8233280: Remove GCLockerInvokesConcurrent
Summary: Remove use and make option obsolete.
Reviewed-by: tschatzl, sjohanss
/*
* Copyright (c) 1996, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.sql;
import java.time.Instant;
import java.time.LocalDateTime;
/**
* <P>A thin wrapper around {@code java.util.Date} that allows
* the JDBC API to identify this as an SQL {@code TIMESTAMP} value.
* It adds the ability
* to hold the SQL {@code TIMESTAMP} fractional seconds value, by allowing
* the specification of fractional seconds to a precision of nanoseconds.
* A Timestamp also provides formatting and
* parsing operations to support the JDBC escape syntax for timestamp values.
*
* <p>The precision of a Timestamp object is calculated to be either:
* <ul>
* <li>{@code 19 }, which is the number of characters in yyyy-mm-dd hh:mm:ss
* <li> {@code 20 + s }, which is the number
* of characters in the yyyy-mm-dd hh:mm:ss.[fff...] and {@code s} represents the scale of the given Timestamp,
* its fractional seconds precision.
*</ul>
*
* <P><B>Note:</B> This type is a composite of a {@code java.util.Date} and a
* separate nanoseconds value. Only integral seconds are stored in the
* {@code java.util.Date} component. The fractional seconds - the nanos - are
* separate. The {@code Timestamp.equals(Object)} method never returns
* {@code true} when passed an object
* that isn't an instance of {@code java.sql.Timestamp},
* because the nanos component of a date is unknown.
* As a result, the {@code Timestamp.equals(Object)}
* method is not symmetric with respect to the
* {@code java.util.Date.equals(Object)}
* method. Also, the {@code hashCode} method uses the underlying
* {@code java.util.Date}
* implementation and therefore does not include nanos in its computation.
* <P>
* Due to the differences between the {@code Timestamp} class
* and the {@code java.util.Date}
* class mentioned above, it is recommended that code not view
* {@code Timestamp} values generically as an instance of
* {@code java.util.Date}. The
* inheritance relationship between {@code Timestamp}
* and {@code java.util.Date} really
* denotes implementation inheritance, and not type inheritance.
*
* @since 1.1
*/
public class Timestamp extends java.util.Date {
/**
* Constructs a {@code Timestamp} object initialized
* with the given values.
*
* @param year the year minus 1900
* @param month 0 to 11
* @param date 1 to 31
* @param hour 0 to 23
* @param minute 0 to 59
* @param second 0 to 59
* @param nano 0 to 999,999,999
* @deprecated instead use the constructor {@code Timestamp(long millis)}
* @exception IllegalArgumentException if the nano argument is out of bounds
*/
@Deprecated(since="1.2")
public Timestamp(int year, int month, int date,
int hour, int minute, int second, int nano) {
super(year, month, date, hour, minute, second);
if (nano > 999999999 || nano < 0) {
throw new IllegalArgumentException("nanos > 999999999 or < 0");
}
nanos = nano;
}
/**
* Constructs a {@code Timestamp} object
* using a milliseconds time value. The
* integral seconds are stored in the underlying date value; the
* fractional seconds are stored in the {@code nanos} field of
* the {@code Timestamp} object.
*
* @param time milliseconds since January 1, 1970, 00:00:00 GMT.
* A negative number is the number of milliseconds before
* January 1, 1970, 00:00:00 GMT.
* @see java.util.Calendar
*/
public Timestamp(long time) {
super((time/1000)*1000);
nanos = (int)((time%1000) * 1000000);
if (nanos < 0) {
nanos = 1000000000 + nanos;
super.setTime(((time/1000)-1)*1000);
}
}
/**
* Sets this {@code Timestamp} object to represent a point in time that is
* {@code time} milliseconds after January 1, 1970 00:00:00 GMT.
*
* @param time the number of milliseconds.
* @see #getTime
* @see #Timestamp(long time)
* @see java.util.Calendar
*/
public void setTime(long time) {
super.setTime((time/1000)*1000);
nanos = (int)((time%1000) * 1000000);
if (nanos < 0) {
nanos = 1000000000 + nanos;
super.setTime(((time/1000)-1)*1000);
}
}
/**
* Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT
* represented by this {@code Timestamp} object.
*
* @return the number of milliseconds since January 1, 1970, 00:00:00 GMT
* represented by this date.
* @see #setTime
*/
public long getTime() {
long time = super.getTime();
return (time + (nanos / 1000000));
}
/**
* @serial
*/
private int nanos;
/**
* Converts a {@code String} object in JDBC timestamp escape format to a
* {@code Timestamp} value.
*
* @param s timestamp in format {@code yyyy-[m]m-[d]d hh:mm:ss[.f...]}. The
* fractional seconds may be omitted. The leading zero for {@code mm}
* and {@code dd} may also be omitted.
*
* @return corresponding {@code Timestamp} value
* @exception java.lang.IllegalArgumentException if the given argument
* does not have the format {@code yyyy-[m]m-[d]d hh:mm:ss[.f...]}
*/
public static Timestamp valueOf(String s) {
final int YEAR_LENGTH = 4;
final int MONTH_LENGTH = 2;
final int DAY_LENGTH = 2;
final int MAX_MONTH = 12;
final int MAX_DAY = 31;
int year = 0;
int month = 0;
int day = 0;
int hour;
int minute;
int second;
int a_nanos = 0;
int firstDash;
int secondDash;
int dividingSpace;
int firstColon;
int secondColon;
int period;
String formatError = "Timestamp format must be yyyy-mm-dd hh:mm:ss[.fffffffff]";
if (s == null) throw new java.lang.IllegalArgumentException("null string");
// Split the string into date and time components
s = s.trim();
dividingSpace = s.indexOf(' ');
if (dividingSpace < 0) {
throw new java.lang.IllegalArgumentException(formatError);
}
// Parse the date
firstDash = s.indexOf('-');
secondDash = s.indexOf('-', firstDash+1);
// Parse the time
firstColon = s.indexOf(':', dividingSpace + 1);
secondColon = s.indexOf(':', firstColon + 1);
period = s.indexOf('.', secondColon + 1);
// Convert the date
boolean parsedDate = false;
if (firstDash > 0 && secondDash > 0 && secondDash < dividingSpace - 1) {
if (firstDash == YEAR_LENGTH &&
(secondDash - firstDash > 1 && secondDash - firstDash <= MONTH_LENGTH + 1) &&
(dividingSpace - secondDash > 1 && dividingSpace - secondDash <= DAY_LENGTH + 1)) {
year = Integer.parseInt(s, 0, firstDash, 10);
month = Integer.parseInt(s, firstDash + 1, secondDash, 10);
day = Integer.parseInt(s, secondDash + 1, dividingSpace, 10);
if ((month >= 1 && month <= MAX_MONTH) && (day >= 1 && day <= MAX_DAY)) {
parsedDate = true;
}
}
}
if (! parsedDate) {
throw new java.lang.IllegalArgumentException(formatError);
}
// Convert the time; default missing nanos
int len = s.length();
if (firstColon > 0 && secondColon > 0 && secondColon < len - 1) {
hour = Integer.parseInt(s, dividingSpace + 1, firstColon, 10);
minute = Integer.parseInt(s, firstColon + 1, secondColon, 10);
if (period > 0 && period < len - 1) {
second = Integer.parseInt(s, secondColon + 1, period, 10);
int nanoPrecision = len - (period + 1);
if (nanoPrecision > 9)
throw new java.lang.IllegalArgumentException(formatError);
if (!Character.isDigit(s.charAt(period + 1)))
throw new java.lang.IllegalArgumentException(formatError);
int tmpNanos = Integer.parseInt(s, period + 1, len, 10);
while (nanoPrecision < 9) {
tmpNanos *= 10;
nanoPrecision++;
}
a_nanos = tmpNanos;
} else if (period > 0) {
throw new java.lang.IllegalArgumentException(formatError);
} else {
second = Integer.parseInt(s, secondColon + 1, len, 10);
}
} else {
throw new java.lang.IllegalArgumentException(formatError);
}
return new Timestamp(year - 1900, month - 1, day, hour, minute, second, a_nanos);
}
/**
* Formats a timestamp in JDBC timestamp escape format.
* {@code yyyy-mm-dd hh:mm:ss.fffffffff},
* where {@code fffffffff} indicates nanoseconds.
*
* @return a {@code String} object in
* {@code yyyy-mm-dd hh:mm:ss.fffffffff} format
*/
@SuppressWarnings("deprecation")
public String toString() {
int year = super.getYear() + 1900;
int month = super.getMonth() + 1;
int day = super.getDate();
int hour = super.getHours();
int minute = super.getMinutes();
int second = super.getSeconds();
int trailingZeros = 0;
int tmpNanos = nanos;
if (tmpNanos == 0) {
trailingZeros = 8;
} else {
while (tmpNanos % 10 == 0) {
tmpNanos /= 10;
trailingZeros++;
}
}
// 8058429: To comply with current JCK tests, we need to deal with year
// being any number between 0 and 292278995
int count = 10000;
int yearSize = 4;
do {
if (year < count) {
break;
}
yearSize++;
count *= 10;
} while (count < 1000000000);
char[] buf = new char[25 + yearSize - trailingZeros];
Date.formatDecimalInt(year, buf, 0, yearSize);
buf[yearSize] = '-';
Date.formatDecimalInt(month, buf, yearSize + 1, 2);
buf[yearSize + 3] = '-';
Date.formatDecimalInt(day, buf, yearSize + 4, 2);
buf[yearSize + 6] = ' ';
Date.formatDecimalInt(hour, buf, yearSize + 7, 2);
buf[yearSize + 9] = ':';
Date.formatDecimalInt(minute, buf, yearSize + 10, 2);
buf[yearSize + 12] = ':';
Date.formatDecimalInt(second, buf, yearSize + 13, 2);
buf[yearSize + 15] = '.';
Date.formatDecimalInt(tmpNanos, buf, yearSize + 16, 9 - trailingZeros);
return new String(buf);
}
/**
* Gets this {@code Timestamp} object's {@code nanos} value.
*
* @return this {@code Timestamp} object's fractional seconds component
* @see #setNanos
*/
public int getNanos() {
return nanos;
}
/**
* Sets this {@code Timestamp} object's {@code nanos} field
* to the given value.
*
* @param n the new fractional seconds component
* @exception java.lang.IllegalArgumentException if the given argument
* is greater than 999999999 or less than 0
* @see #getNanos
*/
public void setNanos(int n) {
if (n > 999999999 || n < 0) {
throw new IllegalArgumentException("nanos > 999999999 or < 0");
}
nanos = n;
}
/**
* Tests to see if this {@code Timestamp} object is
* equal to the given {@code Timestamp} object.
*
* @param ts the {@code Timestamp} value to compare with
* @return {@code true} if the given {@code Timestamp}
* object is equal to this {@code Timestamp} object;
* {@code false} otherwise
*/
public boolean equals(Timestamp ts) {
if (super.equals(ts)) {
if (nanos == ts.nanos) {
return true;
} else {
return false;
}
} else {
return false;
}
}
/**
* Tests to see if this {@code Timestamp} object is
* equal to the given object.
*
* This version of the method {@code equals} has been added
* to fix the incorrect
* signature of {@code Timestamp.equals(Timestamp)} and to preserve backward
* compatibility with existing class files.
*
* Note: This method is not symmetric with respect to the
* {@code equals(Object)} method in the base class.
*
* @param ts the {@code Object} value to compare with
* @return {@code true} if the given {@code Object} is an instance
* of a {@code Timestamp} that
* is equal to this {@code Timestamp} object;
* {@code false} otherwise
*/
public boolean equals(java.lang.Object ts) {
if (ts instanceof Timestamp) {
return this.equals((Timestamp)ts);
} else {
return false;
}
}
/**
* Indicates whether this {@code Timestamp} object is
* earlier than the given {@code Timestamp} object.
*
* @param ts the {@code Timestamp} value to compare with
* @return {@code true} if this {@code Timestamp} object is earlier;
* {@code false} otherwise
*/
public boolean before(Timestamp ts) {
return compareTo(ts) < 0;
}
/**
* Indicates whether this {@code Timestamp} object is
* later than the given {@code Timestamp} object.
*
* @param ts the {@code Timestamp} value to compare with
* @return {@code true} if this {@code Timestamp} object is later;
* {@code false} otherwise
*/
public boolean after(Timestamp ts) {
return compareTo(ts) > 0;
}
/**
* Compares this {@code Timestamp} object to the given
* {@code Timestamp} object.
*
* @param ts the {@code Timestamp} object to be compared to
* this {@code Timestamp} object
* @return the value {@code 0} if the two {@code Timestamp}
* objects are equal; a value less than {@code 0} if this
* {@code Timestamp} object is before the given argument;
* and a value greater than {@code 0} if this
* {@code Timestamp} object is after the given argument.
* @since 1.4
*/
public int compareTo(Timestamp ts) {
long thisTime = this.getTime();
long anotherTime = ts.getTime();
int i = (thisTime<anotherTime ? -1 :(thisTime==anotherTime?0 :1));
if (i == 0) {
if (nanos > ts.nanos) {
return 1;
} else if (nanos < ts.nanos) {
return -1;
}
}
return i;
}
/**
* Compares this {@code Timestamp} object to the given
* {@code Date} object.
*
* @param o the {@code Date} to be compared to
* this {@code Timestamp} object
* @return the value {@code 0} if this {@code Timestamp} object
* and the given object are equal; a value less than {@code 0}
* if this {@code Timestamp} object is before the given argument;
* and a value greater than {@code 0} if this
* {@code Timestamp} object is after the given argument.
*
* @since 1.5
*/
public int compareTo(java.util.Date o) {
if(o instanceof Timestamp) {
// When Timestamp instance compare it with a Timestamp
// Hence it is basically calling this.compareTo((Timestamp))o);
// Note typecasting is safe because o is instance of Timestamp
return compareTo((Timestamp)o);
} else {
// When Date doing a o.compareTo(this)
// will give wrong results.
Timestamp ts = new Timestamp(o.getTime());
return this.compareTo(ts);
}
}
/**
* {@inheritDoc}
*
* The {@code hashCode} method uses the underlying {@code java.util.Date}
* implementation and therefore does not include nanos in its computation.
*
*/
@Override
public int hashCode() {
return super.hashCode();
}
static final long serialVersionUID = 2745179027874758501L;
private static final int MILLIS_PER_SECOND = 1000;
/**
* Obtains an instance of {@code Timestamp} from a {@code LocalDateTime}
* object, with the same year, month, day of month, hours, minutes,
* seconds and nanos date-time value as the provided {@code LocalDateTime}.
* <p>
* The provided {@code LocalDateTime} is interpreted as the local
* date-time in the local time zone.
*
* @param dateTime a {@code LocalDateTime} to convert
* @return a {@code Timestamp} object
* @exception NullPointerException if {@code dateTime} is null.
* @since 1.8
*/
@SuppressWarnings("deprecation")
public static Timestamp valueOf(LocalDateTime dateTime) {
return new Timestamp(dateTime.getYear() - 1900,
dateTime.getMonthValue() - 1,
dateTime.getDayOfMonth(),
dateTime.getHour(),
dateTime.getMinute(),
dateTime.getSecond(),
dateTime.getNano());
}
/**
* Converts this {@code Timestamp} object to a {@code LocalDateTime}.
* <p>
* The conversion creates a {@code LocalDateTime} that represents the
* same year, month, day of month, hours, minutes, seconds and nanos
* date-time value as this {@code Timestamp} in the local time zone.
*
* @return a {@code LocalDateTime} object representing the same date-time value
* @since 1.8
*/
@SuppressWarnings("deprecation")
public LocalDateTime toLocalDateTime() {
return LocalDateTime.of(getYear() + 1900,
getMonth() + 1,
getDate(),
getHours(),
getMinutes(),
getSeconds(),
getNanos());
}
/**
* Obtains an instance of {@code Timestamp} from an {@link Instant} object.
* <p>
* {@code Instant} can store points on the time-line further in the future
* and further in the past than {@code Date}. In this scenario, this method
* will throw an exception.
*
* @param instant the instant to convert
* @return an {@code Timestamp} representing the same point on the time-line as
* the provided instant
* @exception NullPointerException if {@code instant} is null.
* @exception IllegalArgumentException if the instant is too large to
* represent as a {@code Timestamp}
* @since 1.8
*/
public static Timestamp from(Instant instant) {
try {
Timestamp stamp = new Timestamp(instant.getEpochSecond() * MILLIS_PER_SECOND);
stamp.nanos = instant.getNano();
return stamp;
} catch (ArithmeticException ex) {
throw new IllegalArgumentException(ex);
}
}
/**
* Converts this {@code Timestamp} object to an {@code Instant}.
* <p>
* The conversion creates an {@code Instant} that represents the same
* point on the time-line as this {@code Timestamp}.
*
* @return an instant representing the same point on the time-line
* @since 1.8
*/
@Override
public Instant toInstant() {
return Instant.ofEpochSecond(super.getTime() / MILLIS_PER_SECOND, nanos);
}
}