hotspot/src/share/vm/services/memTracker.cpp
author coleenp
Mon, 14 Jan 2013 11:01:39 -0500
changeset 15194 a35093d73168
parent 15104 f5d78994619f
child 15452 3bfde2dea09d
permissions -rw-r--r--
8006005: Fix constant pool index validation and alignment trap for method parameter reflection Summary: This patch addresses an alignment trap due to the storage format of method parameters data in constMethod. It also adds code to validate constant pool indexes for method parameters data. Reviewed-by: jrose, dholmes Contributed-by: eric.mccorkle@oracle.com

/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
#include "precompiled.hpp"

#include "oops/instanceKlass.hpp"
#include "runtime/atomic.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/threadCritical.hpp"
#include "services/memPtr.hpp"
#include "services/memReporter.hpp"
#include "services/memTracker.hpp"
#include "utilities/decoder.hpp"
#include "utilities/globalDefinitions.hpp"

bool NMT_track_callsite = false;

// walk all 'known' threads at NMT sync point, and collect their recorders
void SyncThreadRecorderClosure::do_thread(Thread* thread) {
  assert(SafepointSynchronize::is_at_safepoint(), "Safepoint required");
  if (thread->is_Java_thread()) {
    JavaThread* javaThread = (JavaThread*)thread;
    MemRecorder* recorder = javaThread->get_recorder();
    if (recorder != NULL) {
      MemTracker::enqueue_pending_recorder(recorder);
      javaThread->set_recorder(NULL);
    }
  }
  _thread_count ++;
}


MemRecorder*                    MemTracker::_global_recorder = NULL;
MemSnapshot*                    MemTracker::_snapshot = NULL;
MemBaseline                     MemTracker::_baseline;
Mutex*                          MemTracker::_query_lock = NULL;
volatile MemRecorder*           MemTracker::_merge_pending_queue = NULL;
volatile MemRecorder*           MemTracker::_pooled_recorders = NULL;
MemTrackWorker*                 MemTracker::_worker_thread = NULL;
int                             MemTracker::_sync_point_skip_count = 0;
MemTracker::NMTLevel            MemTracker::_tracking_level = MemTracker::NMT_off;
volatile MemTracker::NMTStates  MemTracker::_state = NMT_uninited;
MemTracker::ShutdownReason      MemTracker::_reason = NMT_shutdown_none;
int                             MemTracker::_thread_count = 255;
volatile jint                   MemTracker::_pooled_recorder_count = 0;
debug_only(intx                 MemTracker::_main_thread_tid = 0;)
NOT_PRODUCT(volatile jint       MemTracker::_pending_recorder_count = 0;)

void MemTracker::init_tracking_options(const char* option_line) {
  _tracking_level = NMT_off;
  if (strcmp(option_line, "=summary") == 0) {
    _tracking_level = NMT_summary;
  } else if (strcmp(option_line, "=detail") == 0) {
    _tracking_level = NMT_detail;
  } else if (strcmp(option_line, "=off") != 0) {
    vm_exit_during_initialization("Syntax error, expecting -XX:NativeMemoryTracking=[off|summary|detail]", NULL);
  }
}

// first phase of bootstrapping, when VM is still in single-threaded mode.
void MemTracker::bootstrap_single_thread() {
  if (_tracking_level > NMT_off) {
    assert(_state == NMT_uninited, "wrong state");

    // NMT is not supported with UseMallocOnly is on. NMT can NOT
    // handle the amount of malloc data without significantly impacting
    // runtime performance when this flag is on.
    if (UseMallocOnly) {
      shutdown(NMT_use_malloc_only);
      return;
    }

    _query_lock = new (std::nothrow) Mutex(Monitor::max_nonleaf, "NMT_queryLock");
    if (_query_lock == NULL) {
      shutdown(NMT_out_of_memory);
      return;
    }

    debug_only(_main_thread_tid = os::current_thread_id();)
    _state = NMT_bootstrapping_single_thread;
    NMT_track_callsite = (_tracking_level == NMT_detail && can_walk_stack());
  }
}

// second phase of bootstrapping, when VM is about to or already entered multi-theaded mode.
void MemTracker::bootstrap_multi_thread() {
  if (_tracking_level > NMT_off && _state == NMT_bootstrapping_single_thread) {
  // create nmt lock for multi-thread execution
    assert(_main_thread_tid == os::current_thread_id(), "wrong thread");
    _state = NMT_bootstrapping_multi_thread;
    NMT_track_callsite = (_tracking_level == NMT_detail && can_walk_stack());
  }
}

// fully start nmt
void MemTracker::start() {
  // Native memory tracking is off from command line option
  if (_tracking_level == NMT_off || shutdown_in_progress()) return;

  assert(_main_thread_tid == os::current_thread_id(), "wrong thread");
  assert(_state == NMT_bootstrapping_multi_thread, "wrong state");

  _snapshot = new (std::nothrow)MemSnapshot();
  if (_snapshot != NULL && !_snapshot->out_of_memory()) {
    if (start_worker()) {
      _state = NMT_started;
      NMT_track_callsite = (_tracking_level == NMT_detail && can_walk_stack());
      return;
    }
  }

  // fail to start native memory tracking, shut it down
  shutdown(NMT_initialization);
}

/**
 * Shutting down native memory tracking.
 * We can not shutdown native memory tracking immediately, so we just
 * setup shutdown pending flag, every native memory tracking component
 * should orderly shut itself down.
 *
 * The shutdown sequences:
 *  1. MemTracker::shutdown() sets MemTracker to shutdown pending state
 *  2. Worker thread calls MemTracker::final_shutdown(), which transites
 *     MemTracker to final shutdown state.
 *  3. At sync point, MemTracker does final cleanup, before sets memory
 *     tracking level to off to complete shutdown.
 */
void MemTracker::shutdown(ShutdownReason reason) {
  if (_tracking_level == NMT_off) return;

  if (_state <= NMT_bootstrapping_single_thread) {
    // we still in single thread mode, there is not contention
    _state = NMT_shutdown_pending;
    _reason = reason;
  } else {
    // we want to know who initialized shutdown
    if ((jint)NMT_started == Atomic::cmpxchg((jint)NMT_shutdown_pending,
                                       (jint*)&_state, (jint)NMT_started)) {
        _reason = reason;
    }
  }
}

// final phase of shutdown
void MemTracker::final_shutdown() {
  // delete all pending recorders and pooled recorders
  delete_all_pending_recorders();
  delete_all_pooled_recorders();

  {
    // shared baseline and snapshot are the only objects needed to
    // create query results
    MutexLockerEx locker(_query_lock, true);
    // cleanup baseline data and snapshot
    _baseline.clear();
    delete _snapshot;
    _snapshot = NULL;
  }

  // shutdown shared decoder instance, since it is only
  // used by native memory tracking so far.
  Decoder::shutdown();

  MemTrackWorker* worker = NULL;
  {
    ThreadCritical tc;
    // can not delete worker inside the thread critical
    if (_worker_thread != NULL && Thread::current() == _worker_thread) {
      worker = _worker_thread;
      _worker_thread = NULL;
    }
  }
  if (worker != NULL) {
    delete worker;
  }
  _state = NMT_final_shutdown;
}

// delete all pooled recorders
void MemTracker::delete_all_pooled_recorders() {
  // free all pooled recorders
  volatile MemRecorder* cur_head = _pooled_recorders;
  if (cur_head != NULL) {
    MemRecorder* null_ptr = NULL;
    while (cur_head != NULL && (void*)cur_head != Atomic::cmpxchg_ptr((void*)null_ptr,
      (void*)&_pooled_recorders, (void*)cur_head)) {
      cur_head = _pooled_recorders;
    }
    if (cur_head != NULL) {
      delete cur_head;
      _pooled_recorder_count = 0;
    }
  }
}

// delete all recorders in pending queue
void MemTracker::delete_all_pending_recorders() {
  // free all pending recorders
  MemRecorder* pending_head = get_pending_recorders();
  if (pending_head != NULL) {
    delete pending_head;
  }
}

/*
 * retrieve per-thread recorder of specified thread.
 * if thread == NULL, it means global recorder
 */
MemRecorder* MemTracker::get_thread_recorder(JavaThread* thread) {
  if (shutdown_in_progress()) return NULL;

  MemRecorder* rc;
  if (thread == NULL) {
    rc = _global_recorder;
  } else {
    rc = thread->get_recorder();
  }

  if (rc != NULL && rc->is_full()) {
    enqueue_pending_recorder(rc);
    rc = NULL;
  }

  if (rc == NULL) {
    rc = get_new_or_pooled_instance();
    if (thread == NULL) {
      _global_recorder = rc;
    } else {
      thread->set_recorder(rc);
    }
  }
  return rc;
}

/*
 * get a per-thread recorder from pool, or create a new one if
 * there is not one available.
 */
MemRecorder* MemTracker::get_new_or_pooled_instance() {
   MemRecorder* cur_head = const_cast<MemRecorder*> (_pooled_recorders);
   if (cur_head == NULL) {
     MemRecorder* rec = new (std::nothrow)MemRecorder();
     if (rec == NULL || rec->out_of_memory()) {
       shutdown(NMT_out_of_memory);
       if (rec != NULL) {
         delete rec;
         rec = NULL;
       }
     }
     return rec;
   } else {
     MemRecorder* next_head = cur_head->next();
     if ((void*)cur_head != Atomic::cmpxchg_ptr((void*)next_head, (void*)&_pooled_recorders,
       (void*)cur_head)) {
       return get_new_or_pooled_instance();
     }
     cur_head->set_next(NULL);
     Atomic::dec(&_pooled_recorder_count);
     debug_only(cur_head->set_generation();)
     return cur_head;
  }
}

/*
 * retrieve all recorders in pending queue, and empty the queue
 */
MemRecorder* MemTracker::get_pending_recorders() {
  MemRecorder* cur_head = const_cast<MemRecorder*>(_merge_pending_queue);
  MemRecorder* null_ptr = NULL;
  while ((void*)cur_head != Atomic::cmpxchg_ptr((void*)null_ptr, (void*)&_merge_pending_queue,
    (void*)cur_head)) {
    cur_head = const_cast<MemRecorder*>(_merge_pending_queue);
  }
  NOT_PRODUCT(Atomic::store(0, &_pending_recorder_count));
  return cur_head;
}

/*
 * release a recorder to recorder pool.
 */
void MemTracker::release_thread_recorder(MemRecorder* rec) {
  assert(rec != NULL, "null recorder");
  // we don't want to pool too many recorders
  rec->set_next(NULL);
  if (shutdown_in_progress() || _pooled_recorder_count > _thread_count * 2) {
    delete rec;
    return;
  }

  rec->clear();
  MemRecorder* cur_head = const_cast<MemRecorder*>(_pooled_recorders);
  rec->set_next(cur_head);
  while ((void*)cur_head != Atomic::cmpxchg_ptr((void*)rec, (void*)&_pooled_recorders,
    (void*)cur_head)) {
    cur_head = const_cast<MemRecorder*>(_pooled_recorders);
    rec->set_next(cur_head);
  }
  Atomic::inc(&_pooled_recorder_count);
}

/*
 * This is the most important method in whole nmt implementation.
 *
 * Create a memory record.
 * 1. When nmt is in single-threaded bootstrapping mode, no lock is needed as VM
 *    still in single thread mode.
 * 2. For all threads other than JavaThread, ThreadCritical is needed
 *    to write to recorders to global recorder.
 * 3. For JavaThreads that are not longer visible by safepoint, also
 *    need to take ThreadCritical and records are written to global
 *    recorders, since these threads are NOT walked by Threads.do_thread().
 * 4. JavaThreads that are running in native state, have to transition
 *    to VM state before writing to per-thread recorders.
 * 5. JavaThreads that are running in VM state do not need any lock and
 *    records are written to per-thread recorders.
 * 6. For a thread has yet to attach VM 'Thread', they need to take
 *    ThreadCritical to write to global recorder.
 *
 *    Important note:
 *    NO LOCK should be taken inside ThreadCritical lock !!!
 */
void MemTracker::create_memory_record(address addr, MEMFLAGS flags,
    size_t size, address pc, Thread* thread) {
  assert(addr != NULL, "Sanity check");
  if (!shutdown_in_progress()) {
    // single thread, we just write records direct to global recorder,'
    // with any lock
    if (_state == NMT_bootstrapping_single_thread) {
      assert(_main_thread_tid == os::current_thread_id(), "wrong thread");
      thread = NULL;
    } else {
      if (thread == NULL) {
          // don't use Thread::current(), since it is possible that
          // the calling thread has yet to attach to VM 'Thread',
          // which will result assertion failure
          thread = ThreadLocalStorage::thread();
      }
    }

    if (thread != NULL) {
      if (thread->is_Java_thread() && ((JavaThread*)thread)->is_safepoint_visible()) {
        JavaThread*      java_thread = (JavaThread*)thread;
        JavaThreadState  state = java_thread->thread_state();
        if (SafepointSynchronize::safepoint_safe(java_thread, state)) {
          // JavaThreads that are safepoint safe, can run through safepoint,
          // so ThreadCritical is needed to ensure no threads at safepoint create
          // new records while the records are being gathered and the sequence number is changing
          ThreadCritical tc;
          create_record_in_recorder(addr, flags, size, pc, java_thread);
        } else {
          create_record_in_recorder(addr, flags, size, pc, java_thread);
        }
      } else {
        // other threads, such as worker and watcher threads, etc. need to
        // take ThreadCritical to write to global recorder
        ThreadCritical tc;
        create_record_in_recorder(addr, flags, size, pc, NULL);
      }
    } else {
      if (_state == NMT_bootstrapping_single_thread) {
        // single thread, no lock needed
        create_record_in_recorder(addr, flags, size, pc, NULL);
      } else {
        // for thread has yet to attach VM 'Thread', we can not use VM mutex.
        // use native thread critical instead
        ThreadCritical tc;
        create_record_in_recorder(addr, flags, size, pc, NULL);
      }
    }
  }
}

// write a record to proper recorder. No lock can be taken from this method
// down.
void MemTracker::create_record_in_recorder(address addr, MEMFLAGS flags,
    size_t size, address pc, JavaThread* thread) {

    MemRecorder* rc = get_thread_recorder(thread);
    if (rc != NULL) {
      rc->record(addr, flags, size, pc);
    }
}

/**
 * enqueue a recorder to pending queue
 */
void MemTracker::enqueue_pending_recorder(MemRecorder* rec) {
  assert(rec != NULL, "null recorder");

  // we are shutting down, so just delete it
  if (shutdown_in_progress()) {
    rec->set_next(NULL);
    delete rec;
    return;
  }

  MemRecorder* cur_head = const_cast<MemRecorder*>(_merge_pending_queue);
  rec->set_next(cur_head);
  while ((void*)cur_head != Atomic::cmpxchg_ptr((void*)rec, (void*)&_merge_pending_queue,
    (void*)cur_head)) {
    cur_head = const_cast<MemRecorder*>(_merge_pending_queue);
    rec->set_next(cur_head);
  }
  NOT_PRODUCT(Atomic::inc(&_pending_recorder_count);)
}

/*
 * The method is called at global safepoint
 * during it synchronization process.
 *   1. enqueue all JavaThreads' per-thread recorders
 *   2. enqueue global recorder
 *   3. retrieve all pending recorders
 *   4. reset global sequence number generator
 *   5. call worker's sync
 */
#define MAX_SAFEPOINTS_TO_SKIP     128
#define SAFE_SEQUENCE_THRESHOLD    30
#define HIGH_GENERATION_THRESHOLD  60

void MemTracker::sync() {
  assert(_tracking_level > NMT_off, "NMT is not enabled");
  assert(SafepointSynchronize::is_at_safepoint(), "Safepoint required");

  // Some GC tests hit large number of safepoints in short period of time
  // without meaningful activities. We should prevent going to
  // sync point in these cases, which can potentially exhaust generation buffer.
  // Here is the factots to determine if we should go into sync point:
  // 1. not to overflow sequence number
  // 2. if we are in danger to overflow generation buffer
  // 3. how many safepoints we already skipped sync point
  if (_state == NMT_started) {
    // worker thread is not ready, no one can manage generation
    // buffer, so skip this safepoint
    if (_worker_thread == NULL) return;

    if (_sync_point_skip_count < MAX_SAFEPOINTS_TO_SKIP) {
      int per_seq_in_use = SequenceGenerator::peek() * 100 / max_jint;
      int per_gen_in_use = _worker_thread->generations_in_use() * 100 / MAX_GENERATIONS;
      if (per_seq_in_use < SAFE_SEQUENCE_THRESHOLD && per_gen_in_use >= HIGH_GENERATION_THRESHOLD) {
        _sync_point_skip_count ++;
        return;
      }
    }
    _sync_point_skip_count = 0;
    {
      // This method is running at safepoint, with ThreadCritical lock,
      // it should guarantee that NMT is fully sync-ed.
      ThreadCritical tc;

      SequenceGenerator::reset();

      // walk all JavaThreads to collect recorders
      SyncThreadRecorderClosure stc;
      Threads::threads_do(&stc);

      _thread_count = stc.get_thread_count();
      MemRecorder* pending_recorders = get_pending_recorders();

      if (_global_recorder != NULL) {
        _global_recorder->set_next(pending_recorders);
        pending_recorders = _global_recorder;
        _global_recorder = NULL;
      }
      // check _worker_thread with lock to avoid racing condition
      if (_worker_thread != NULL) {
        _worker_thread->at_sync_point(pending_recorders, InstanceKlass::number_of_instance_classes());
      }

      assert(SequenceGenerator::peek() == 1, "Should not have memory activities during sync-point");
    }
  }

  // now, it is the time to shut whole things off
  if (_state == NMT_final_shutdown) {
    // walk all JavaThreads to delete all recorders
    SyncThreadRecorderClosure stc;
    Threads::threads_do(&stc);
    // delete global recorder
    {
      ThreadCritical tc;
      if (_global_recorder != NULL) {
        delete _global_recorder;
        _global_recorder = NULL;
      }
    }
    MemRecorder* pending_recorders = get_pending_recorders();
    if (pending_recorders != NULL) {
      delete pending_recorders;
    }
    // try at a later sync point to ensure MemRecorder instance drops to zero to
    // completely shutdown NMT
    if (MemRecorder::_instance_count == 0) {
      _state = NMT_shutdown;
      _tracking_level = NMT_off;
    }
  }
}

/*
 * Start worker thread.
 */
bool MemTracker::start_worker() {
  assert(_worker_thread == NULL, "Just Check");
  _worker_thread = new (std::nothrow) MemTrackWorker();
  if (_worker_thread == NULL || _worker_thread->has_error()) {
    shutdown(NMT_initialization);
    return false;
  }
  _worker_thread->start();
  return true;
}

/*
 * We need to collect a JavaThread's per-thread recorder
 * before it exits.
 */
void MemTracker::thread_exiting(JavaThread* thread) {
  if (is_on()) {
    MemRecorder* rec = thread->get_recorder();
    if (rec != NULL) {
      enqueue_pending_recorder(rec);
      thread->set_recorder(NULL);
    }
  }
}

// baseline current memory snapshot
bool MemTracker::baseline() {
  MutexLockerEx lock(_query_lock, true);
  MemSnapshot* snapshot = get_snapshot();
  if (snapshot != NULL) {
    return _baseline.baseline(*snapshot, false);
  }
  return false;
}

// print memory usage from current snapshot
bool MemTracker::print_memory_usage(BaselineOutputer& out, size_t unit, bool summary_only) {
  MemBaseline  baseline;
  MutexLockerEx lock(_query_lock, true);
  MemSnapshot* snapshot = get_snapshot();
  if (snapshot != NULL && baseline.baseline(*snapshot, summary_only)) {
    BaselineReporter reporter(out, unit);
    reporter.report_baseline(baseline, summary_only);
    return true;
  }
  return false;
}

// compare memory usage between current snapshot and baseline
bool MemTracker::compare_memory_usage(BaselineOutputer& out, size_t unit, bool summary_only) {
  MutexLockerEx lock(_query_lock, true);
  if (_baseline.baselined()) {
    MemBaseline baseline;
    MemSnapshot* snapshot = get_snapshot();
    if (snapshot != NULL && baseline.baseline(*snapshot, summary_only)) {
      BaselineReporter reporter(out, unit);
      reporter.diff_baselines(baseline, _baseline, summary_only);
      return true;
    }
  }
  return false;
}

#ifndef PRODUCT
void MemTracker::walk_stack(int toSkip, char* buf, int len) {
  int cur_len = 0;
  char tmp[1024];
  address pc;

  while (cur_len < len) {
    pc = os::get_caller_pc(toSkip + 1);
    if (pc != NULL && os::dll_address_to_function_name(pc, tmp, sizeof(tmp), NULL)) {
      jio_snprintf(&buf[cur_len], (len - cur_len), "%s\n", tmp);
      cur_len = (int)strlen(buf);
    } else {
      buf[cur_len] = '\0';
      break;
    }
    toSkip ++;
  }
}

void MemTracker::print_tracker_stats(outputStream* st) {
  st->print_cr("\nMemory Tracker Stats:");
  st->print_cr("\tMax sequence number = %d", SequenceGenerator::max_seq_num());
  st->print_cr("\tthead count = %d", _thread_count);
  st->print_cr("\tArena instance = %d", Arena::_instance_count);
  st->print_cr("\tpooled recorder count = %d", _pooled_recorder_count);
  st->print_cr("\tqueued recorder count = %d", _pending_recorder_count);
  st->print_cr("\tmemory recorder instance count = %d", MemRecorder::_instance_count);
  if (_worker_thread != NULL) {
    st->print_cr("\tWorker thread:");
    st->print_cr("\t\tSync point count = %d", _worker_thread->_sync_point_count);
    st->print_cr("\t\tpending recorder count = %d", _worker_thread->count_pending_recorders());
    st->print_cr("\t\tmerge count = %d", _worker_thread->_merge_count);
  } else {
    st->print_cr("\tWorker thread is not started");
  }
  st->print_cr(" ");

  if (_snapshot != NULL) {
    _snapshot->print_snapshot_stats(st);
  } else {
    st->print_cr("No snapshot");
  }
}
#endif