock option must precede '%s'.\n",
_name, _name);
return JVMFlag::DIAGNOSTIC_FLAG_BUT_LOCKED;
}
if (is_experimental() && !is_unlocked()) {
jio_snprintf(buf, buflen,
"Error: VM option '%s' is experimental and must be enabled via -XX:+UnlockExperimentalVMOptions.\n"
"Error: The unlock option must precede '%s'.\n",
_name, _name);
return JVMFlag::EXPERIMENTAL_FLAG_BUT_LOCKED;
}
if (is_develop() && is_product_build()) {
jio_snprintf(buf, buflen, "Error: VM option '%s' is develop and is available only in debug version of VM.\n",
_name);
return JVMFlag::DEVELOPER_FLAG_BUT_PRODUCT_BUILD;
}
if (is_notproduct() && is_product_build()) {
jio_snprintf(buf, buflen, "Error: VM option '%s' is notproduct and is available only in debug version of VM.\n",
_name);
return JVMFlag::NOTPRODUCT_FLAG_BUT_PRODUCT_BUILD;
}
return get_locked_message_ext(buf, buflen);
}
bool JVMFlag::is_writeable() const {
return is_manageable() || (is_product() && is_read_write()) || is_writeable_ext();
}
// All flags except "manageable" are assumed to be internal flags.
// Long term, we need to define a mechanism to specify which flags
// are external/stable and change this function accordingly.
bool JVMFlag::is_external() const {
return is_manageable() || is_external_ext();
}
// Helper function for JVMFlag::print_on().
// Fills current line up to requested position.
// Should the current position already be past the requested position,
// one separator blank is enforced.
void fill_to_pos(outputStream* st, unsigned int req_pos) {
if ((unsigned int)st->position() < req_pos) {
st->fill_to(req_pos); // need to fill with blanks to reach req_pos
} else {
st->print(" "); // enforce blank separation. Previous field too long.
}
}
void JVMFlag::print_on(outputStream* st, bool withComments, bool printRanges) {
// Don't print notproduct and develop flags in a product build.
if (is_constant_in_binary()) {
return;
}
if (!printRanges) {
// The command line options -XX:+PrintFlags* cause this function to be called
// for each existing flag to print information pertinent to this flag. The data
// is displayed in columnar form, with the following layout:
// col1 - data type, right-justified
// col2 - name, left-justified
// col3 - ' =' double-char, leading space to align with possible '+='
// col4 - value left-justified
// col5 - kind right-justified
// col6 - origin left-justified
// col7 - comments left-justified
//
// The column widths are fixed. They are defined such that, for most cases,
// an eye-pleasing tabular output is created.
//
// Sample output:
// bool CMSScavengeBeforeRemark = false {product} {default}
// uintx CMSScheduleRemarkEdenPenetration = 50 {product} {default}
// size_t CMSScheduleRemarkEdenSizeThreshold = 2097152 {product} {default}
// uintx CMSScheduleRemarkSamplingRatio = 5 {product} {default}
// double CMSSmallCoalSurplusPercent = 1.050000 {product} {default}
// ccstr CompileCommandFile = MyFile.cmd {product} {command line}
// ccstrlist CompileOnly = Method1
// CompileOnly += Method2 {product} {command line}
// | | | | | | |
// | | | | | | +-- col7
// | | | | | +-- col6
// | | | | +-- col5
// | | | +-- col4
// | | +-- col3
// | +-- col2
// +-- col1
const unsigned int col_spacing = 1;
const unsigned int col1_pos = 0;
const unsigned int col1_width = 9;
const unsigned int col2_pos = col1_pos + col1_width + col_spacing;
const unsigned int col2_width = 39;
const unsigned int col3_pos = col2_pos + col2_width + col_spacing;
const unsigned int col3_width = 2;
const unsigned int col4_pos = col3_pos + col3_width + col_spacing;
const unsigned int col4_width = 30;
const unsigned int col5_pos = col4_pos + col4_width + col_spacing;
const unsigned int col5_width = 20;
const unsigned int col6_pos = col5_pos + col5_width + col_spacing;
const unsigned int col6_width = 15;
const unsigned int col7_pos = col6_pos + col6_width + col_spacing;
const unsigned int col7_width = 1;
st->fill_to(col1_pos);
st->print("%*s", col1_width, _type); // right-justified, therefore width is required.
fill_to_pos(st, col2_pos);
st->print("%s", _name);
fill_to_pos(st, col3_pos);
st->print(" ="); // use " =" for proper alignment with multiline ccstr output.
fill_to_pos(st, col4_pos);
if (is_bool()) {
st->print("%s", get_bool() ? "true" : "false");
} else if (is_int()) {
st->print("%d", get_int());
} else if (is_uint()) {
st->print("%u", get_uint());
} else if (is_intx()) {
st->print(INTX_FORMAT, get_intx());
} else if (is_uintx()) {
st->print(UINTX_FORMAT, get_uintx());
} else if (is_uint64_t()) {
st->print(UINT64_FORMAT, get_uint64_t());
} else if (is_size_t()) {
st->print(SIZE_FORMAT, get_size_t());
} else if (is_double()) {
st->print("%f", get_double());
} else if (is_ccstr()) {
// Honor <newline> characters in ccstr: print multiple lines.
const char* cp = get_ccstr();
if (cp != NULL) {
const char* eol;
while ((eol = strchr(cp, '\n')) != NULL) {
size_t llen = pointer_delta(eol, cp, sizeof(char));
st->print("%.*s", (int)llen, cp);
st->cr();
cp = eol+1;
fill_to_pos(st, col2_pos);
st->print("%s", _name);
fill_to_pos(st, col3_pos);
st->print("+=");
fill_to_pos(st, col4_pos);
}
st->print("%s", cp);
}
} else {
st->print("unhandled type %s", _type);
st->cr();
return;
}
fill_to_pos(st, col5_pos);
print_kind(st, col5_width);
fill_to_pos(st, col6_pos);
print_origin(st, col6_width);
#ifndef PRODUCT
if (withComments) {
fill_to_pos(st, col7_pos);
st->print("%s", _doc);
}
#endif
st->cr();
} else if (!is_bool() && !is_ccstr()) {
// The command line options -XX:+PrintFlags* cause this function to be called
// for each existing flag to print information pertinent to this flag. The data
// is displayed in columnar form, with the following layout:
// col1 - data type, right-justified
// col2 - name, left-justified
// col4 - range [ min ... max]
// col5 - kind right-justified
// col6 - origin left-justified
// col7 - comments left-justified
//
// The column widths are fixed. They are defined such that, for most cases,
// an eye-pleasing tabular output is created.
//
// Sample output:
// intx MinPassesBeforeFlush [ 0 ... 9223372036854775807 ] {diagnostic} {default}
// uintx MinRAMFraction [ 1 ... 18446744073709551615 ] {product} {default}
// double MinRAMPercentage [ 0.000 ... 100.000 ] {product} {default}
// uintx MinSurvivorRatio [ 3 ... 18446744073709551615 ] {product} {default}
// size_t MinTLABSize [ 1 ... 9223372036854775807 ] {product} {default}
// intx MonitorBound [ 0 ... 2147483647 ] {product} {default}
// | | | | | |
// | | | | | +-- col7
// | | | | +-- col6
// | | | +-- col5
// | | +-- col4
// | +-- col2
// +-- col1
const unsigned int col_spacing = 1;
const unsigned int col1_pos = 0;
const unsigned int col1_width = 9;
const unsigned int col2_pos = col1_pos + col1_width + col_spacing;
const unsigned int col2_width = 49;
const unsigned int col3_pos = col2_pos + col2_width + col_spacing;
const unsigned int col3_width = 0;
const unsigned int col4_pos = col3_pos + col3_width + col_spacing;
const unsigned int col4_width = 60;
const unsigned int col5_pos = col4_pos + col4_width + col_spacing;
const unsigned int col5_width = 35;
const unsigned int col6_pos = col5_pos + col5_width + col_spacing;
const unsigned int col6_width = 15;
const unsigned int col7_pos = col6_pos + col6_width + col_spacing;
const unsigned int col7_width = 1;
st->fill_to(col1_pos);
st->print("%*s", col1_width, _type); // right-justified, therefore width is required.
fill_to_pos(st, col2_pos);
st->print("%s", _name);
fill_to_pos(st, col4_pos);
RangeStrFunc func = NULL;
if (is_int()) {
func = JVMFlag::get_int_default_range_str;
} else if (is_uint()) {
func = JVMFlag::get_uint_default_range_str;
} else if (is_intx()) {
func = JVMFlag::get_intx_default_range_str;
} else if (is_uintx()) {
func = JVMFlag::get_uintx_default_range_str;
} else if (is_uint64_t()) {
func = JVMFlag::get_uint64_t_default_range_str;
} else if (is_size_t()) {
func = JVMFlag::get_size_t_default_range_str;
} else if (is_double()) {
func = JVMFlag::get_double_default_range_str;
} else {
st->print("unhandled type %s", _type);
st->cr();
return;
}
JVMFlagRangeList::print(st, _name, func);
fill_to_pos(st, col5_pos);
print_kind(st, col5_width);
fill_to_pos(st, col6_pos);
print_origin(st, col6_width);
#ifndef PRODUCT
if (withComments) {
fill_to_pos(st, col7_pos);
st->print("%s", _doc);
}
#endif
st->cr();
}
}
void JVMFlag::print_kind(outputStream* st, unsigned int width) {
struct Data {
int flag;
const char* name;
};
Data data[] = {
{ KIND_JVMCI, "JVMCI" },
{ KIND_C1, "C1" },
{ KIND_C2, "C2" },
{ KIND_ARCH, "ARCH" },
{ KIND_PLATFORM_DEPENDENT, "pd" },
{ KIND_PRODUCT, "product" },
{ KIND_MANAGEABLE, "manageable" },
{ KIND_DIAGNOSTIC, "diagnostic" },
{ KIND_EXPERIMENTAL, "experimental" },
{ KIND_COMMERCIAL, "commercial" },
{ KIND_NOT_PRODUCT, "notproduct" },
{ KIND_DEVELOP, "develop" },
{ KIND_LP64_PRODUCT, "lp64_product" },
{ KIND_READ_WRITE, "rw" },
{ -1, "" }
};
if ((_flags & KIND_MASK) != 0) {
bool is_first = true;
const size_t buffer_size = 64;
size_t buffer_used = 0;
char kind[buffer_size];
jio_snprintf(kind, buffer_size, "{");
buffer_used++;
for (int i = 0; data[i].flag != -1; i++) {
Data d = data[i];
if ((_flags & d.flag) != 0) {
if (is_first) {
is_first = false;
} else {
assert(buffer_used + 1 < buffer_size, "Too small buffer");
jio_snprintf(kind + buffer_used, buffer_size - buffer_used, " ");
buffer_used++;
}
size_t length = strlen(d.name);
assert(buffer_used + length < buffer_size, "Too small buffer");
jio_snprintf(kind + buffer_used, buffer_size - buffer_used, "%s", d.name);
buffer_used += length;
}
}
assert(buffer_used + 2 <= buffer_size, "Too small buffer");
jio_snprintf(kind + buffer_used, buffer_size - buffer_used, "}");
st->print("%*s", width, kind);
}
}
void JVMFlag::print_origin(outputStream* st, unsigned int width) {
int origin = _flags & VALUE_ORIGIN_MASK;
st->print("{");
switch(origin) {
case DEFAULT:
st->print("default"); break;
case COMMAND_LINE:
st->print("command line"); break;
case ENVIRON_VAR:
st->print("environment"); break;
case CONFIG_FILE:
st->print("config file"); break;
case MANAGEMENT:
st->print("management"); break;
case ERGONOMIC:
if (_flags & ORIG_COMMAND_LINE) {
st->print("command line, ");
}
st->print("ergonomic"); break;
case ATTACH_ON_DEMAND:
st->print("attach"); break;
case INTERNAL:
st->print("internal"); break;
}
st->print("}");
}
void JVMFlag::print_as_flag(outputStream* st) {
if (is_bool()) {
st->print("-XX:%s%s", get_bool() ? "+" : "-", _name);
} else if (is_int()) {
st->print("-XX:%s=%d", _name, get_int());
} else if (is_uint()) {
st->print("-XX:%s=%u", _name, get_uint());
} else if (is_intx()) {
st->print("-XX:%s=" INTX_FORMAT, _name, get_intx());
} else if (is_uintx()) {
st->print("-XX:%s=" UINTX_FORMAT, _name, get_uintx());
} else if (is_uint64_t()) {
st->print("-XX:%s=" UINT64_FORMAT, _name, get_uint64_t());
} else if (is_size_t()) {
st->print("-XX:%s=" SIZE_FORMAT, _name, get_size_t());
} else if (is_double()) {
st->print("-XX:%s=%f", _name, get_double());
} else if (is_ccstr()) {
st->print("-XX:%s=", _name);
const char* cp = get_ccstr();
if (cp != NULL) {
// Need to turn embedded '\n's back into separate arguments
// Not so efficient to print one character at a time,
// but the choice is to do the transformation to a buffer
// and print that. And this need not be efficient.
for (; *cp != '\0'; cp += 1) {
switch (*cp) {
default:
st->print("%c", *cp);
break;
case '\n':
st->print(" -XX:%s=", _name);
break;
}
}
}
} else {
ShouldNotReachHere();
}
}
const char* JVMFlag::flag_error_str(JVMFlag::Error error) {
switch (error) {
case JVMFlag::MISSING_NAME: return "MISSING_NAME";
case JVMFlag::MISSING_VALUE: return "MISSING_VALUE";
case JVMFlag::NON_WRITABLE: return "NON_WRITABLE";
case JVMFlag::OUT_OF_BOUNDS: return "OUT_OF_BOUNDS";
case JVMFlag::VIOLATES_CONSTRAINT: return "VIOLATES_CONSTRAINT";
case JVMFlag::INVALID_FLAG: return "INVALID_FLAG";
case JVMFlag::ERR_OTHER: return "ERR_OTHER";
case JVMFlag::SUCCESS: return "SUCCESS";
default: ShouldNotReachHere(); return "NULL";
}
}
// 4991491 do not "optimize out" the was_set false values: omitting them
// tickles a Microsoft compiler bug causing flagTable to be malformed
#define RUNTIME_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_PRODUCT) },
#define RUNTIME_PD_PRODUCT_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define RUNTIME_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_DIAGNOSTIC) },
#define RUNTIME_PD_DIAGNOSTIC_FLAG_STRUCT(type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define RUNTIME_EXPERIMENTAL_FLAG_STRUCT(type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_EXPERIMENTAL) },
#define RUNTIME_MANAGEABLE_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_MANAGEABLE) },
#define RUNTIME_PRODUCT_RW_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_READ_WRITE) },
#define RUNTIME_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_DEVELOP) },
#define RUNTIME_PD_DEVELOP_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define RUNTIME_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_NOT_PRODUCT) },
#define JVMCI_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_PRODUCT) },
#define JVMCI_PD_PRODUCT_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define JVMCI_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_DIAGNOSTIC) },
#define JVMCI_PD_DIAGNOSTIC_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define JVMCI_EXPERIMENTAL_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_EXPERIMENTAL) },
#define JVMCI_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_DEVELOP) },
#define JVMCI_PD_DEVELOP_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define JVMCI_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_NOT_PRODUCT) },
#ifdef _LP64
#define RUNTIME_LP64_PRODUCT_FLAG_STRUCT(type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_LP64_PRODUCT) },
#else
#define RUNTIME_LP64_PRODUCT_FLAG_STRUCT(type, name, value, doc) /* flag is constant */
#endif // _LP64
#define C1_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_PRODUCT) },
#define C1_PD_PRODUCT_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define C1_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_DIAGNOSTIC) },
#define C1_PD_DIAGNOSTIC_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define C1_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_DEVELOP) },
#define C1_PD_DEVELOP_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define C1_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_NOT_PRODUCT) },
#define C2_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_PRODUCT) },
#define C2_PD_PRODUCT_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define C2_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_DIAGNOSTIC) },
#define C2_PD_DIAGNOSTIC_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define C2_EXPERIMENTAL_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_EXPERIMENTAL) },
#define C2_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_DEVELOP) },
#define C2_PD_DEVELOP_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT) },
#define C2_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_NOT_PRODUCT) },
#define ARCH_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_PRODUCT) },
#define ARCH_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_DIAGNOSTIC) },
#define ARCH_EXPERIMENTAL_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_EXPERIMENTAL) },
#define ARCH_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_DEVELOP) },
#define ARCH_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_NOT_PRODUCT) },
static JVMFlag flagTable[] = {
VM_FLAGS(RUNTIME_DEVELOP_FLAG_STRUCT, \
RUNTIME_PD_DEVELOP_FLAG_STRUCT, \
RUNTIME_PRODUCT_FLAG_STRUCT, \
RUNTIME_PD_PRODUCT_FLAG_STRUCT, \
RUNTIME_DIAGNOSTIC_FLAG_STRUCT, \
RUNTIME_PD_DIAGNOSTIC_FLAG_STRUCT, \
RUNTIME_EXPERIMENTAL_FLAG_STRUCT, \
RUNTIME_NOTPRODUCT_FLAG_STRUCT, \
RUNTIME_MANAGEABLE_FLAG_STRUCT, \
RUNTIME_PRODUCT_RW_FLAG_STRUCT, \
RUNTIME_LP64_PRODUCT_FLAG_STRUCT, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT, \
IGNORE_WRITEABLE)
RUNTIME_OS_FLAGS(RUNTIME_DEVELOP_FLAG_STRUCT, \
RUNTIME_PD_DEVELOP_FLAG_STRUCT, \
RUNTIME_PRODUCT_FLAG_STRUCT, \
RUNTIME_PD_PRODUCT_FLAG_STRUCT, \
RUNTIME_DIAGNOSTIC_FLAG_STRUCT, \
RUNTIME_PD_DIAGNOSTIC_FLAG_STRUCT, \
RUNTIME_NOTPRODUCT_FLAG_STRUCT, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT, \
IGNORE_WRITEABLE)
#if INCLUDE_JVMCI
JVMCI_FLAGS(JVMCI_DEVELOP_FLAG_STRUCT, \
JVMCI_PD_DEVELOP_FLAG_STRUCT, \
JVMCI_PRODUCT_FLAG_STRUCT, \
JVMCI_PD_PRODUCT_FLAG_STRUCT, \
JVMCI_DIAGNOSTIC_FLAG_STRUCT, \
JVMCI_PD_DIAGNOSTIC_FLAG_STRUCT, \
JVMCI_EXPERIMENTAL_FLAG_STRUCT, \
JVMCI_NOTPRODUCT_FLAG_STRUCT, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT, \
IGNORE_WRITEABLE)
#endif // INCLUDE_JVMCI
#ifdef COMPILER1
C1_FLAGS(C1_DEVELOP_FLAG_STRUCT, \
C1_PD_DEVELOP_FLAG_STRUCT, \
C1_PRODUCT_FLAG_STRUCT, \
C1_PD_PRODUCT_FLAG_STRUCT, \
C1_DIAGNOSTIC_FLAG_STRUCT, \
C1_PD_DIAGNOSTIC_FLAG_STRUCT, \
C1_NOTPRODUCT_FLAG_STRUCT, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT, \
IGNORE_WRITEABLE)
#endif // COMPILER1
#ifdef COMPILER2
C2_FLAGS(C2_DEVELOP_FLAG_STRUCT, \
C2_PD_DEVELOP_FLAG_STRUCT, \
C2_PRODUCT_FLAG_STRUCT, \
C2_PD_PRODUCT_FLAG_STRUCT, \
C2_DIAGNOSTIC_FLAG_STRUCT, \
C2_PD_DIAGNOSTIC_FLAG_STRUCT, \
C2_EXPERIMENTAL_FLAG_STRUCT, \
C2_NOTPRODUCT_FLAG_STRUCT, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT, \
IGNORE_WRITEABLE)
#endif // COMPILER2
ARCH_FLAGS(ARCH_DEVELOP_FLAG_STRUCT, \
ARCH_PRODUCT_FLAG_STRUCT, \
ARCH_DIAGNOSTIC_FLAG_STRUCT, \
ARCH_EXPERIMENTAL_FLAG_STRUCT, \
ARCH_NOTPRODUCT_FLAG_STRUCT, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT, \
IGNORE_WRITEABLE)
FLAGTABLE_EXT
{0, NULL, NULL}
};
JVMFlag* JVMFlag::flags = flagTable;
size_t JVMFlag::numFlags = (sizeof(flagTable) / sizeof(JVMFlag));
inline bool str_equal(const char* s, size_t s_len, const char* q, size_t q_len) {
if (s_len != q_len) return false;
return memcmp(s, q, q_len) == 0;
}
// Search the flag table for a named flag
JVMFlag* JVMFlag::find_flag(const char* name, size_t length, bool allow_locked, bool return_flag) {
for (JVMFlag* current = &flagTable[0]; current->_name != NULL; current++) {
if (str_equal(current->_name, current->get_name_length(), name, length)) {
// Found a matching entry.
// Don't report notproduct and develop flags in product builds.
if (current->is_constant_in_binary()) {
return (return_flag ? current : NULL);
}
// Report locked flags only if allowed.
if (!(current->is_unlocked() || current->is_unlocker())) {
if (!allow_locked) {
// disable use of locked flags, e.g. diagnostic, experimental,
// commercial... until they are explicitly unlocked
return NULL;
}
}
return current;
}
}
// JVMFlag name is not in the flag table
return NULL;
}
// Get or compute the flag name length
size_t JVMFlag::get_name_length() {
if (_name_len == 0) {
_name_len = strlen(_name);
}
return _name_len;
}
JVMFlag* JVMFlag::fuzzy_match(const char* name, size_t length, bool allow_locked) {
float VMOptionsFuzzyMatchSimilarity = 0.7f;
JVMFlag* match = NULL;
float score;
float max_score = -1;
for (JVMFlag* current = &flagTable[0]; current->_name != NULL; current++) {
score = StringUtils::similarity(current->_name, strlen(current->_name), name, length);
if (score > max_score) {
max_score = score;
match = current;
}
}
if (!(match->is_unlocked() || match->is_unlocker())) {
if (!allow_locked) {
return NULL;
}
}
if (max_score < VMOptionsFuzzyMatchSimilarity) {
return NULL;
}
return match;
}
// Returns the address of the index'th element
static JVMFlag* address_of_flag(JVMFlagsWithType flag) {
assert((size_t)flag < JVMFlag::numFlags, "bad command line flag index");
return &JVMFlag::flags[flag];
}
bool JVMFlagEx::is_default(JVMFlags flag) {
assert((size_t)flag < JVMFlag::numFlags, "bad command line flag index");
JVMFlag* f = &JVMFlag::flags[flag];
return f->is_default();
}
bool JVMFlagEx::is_ergo(JVMFlags flag) {
assert((size_t)flag < JVMFlag::numFlags, "bad command line flag index");
JVMFlag* f = &JVMFlag::flags[flag];
return f->is_ergonomic();
}
bool JVMFlagEx::is_cmdline(JVMFlags flag) {
assert((size_t)flag < JVMFlag::numFlags, "bad command line flag index");
JVMFlag* f = &JVMFlag::flags[flag];
return f->is_command_line();
}
bool JVMFlag::wasSetOnCmdline(const char* name, bool* value) {
JVMFlag* result = JVMFlag::find_flag((char*)name, strlen(name));
if (result == NULL) return false;
*value = result->is_command_line();
return true;
}
void JVMFlagEx::setOnCmdLine(JVMFlagsWithType flag) {
JVMFlag* faddr = address_of_flag(flag);
assert(faddr != NULL, "Unknown flag");
faddr->set_command_line();
}
template<class E, class T>
static void trace_flag_changed(const char* name, const T old_value, const T new_value, const JVMFlag::Flags origin) {
E e;
e.set_name(name);
e.set_oldValue(old_value);
e.set_newValue(new_value);
e.set_origin(origin);
e.commit();
}
static JVMFlag::Error apply_constraint_and_check_range_bool(const char* name, bool new_value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_bool(new_value, verbose);
}
return status;
}
JVMFlag::Error JVMFlag::boolAt(const char* name, size_t len, bool* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_bool()) return JVMFlag::WRONG_FORMAT;
*value = result->get_bool();
return JVMFlag::SUCCESS;
}
JVMFlag::Error JVMFlag::boolAtPut(JVMFlag* flag, bool* value, JVMFlag::Flags origin) {
const char* name;
if (flag == NULL) return JVMFlag::INVALID_FLAG;
if (!flag->is_bool()) return JVMFlag::WRONG_FORMAT;
name = flag->_name;
JVMFlag::Error check = apply_constraint_and_check_range_bool(name, *value, !JVMFlagConstraintList::validated_after_ergo());
if (check != JVMFlag::SUCCESS) return check;
bool old_value = flag->get_bool();
trace_flag_changed<EventBooleanFlagChanged, bool>(name, old_value, *value, origin);
check = flag->set_bool(*value);
*value = old_value;
flag->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlag::boolAtPut(const char* name, size_t len, bool* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
return boolAtPut(result, value, origin);
}
JVMFlag::Error JVMFlagEx::boolAtPut(JVMFlagsWithType flag, bool value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_bool(), "wrong flag type");
return JVMFlag::boolAtPut(faddr, &value, origin);
}
static JVMFlag::Error apply_constraint_and_check_range_int(const char* name, int new_value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
JVMFlagRange* range = JVMFlagRangeList::find(name);
if (range != NULL) {
status = range->check_int(new_value, verbose);
}
if (status == JVMFlag::SUCCESS) {
JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_int(new_value, verbose);
}
}
return status;
}
JVMFlag::Error JVMFlag::intAt(const char* name, size_t len, int* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_int()) return JVMFlag::WRONG_FORMAT;
*value = result->get_int();
return JVMFlag::SUCCESS;
}
JVMFlag::Error JVMFlag::intAtPut(JVMFlag* flag, int* value, JVMFlag::Flags origin) {
const char* name;
if (flag == NULL) return JVMFlag::INVALID_FLAG;
if (!flag->is_int()) return JVMFlag::WRONG_FORMAT;
name = flag->_name;
JVMFlag::Error check = apply_constraint_and_check_range_int(name, *value, !JVMFlagConstraintList::validated_after_ergo());
if (check != JVMFlag::SUCCESS) return check;
int old_value = flag->get_int();
trace_flag_changed<EventIntFlagChanged, s4>(name, old_value, *value, origin);
check = flag->set_int(*value);
*value = old_value;
flag->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlag::intAtPut(const char* name, size_t len, int* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
return intAtPut(result, value, origin);
}
JVMFlag::Error JVMFlagEx::intAtPut(JVMFlagsWithType flag, int value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_int(), "wrong flag type");
return JVMFlag::intAtPut(faddr, &value, origin);
}
static JVMFlag::Error apply_constraint_and_check_range_uint(const char* name, uint new_value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
JVMFlagRange* range = JVMFlagRangeList::find(name);
if (range != NULL) {
status = range->check_uint(new_value, verbose);
}
if (status == JVMFlag::SUCCESS) {
JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_uint(new_value, verbose);
}
}
return status;
}
JVMFlag::Error JVMFlag::uintAt(const char* name, size_t len, uint* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_uint()) return JVMFlag::WRONG_FORMAT;
*value = result->get_uint();
return JVMFlag::SUCCESS;
}
JVMFlag::Error JVMFlag::uintAtPut(JVMFlag* flag, uint* value, JVMFlag::Flags origin) {
const char* name;
if (flag == NULL) return JVMFlag::INVALID_FLAG;
if (!flag->is_uint()) return JVMFlag::WRONG_FORMAT;
name = flag->_name;
JVMFlag::Error check = apply_constraint_and_check_range_uint(name, *value, !JVMFlagConstraintList::validated_after_ergo());
if (check != JVMFlag::SUCCESS) return check;
uint old_value = flag->get_uint();
trace_flag_changed<EventUnsignedIntFlagChanged, u4>(name, old_value, *value, origin);
check = flag->set_uint(*value);
*value = old_value;
flag->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlag::uintAtPut(const char* name, size_t len, uint* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
return uintAtPut(result, value, origin);
}
JVMFlag::Error JVMFlagEx::uintAtPut(JVMFlagsWithType flag, uint value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_uint(), "wrong flag type");
return JVMFlag::uintAtPut(faddr, &value, origin);
}
JVMFlag::Error JVMFlag::intxAt(const char* name, size_t len, intx* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_intx()) return JVMFlag::WRONG_FORMAT;
*value = result->get_intx();
return JVMFlag::SUCCESS;
}
static JVMFlag::Error apply_constraint_and_check_range_intx(const char* name, intx new_value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
JVMFlagRange* range = JVMFlagRangeList::find(name);
if (range != NULL) {
status = range->check_intx(new_value, verbose);
}
if (status == JVMFlag::SUCCESS) {
JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_intx(new_value, verbose);
}
}
return status;
}
JVMFlag::Error JVMFlag::intxAtPut(JVMFlag* flag, intx* value, JVMFlag::Flags origin) {
const char* name;
if (flag == NULL) return JVMFlag::INVALID_FLAG;
if (!flag->is_intx()) return JVMFlag::WRONG_FORMAT;
name = flag->_name;
JVMFlag::Error check = apply_constraint_and_check_range_intx(name, *value, !JVMFlagConstraintList::validated_after_ergo());
if (check != JVMFlag::SUCCESS) return check;
intx old_value = flag->get_intx();
trace_flag_changed<EventLongFlagChanged, intx>(name, old_value, *value, origin);
check = flag->set_intx(*value);
*value = old_value;
flag->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlag::intxAtPut(const char* name, size_t len, intx* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
return intxAtPut(result, value, origin);
}
JVMFlag::Error JVMFlagEx::intxAtPut(JVMFlagsWithType flag, intx value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_intx(), "wrong flag type");
return JVMFlag::intxAtPut(faddr, &value, origin);
}
JVMFlag::Error JVMFlag::uintxAt(const char* name, size_t len, uintx* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_uintx()) return JVMFlag::WRONG_FORMAT;
*value = result->get_uintx();
return JVMFlag::SUCCESS;
}
static JVMFlag::Error apply_constraint_and_check_range_uintx(const char* name, uintx new_value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
JVMFlagRange* range = JVMFlagRangeList::find(name);
if (range != NULL) {
status = range->check_uintx(new_value, verbose);
}
if (status == JVMFlag::SUCCESS) {
JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_uintx(new_value, verbose);
}
}
return status;
}
JVMFlag::Error JVMFlag::uintxAtPut(JVMFlag* flag, uintx* value, JVMFlag::Flags origin) {
const char* name;
if (flag == NULL) return JVMFlag::INVALID_FLAG;
if (!flag->is_uintx()) return JVMFlag::WRONG_FORMAT;
name = flag->_name;
JVMFlag::Error check = apply_constraint_and_check_range_uintx(name, *value, !JVMFlagConstraintList::validated_after_ergo());
if (check != JVMFlag::SUCCESS) return check;
uintx old_value = flag->get_uintx();
trace_flag_changed<EventUnsignedLongFlagChanged, u8>(name, old_value, *value, origin);
check = flag->set_uintx(*value);
*value = old_value;
flag->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlag::uintxAtPut(const char* name, size_t len, uintx* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
return uintxAtPut(result, value, origin);
}
JVMFlag::Error JVMFlagEx::uintxAtPut(JVMFlagsWithType flag, uintx value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_uintx(), "wrong flag type");
return JVMFlag::uintxAtPut(faddr, &value, origin);
}
JVMFlag::Error JVMFlag::uint64_tAt(const char* name, size_t len, uint64_t* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_uint64_t()) return JVMFlag::WRONG_FORMAT;
*value = result->get_uint64_t();
return JVMFlag::SUCCESS;
}
static JVMFlag::Error apply_constraint_and_check_range_uint64_t(const char* name, uint64_t new_value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
JVMFlagRange* range = JVMFlagRangeList::find(name);
if (range != NULL) {
status = range->check_uint64_t(new_value, verbose);
}
if (status == JVMFlag::SUCCESS) {
JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_uint64_t(new_value, verbose);
}
}
return status;
}
JVMFlag::Error JVMFlag::uint64_tAtPut(JVMFlag* flag, uint64_t* value, JVMFlag::Flags origin) {
const char* name;
if (flag == NULL) return JVMFlag::INVALID_FLAG;
if (!flag->is_uint64_t()) return JVMFlag::WRONG_FORMAT;
name = flag->_name;
JVMFlag::Error check = apply_constraint_and_check_range_uint64_t(name, *value, !JVMFlagConstraintList::validated_after_ergo());
if (check != JVMFlag::SUCCESS) return check;
uint64_t old_value = flag->get_uint64_t();
trace_flag_changed<EventUnsignedLongFlagChanged, u8>(name, old_value, *value, origin);
check = flag->set_uint64_t(*value);
*value = old_value;
flag->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlag::uint64_tAtPut(const char* name, size_t len, uint64_t* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
return uint64_tAtPut(result, value, origin);
}
JVMFlag::Error JVMFlagEx::uint64_tAtPut(JVMFlagsWithType flag, uint64_t value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_uint64_t(), "wrong flag type");
return JVMFlag::uint64_tAtPut(faddr, &value, origin);
}
JVMFlag::Error JVMFlag::size_tAt(const char* name, size_t len, size_t* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_size_t()) return JVMFlag::WRONG_FORMAT;
*value = result->get_size_t();
return JVMFlag::SUCCESS;
}
static JVMFlag::Error apply_constraint_and_check_range_size_t(const char* name, size_t new_value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
JVMFlagRange* range = JVMFlagRangeList::find(name);
if (range != NULL) {
status = range->check_size_t(new_value, verbose);
}
if (status == JVMFlag::SUCCESS) {
JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_size_t(new_value, verbose);
}
}
return status;
}
JVMFlag::Error JVMFlag::size_tAtPut(JVMFlag* flag, size_t* value, JVMFlag::Flags origin) {
const char* name;
if (flag == NULL) return JVMFlag::INVALID_FLAG;
if (!flag->is_size_t()) return JVMFlag::WRONG_FORMAT;
name = flag->_name;
JVMFlag::Error check = apply_constraint_and_check_range_size_t(name, *value, !JVMFlagConstraintList::validated_after_ergo());
if (check != JVMFlag::SUCCESS) return check;
size_t old_value = flag->get_size_t();
trace_flag_changed<EventUnsignedLongFlagChanged, u8>(name, old_value, *value, origin);
check = flag->set_size_t(*value);
*value = old_value;
flag->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlag::size_tAtPut(const char* name, size_t len, size_t* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
return size_tAtPut(result, value, origin);
}
JVMFlag::Error JVMFlagEx::size_tAtPut(JVMFlagsWithType flag, size_t value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_size_t(), "wrong flag type");
return JVMFlag::size_tAtPut(faddr, &value, origin);
}
JVMFlag::Error JVMFlag::doubleAt(const char* name, size_t len, double* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_double()) return JVMFlag::WRONG_FORMAT;
*value = result->get_double();
return JVMFlag::SUCCESS;
}
static JVMFlag::Error apply_constraint_and_check_range_double(const char* name, double new_value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
JVMFlagRange* range = JVMFlagRangeList::find(name);
if (range != NULL) {
status = range->check_double(new_value, verbose);
}
if (status == JVMFlag::SUCCESS) {
JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_double(new_value, verbose);
}
}
return status;
}
JVMFlag::Error JVMFlag::doubleAtPut(JVMFlag* flag, double* value, JVMFlag::Flags origin) {
const char* name;
if (flag == NULL) return JVMFlag::INVALID_FLAG;
if (!flag->is_double()) return JVMFlag::WRONG_FORMAT;
name = flag->_name;
JVMFlag::Error check = apply_constraint_and_check_range_double(name, *value, !JVMFlagConstraintList::validated_after_ergo());
if (check != JVMFlag::SUCCESS) return check;
double old_value = flag->get_double();
trace_flag_changed<EventDoubleFlagChanged, double>(name, old_value, *value, origin);
check = flag->set_double(*value);
*value = old_value;
flag->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlag::doubleAtPut(const char* name, size_t len, double* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
return doubleAtPut(result, value, origin);
}
JVMFlag::Error JVMFlagEx::doubleAtPut(JVMFlagsWithType flag, double value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_double(), "wrong flag type");
return JVMFlag::doubleAtPut(faddr, &value, origin);
}
JVMFlag::Error JVMFlag::ccstrAt(const char* name, size_t len, ccstr* value, bool allow_locked, bool return_flag) {
JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_ccstr()) return JVMFlag::WRONG_FORMAT;
*value = result->get_ccstr();
return JVMFlag::SUCCESS;
}
JVMFlag::Error JVMFlag::ccstrAtPut(const char* name, size_t len, ccstr* value, JVMFlag::Flags origin) {
JVMFlag* result = JVMFlag::find_flag(name, len);
if (result == NULL) return JVMFlag::INVALID_FLAG;
if (!result->is_ccstr()) return JVMFlag::WRONG_FORMAT;
ccstr old_value = result->get_ccstr();
trace_flag_changed<EventStringFlagChanged, const char*>(name, old_value, *value, origin);
char* new_value = NULL;
if (*value != NULL) {
new_value = os::strdup_check_oom(*value);
}
JVMFlag::Error check = result->set_ccstr(new_value);
if (result->is_default() && old_value != NULL) {
// Prior value is NOT heap allocated, but was a literal constant.
old_value = os::strdup_check_oom(old_value);
}
*value = old_value;
result->set_origin(origin);
return check;
}
JVMFlag::Error JVMFlagEx::ccstrAtPut(JVMFlagsWithType flag, ccstr value, JVMFlag::Flags origin) {
JVMFlag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_ccstr(), "wrong flag type");
ccstr old_value = faddr->get_ccstr();
trace_flag_changed<EventStringFlagChanged, const char*>(faddr->_name, old_value, value, origin);
char* new_value = os::strdup_check_oom(value);
JVMFlag::Error check = faddr->set_ccstr(new_value);
if (!faddr->is_default() && old_value != NULL) {
// Prior value is heap allocated so free it.
FREE_C_HEAP_ARRAY(char, old_value);
}
faddr->set_origin(origin);
return check;
}
extern "C" {
static int compare_flags(const void* void_a, const void* void_b) {
return strcmp((*((JVMFlag**) void_a))->_name, (*((JVMFlag**) void_b))->_name);
}
}
void JVMFlag::printSetFlags(outputStream* out) {
// Print which flags were set on the command line
// note: this method is called before the thread structure is in place
// which means resource allocation cannot be used.
// The last entry is the null entry.
const size_t length = JVMFlag::numFlags - 1;
// Sort
JVMFlag** array = NEW_C_HEAP_ARRAY(JVMFlag*, length, mtArguments);
for (size_t i = 0; i < length; i++) {
array[i] = &flagTable[i];
}
qsort(array, length, sizeof(JVMFlag*), compare_flags);
// Print
for (size_t i = 0; i < length; i++) {
if (array[i]->get_origin() /* naked field! */) {
array[i]->print_as_flag(out);
out->print(" ");
}
}
out->cr();
FREE_C_HEAP_ARRAY(JVMFlag*, array);
}
#ifndef PRODUCT
void JVMFlag::verify() {
assert(Arguments::check_vm_args_consistency(), "Some flag settings conflict");
}
#endif // PRODUCT
void JVMFlag::printFlags(outputStream* out, bool withComments, bool printRanges) {
// Print the flags sorted by name
// note: this method is called before the thread structure is in place
// which means resource allocation cannot be used.
// The last entry is the null entry.
const size_t length = JVMFlag::numFlags - 1;
// Sort
JVMFlag** array = NEW_C_HEAP_ARRAY(JVMFlag*, length, mtArguments);
for (size_t i = 0; i < length; i++) {
array[i] = &flagTable[i];
}
qsort(array, length, sizeof(JVMFlag*), compare_flags);
// Print
if (!printRanges) {
out->print_cr("[Global flags]");
} else {
out->print_cr("[Global flags ranges]");
}
for (size_t i = 0; i < length; i++) {
if (array[i]->is_unlocked()) {
array[i]->print_on(out, withComments, printRanges);
}
}
FREE_C_HEAP_ARRAY(JVMFlag*, array);
}