/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "assembler_x86.inline.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm_windows.h"
#include "memory/allocation.inline.hpp"
#include "mutex_windows.inline.hpp"
#include "nativeInst_x86.hpp"
#include "os_share_windows.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm.h"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/timer.hpp"
#include "thread_windows.inline.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
# include "unwind_windows_x86.hpp"
#undef REG_SP
#undef REG_FP
#undef REG_PC
#ifdef AMD64
#define REG_SP Rsp
#define REG_FP Rbp
#define REG_PC Rip
#else
#define REG_SP Esp
#define REG_FP Ebp
#define REG_PC Eip
#endif // AMD64
extern LONG WINAPI topLevelExceptionFilter(_EXCEPTION_POINTERS* );
// Install a win32 structured exception handler around thread.
void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
__try {
#ifndef AMD64
// We store the current thread in this wrapperthread location
// and determine how far away this address is from the structured
// execption pointer that FS:[0] points to. This get_thread
// code can then get the thread pointer via FS.
//
// Warning: This routine must NEVER be inlined since we'd end up with
// multiple offsets.
//
volatile Thread* wrapperthread = thread;
if ( ThreadLocalStorage::get_thread_ptr_offset() == 0 ) {
int thread_ptr_offset;
__asm {
lea eax, dword ptr wrapperthread;
sub eax, dword ptr FS:[0H];
mov thread_ptr_offset, eax
};
ThreadLocalStorage::set_thread_ptr_offset(thread_ptr_offset);
}
#ifdef ASSERT
// Verify that the offset hasn't changed since we initally captured
// it. This might happen if we accidentally ended up with an
// inlined version of this routine.
else {
int test_thread_ptr_offset;
__asm {
lea eax, dword ptr wrapperthread;
sub eax, dword ptr FS:[0H];
mov test_thread_ptr_offset, eax
};
assert(test_thread_ptr_offset == ThreadLocalStorage::get_thread_ptr_offset(),
"thread pointer offset from SEH changed");
}
#endif // ASSERT
#endif // !AMD64
f(value, method, args, thread);
} __except(topLevelExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) {
// Nothing to do.
}
}
#ifdef AMD64
// This is the language specific handler for exceptions
// originating from dynamically generated code.
// We call the standard structured exception handler
// We only expect Continued Execution since we cannot unwind
// from generated code.
LONG HandleExceptionFromCodeCache(
IN PEXCEPTION_RECORD ExceptionRecord,
IN ULONG64 EstablisherFrame,
IN OUT PCONTEXT ContextRecord,
IN OUT PDISPATCHER_CONTEXT DispatcherContext) {
EXCEPTION_POINTERS ep;
LONG result;
ep.ExceptionRecord = ExceptionRecord;
ep.ContextRecord = ContextRecord;
result = topLevelExceptionFilter(&ep);
// We better only get a CONTINUE_EXECUTION from our handler
// since we don't have unwind information registered.
guarantee( result == EXCEPTION_CONTINUE_EXECUTION,
"Unexpected result from topLevelExceptionFilter");
return(ExceptionContinueExecution);
}
// Structure containing the Windows Data Structures required
// to register our Code Cache exception handler.
// We put these in the CodeCache since the API requires
// all addresses in these structures are relative to the Code
// area registered with RtlAddFunctionTable.
typedef struct {
char ExceptionHandlerInstr[16]; // jmp HandleExceptionFromCodeCache
RUNTIME_FUNCTION rt;
UNWIND_INFO_EH_ONLY unw;
} DynamicCodeData, *pDynamicCodeData;
#endif // AMD64
//
// Register our CodeCache area with the OS so it will dispatch exceptions
// to our topLevelExceptionFilter when we take an exception in our
// dynamically generated code.
//
// Arguments: low and high are the address of the full reserved
// codeCache area
//
bool os::register_code_area(char *low, char *high) {
#ifdef AMD64
ResourceMark rm;
pDynamicCodeData pDCD;
PRUNTIME_FUNCTION prt;
PUNWIND_INFO_EH_ONLY punwind;
// If we are using Vectored Exceptions we don't need this registration
if (UseVectoredExceptions) return true;
BufferBlob* blob = BufferBlob::create("CodeCache Exception Handler", sizeof(DynamicCodeData));
CodeBuffer cb(blob);
MacroAssembler* masm = new MacroAssembler(&cb);
pDCD = (pDynamicCodeData) masm->pc();
masm->jump(ExternalAddress((address)&HandleExceptionFromCodeCache));
masm->flush();
// Create an Unwind Structure specifying no unwind info
// other than an Exception Handler
punwind = &pDCD->unw;
punwind->Version = 1;
punwind->Flags = UNW_FLAG_EHANDLER;
punwind->SizeOfProlog = 0;
punwind->CountOfCodes = 0;
punwind->FrameRegister = 0;
punwind->FrameOffset = 0;
punwind->ExceptionHandler = (char *)(&(pDCD->ExceptionHandlerInstr[0])) -
(char*)low;
punwind->ExceptionData[0] = 0;
// This structure describes the covered dynamic code area.
// Addresses are relative to the beginning on the code cache area
prt = &pDCD->rt;
prt->BeginAddress = 0;
prt->EndAddress = (ULONG)(high - low);
prt->UnwindData = ((char *)punwind - low);
guarantee(RtlAddFunctionTable(prt, 1, (ULONGLONG)low),
"Failed to register Dynamic Code Exception Handler with RtlAddFunctionTable");
#endif // AMD64
return true;
}
void os::initialize_thread() {
// Nothing to do.
}
// Atomics and Stub Functions
typedef jint xchg_func_t (jint, volatile jint*);
typedef intptr_t xchg_ptr_func_t (intptr_t, volatile intptr_t*);
typedef jint cmpxchg_func_t (jint, volatile jint*, jint);
typedef jlong cmpxchg_long_func_t (jlong, volatile jlong*, jlong);
typedef jint add_func_t (jint, volatile jint*);
typedef intptr_t add_ptr_func_t (intptr_t, volatile intptr_t*);
#ifdef AMD64
jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
// try to use the stub:
xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
if (func != NULL) {
os::atomic_xchg_func = func;
return (*func)(exchange_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
jint old_value = *dest;
*dest = exchange_value;
return old_value;
}
intptr_t os::atomic_xchg_ptr_bootstrap(intptr_t exchange_value, volatile intptr_t* dest) {
// try to use the stub:
xchg_ptr_func_t* func = CAST_TO_FN_PTR(xchg_ptr_func_t*, StubRoutines::atomic_xchg_ptr_entry());
if (func != NULL) {
os::atomic_xchg_ptr_func = func;
return (*func)(exchange_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
intptr_t old_value = *dest;
*dest = exchange_value;
return old_value;
}
jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
// try to use the stub:
cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
if (func != NULL) {
os::atomic_cmpxchg_func = func;
return (*func)(exchange_value, dest, compare_value);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
jint old_value = *dest;
if (old_value == compare_value)
*dest = exchange_value;
return old_value;
}
#endif // AMD64
jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
// try to use the stub:
cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
if (func != NULL) {
os::atomic_cmpxchg_long_func = func;
return (*func)(exchange_value, dest, compare_value);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
jlong old_value = *dest;
if (old_value == compare_value)
*dest = exchange_value;
return old_value;
}
#ifdef AMD64
jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
// try to use the stub:
add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
if (func != NULL) {
os::atomic_add_func = func;
return (*func)(add_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
return (*dest) += add_value;
}
intptr_t os::atomic_add_ptr_bootstrap(intptr_t add_value, volatile intptr_t* dest) {
// try to use the stub:
add_ptr_func_t* func = CAST_TO_FN_PTR(add_ptr_func_t*, StubRoutines::atomic_add_ptr_entry());
if (func != NULL) {
os::atomic_add_ptr_func = func;
return (*func)(add_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
return (*dest) += add_value;
}
xchg_func_t* os::atomic_xchg_func = os::atomic_xchg_bootstrap;
xchg_ptr_func_t* os::atomic_xchg_ptr_func = os::atomic_xchg_ptr_bootstrap;
cmpxchg_func_t* os::atomic_cmpxchg_func = os::atomic_cmpxchg_bootstrap;
add_func_t* os::atomic_add_func = os::atomic_add_bootstrap;
add_ptr_func_t* os::atomic_add_ptr_func = os::atomic_add_ptr_bootstrap;
#endif // AMD64
cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
ExtendedPC os::fetch_frame_from_context(void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_fp) {
ExtendedPC epc;
CONTEXT* uc = (CONTEXT*)ucVoid;
if (uc != NULL) {
epc = ExtendedPC((address)uc->REG_PC);
if (ret_sp) *ret_sp = (intptr_t*)uc->REG_SP;
if (ret_fp) *ret_fp = (intptr_t*)uc->REG_FP;
} else {
// construct empty ExtendedPC for return value checking
epc = ExtendedPC(NULL);
if (ret_sp) *ret_sp = (intptr_t *)NULL;
if (ret_fp) *ret_fp = (intptr_t *)NULL;
}
return epc;
}
frame os::fetch_frame_from_context(void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
return frame(sp, fp, epc.pc());
}
// VC++ does not save frame pointer on stack in optimized build. It
// can be turned off by /Oy-. If we really want to walk C frames,
// we can use the StackWalk() API.
frame os::get_sender_for_C_frame(frame* fr) {
return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
}
#ifndef AMD64
intptr_t* _get_previous_fp() {
intptr_t **frameptr;
__asm {
mov frameptr, ebp
};
return *frameptr;
}
#endif // !AMD64
frame os::current_frame() {
#ifdef AMD64
// apparently _asm not supported on windows amd64
typedef intptr_t* get_fp_func ();
get_fp_func* func = CAST_TO_FN_PTR(get_fp_func*,
StubRoutines::x86::get_previous_fp_entry());
if (func == NULL) return frame(NULL, NULL, NULL);
intptr_t* fp = (*func)();
#else
intptr_t* fp = _get_previous_fp();
#endif // AMD64
frame myframe((intptr_t*)os::current_stack_pointer(),
(intptr_t*)fp,
CAST_FROM_FN_PTR(address, os::current_frame));
if (os::is_first_C_frame(&myframe)) {
// stack is not walkable
return frame(NULL, NULL, NULL);
} else {
return os::get_sender_for_C_frame(&myframe);
}
}
void os::print_context(outputStream *st, void *context) {
if (context == NULL) return;
CONTEXT* uc = (CONTEXT*)context;
st->print_cr("Registers:");
#ifdef AMD64
st->print( "RAX=" INTPTR_FORMAT, uc->Rax);
st->print(", RBX=" INTPTR_FORMAT, uc->Rbx);
st->print(", RCX=" INTPTR_FORMAT, uc->Rcx);
st->print(", RDX=" INTPTR_FORMAT, uc->Rdx);
st->cr();
st->print( "RSP=" INTPTR_FORMAT, uc->Rsp);
st->print(", RBP=" INTPTR_FORMAT, uc->Rbp);
st->print(", RSI=" INTPTR_FORMAT, uc->Rsi);
st->print(", RDI=" INTPTR_FORMAT, uc->Rdi);
st->cr();
st->print( "R8 =" INTPTR_FORMAT, uc->R8);
st->print(", R9 =" INTPTR_FORMAT, uc->R9);
st->print(", R10=" INTPTR_FORMAT, uc->R10);
st->print(", R11=" INTPTR_FORMAT, uc->R11);
st->cr();
st->print( "R12=" INTPTR_FORMAT, uc->R12);
st->print(", R13=" INTPTR_FORMAT, uc->R13);
st->print(", R14=" INTPTR_FORMAT, uc->R14);
st->print(", R15=" INTPTR_FORMAT, uc->R15);
st->cr();
st->print( "RIP=" INTPTR_FORMAT, uc->Rip);
st->print(", EFLAGS=" INTPTR_FORMAT, uc->EFlags);
#else
st->print( "EAX=" INTPTR_FORMAT, uc->Eax);
st->print(", EBX=" INTPTR_FORMAT, uc->Ebx);
st->print(", ECX=" INTPTR_FORMAT, uc->Ecx);
st->print(", EDX=" INTPTR_FORMAT, uc->Edx);
st->cr();
st->print( "ESP=" INTPTR_FORMAT, uc->Esp);
st->print(", EBP=" INTPTR_FORMAT, uc->Ebp);
st->print(", ESI=" INTPTR_FORMAT, uc->Esi);
st->print(", EDI=" INTPTR_FORMAT, uc->Edi);
st->cr();
st->print( "EIP=" INTPTR_FORMAT, uc->Eip);
st->print(", EFLAGS=" INTPTR_FORMAT, uc->EFlags);
#endif // AMD64
st->cr();
st->cr();
intptr_t *sp = (intptr_t *)uc->REG_SP;
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
print_hex_dump(st, (address)sp, (address)(sp + 32), sizeof(intptr_t));
st->cr();
// Note: it may be unsafe to inspect memory near pc. For example, pc may
// point to garbage if entry point in an nmethod is corrupted. Leave
// this at the end, and hope for the best.
address pc = (address)uc->REG_PC;
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
st->cr();
}
void os::print_register_info(outputStream *st, void *context) {
if (context == NULL) return;
CONTEXT* uc = (CONTEXT*)context;
st->print_cr("Register to memory mapping:");
st->cr();
// this is only for the "general purpose" registers
#ifdef AMD64
st->print("RAX="); print_location(st, uc->Rax);
st->print("RBX="); print_location(st, uc->Rbx);
st->print("RCX="); print_location(st, uc->Rcx);
st->print("RDX="); print_location(st, uc->Rdx);
st->print("RSP="); print_location(st, uc->Rsp);
st->print("RBP="); print_location(st, uc->Rbp);
st->print("RSI="); print_location(st, uc->Rsi);
st->print("RDI="); print_location(st, uc->Rdi);
st->print("R8 ="); print_location(st, uc->R8);
st->print("R9 ="); print_location(st, uc->R9);
st->print("R10="); print_location(st, uc->R10);
st->print("R11="); print_location(st, uc->R11);
st->print("R12="); print_location(st, uc->R12);
st->print("R13="); print_location(st, uc->R13);
st->print("R14="); print_location(st, uc->R14);
st->print("R15="); print_location(st, uc->R15);
#else
st->print("EAX="); print_location(st, uc->Eax);
st->print("EBX="); print_location(st, uc->Ebx);
st->print("ECX="); print_location(st, uc->Ecx);
st->print("EDX="); print_location(st, uc->Edx);
st->print("ESP="); print_location(st, uc->Esp);
st->print("EBP="); print_location(st, uc->Ebp);
st->print("ESI="); print_location(st, uc->Esi);
st->print("EDI="); print_location(st, uc->Edi);
#endif
st->cr();
}
extern "C" int SafeFetch32 (int * adr, int Err) {
int rv = Err ;
_try {
rv = *((volatile int *) adr) ;
} __except(EXCEPTION_EXECUTE_HANDLER) {
}
return rv ;
}
extern "C" intptr_t SafeFetchN (intptr_t * adr, intptr_t Err) {
intptr_t rv = Err ;
_try {
rv = *((volatile intptr_t *) adr) ;
} __except(EXCEPTION_EXECUTE_HANDLER) {
}
return rv ;
}
extern "C" int SpinPause () {
#ifdef AMD64
return 0 ;
#else
// pause == rep:nop
// On systems that don't support pause a rep:nop
// is executed as a nop. The rep: prefix is ignored.
_asm {
pause ;
};
return 1 ;
#endif // AMD64
}
void os::setup_fpu() {
#ifndef AMD64
int fpu_cntrl_word = StubRoutines::fpu_cntrl_wrd_std();
__asm fldcw fpu_cntrl_word;
#endif // !AMD64
}