hotspot/src/cpu/ppc/vm/ppc.ad
author mdoerr
Tue, 29 Dec 2015 11:54:21 +0100
changeset 35156 a06b3d7455d6
parent 35118 b0e320b024c5
child 35232 76aed99c0ddd
permissions -rw-r--r--
8145913: PPC64: add Montgomery multiply intrinsic Reviewed-by: aph, goetz

//
// Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
// Copyright 2012, 2015 SAP AG. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//

//
// PPC64 Architecture Description File
//

//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// architecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def"  name (register save type, C convention save type,
//                  ideal register type, encoding);
//
// Register Save Types:
//
//   NS  = No-Save:     The register allocator assumes that these registers
//                      can be used without saving upon entry to the method, &
//                      that they do not need to be saved at call sites.
//
//   SOC = Save-On-Call: The register allocator assumes that these registers
//                      can be used without saving upon entry to the method,
//                      but that they must be saved at call sites.
//                      These are called "volatiles" on ppc.
//
//   SOE = Save-On-Entry: The register allocator assumes that these registers
//                      must be saved before using them upon entry to the
//                      method, but they do not need to be saved at call
//                      sites.
//                      These are called "nonvolatiles" on ppc.
//
//   AS  = Always-Save:   The register allocator assumes that these registers
//                      must be saved before using them upon entry to the
//                      method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
//
// The encoding number is the actual bit-pattern placed into the opcodes.
//
// PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
// Supplement Version 1.7 as of 2003-10-29.
//
// For each 64-bit register we must define two registers: the register
// itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
// e.g. R3_H, which is needed by the allocator, but is not used
// for stores, loads, etc.

// ----------------------------
// Integer/Long Registers
// ----------------------------

  // PPC64 has 32 64-bit integer registers.

  // types: v = volatile, nv = non-volatile, s = system
  reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
  reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
  reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
  reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
  reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
  reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
  reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
  reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
  reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
  reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
  reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
  reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
  reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
  reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
  reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
  reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
  reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
  reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
  reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
  reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
  reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
  reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
  reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
  reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
  reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
  reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
  reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
  reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
  reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
  reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
  reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
  reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
  reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
  reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
  reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
  reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
  reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
  reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
  reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
  reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
  reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
  reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
  reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
  reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
  reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
  reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
  reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
  reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
  reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
  reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
  reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
  reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
  reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
  reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
  reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
  reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
  reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
  reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
  reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
  reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
  reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
  reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
  reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
  reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());


// ----------------------------
// Float/Double Registers
// ----------------------------

  // Double Registers
  // The rules of ADL require that double registers be defined in pairs.
  // Each pair must be two 32-bit values, but not necessarily a pair of
  // single float registers. In each pair, ADLC-assigned register numbers
  // must be adjacent, with the lower number even. Finally, when the
  // CPU stores such a register pair to memory, the word associated with
  // the lower ADLC-assigned number must be stored to the lower address.

  // PPC64 has 32 64-bit floating-point registers. Each can store a single
  // or double precision floating-point value.

  // types: v = volatile, nv = non-volatile, s = system
  reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
  reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
  reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
  reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
  reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
  reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
  reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
  reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
  reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
  reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
  reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
  reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
  reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
  reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
  reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
  reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
  reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
  reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
  reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
  reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
  reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
  reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
  reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
  reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
  reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
  reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
  reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
  reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
  reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
  reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
  reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
  reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
  reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
  reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
  reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
  reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
  reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
  reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
  reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
  reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
  reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
  reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
  reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
  reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
  reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
  reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
  reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
  reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
  reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
  reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
  reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
  reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
  reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
  reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
  reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
  reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
  reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
  reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
  reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
  reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
  reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
  reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
  reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
  reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());

// ----------------------------
// Special Registers
// ----------------------------

// Condition Codes Flag Registers

  // PPC64 has 8 condition code "registers" which are all contained
  // in the CR register.

  // types: v = volatile, nv = non-volatile, s = system
  reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
  reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
  reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
  reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
  reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
  reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
  reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
  reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v

  // Special registers of PPC64

  reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
  reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
  reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
  reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
  reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
  reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v


// ----------------------------
// Specify priority of register selection within phases of register
// allocation. Highest priority is first. A useful heuristic is to
// give registers a low priority when they are required by machine
// instructions, like EAX and EDX on I486, and choose no-save registers
// before save-on-call, & save-on-call before save-on-entry. Registers
// which participate in fixed calling sequences should come last.
// Registers which are used as pairs must fall on an even boundary.

// It's worth about 1% on SPEC geomean to get this right.

// Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
// in adGlobals_ppc.hpp which defines the <register>_num values, e.g.
// R3_num. Therefore, R3_num may not be (and in reality is not)
// the same as R3->encoding()! Furthermore, we cannot make any
// assumptions on ordering, e.g. R3_num may be less than R2_num.
// Additionally, the function
//   static enum RC rc_class(OptoReg::Name reg )
// maps a given <register>_num value to its chunk type (except for flags)
// and its current implementation relies on chunk0 and chunk1 having a
// size of 64 each.

// If you change this allocation class, please have a look at the
// default values for the parameters RoundRobinIntegerRegIntervalStart
// and RoundRobinFloatRegIntervalStart

alloc_class chunk0 (
  // Chunk0 contains *all* 64 integer registers halves.

  // "non-volatile" registers
  R14, R14_H,
  R15, R15_H,
  R17, R17_H,
  R18, R18_H,
  R19, R19_H,
  R20, R20_H,
  R21, R21_H,
  R22, R22_H,
  R23, R23_H,
  R24, R24_H,
  R25, R25_H,
  R26, R26_H,
  R27, R27_H,
  R28, R28_H,
  R29, R29_H,
  R30, R30_H,
  R31, R31_H,

  // scratch/special registers
  R11, R11_H,
  R12, R12_H,

  // argument registers
  R10, R10_H,
  R9,  R9_H,
  R8,  R8_H,
  R7,  R7_H,
  R6,  R6_H,
  R5,  R5_H,
  R4,  R4_H,
  R3,  R3_H,

  // special registers, not available for allocation
  R16, R16_H,     // R16_thread
  R13, R13_H,     // system thread id
  R2,  R2_H,      // may be used for TOC
  R1,  R1_H,      // SP
  R0,  R0_H       // R0 (scratch)
);

// If you change this allocation class, please have a look at the
// default values for the parameters RoundRobinIntegerRegIntervalStart
// and RoundRobinFloatRegIntervalStart

alloc_class chunk1 (
  // Chunk1 contains *all* 64 floating-point registers halves.

  // scratch register
  F0,  F0_H,

  // argument registers
  F13, F13_H,
  F12, F12_H,
  F11, F11_H,
  F10, F10_H,
  F9,  F9_H,
  F8,  F8_H,
  F7,  F7_H,
  F6,  F6_H,
  F5,  F5_H,
  F4,  F4_H,
  F3,  F3_H,
  F2,  F2_H,
  F1,  F1_H,

  // non-volatile registers
  F14, F14_H,
  F15, F15_H,
  F16, F16_H,
  F17, F17_H,
  F18, F18_H,
  F19, F19_H,
  F20, F20_H,
  F21, F21_H,
  F22, F22_H,
  F23, F23_H,
  F24, F24_H,
  F25, F25_H,
  F26, F26_H,
  F27, F27_H,
  F28, F28_H,
  F29, F29_H,
  F30, F30_H,
  F31, F31_H
);

alloc_class chunk2 (
  // Chunk2 contains *all* 8 condition code registers.

  CCR0,
  CCR1,
  CCR2,
  CCR3,
  CCR4,
  CCR5,
  CCR6,
  CCR7
);

alloc_class chunk3 (
  // special registers
  // These registers are not allocated, but used for nodes generated by postalloc expand.
  SR_XER,
  SR_LR,
  SR_CTR,
  SR_VRSAVE,
  SR_SPEFSCR,
  SR_PPR
);

//-------Architecture Description Register Classes-----------------------

// Several register classes are automatically defined based upon
// information in this architecture description.

// 1) reg_class inline_cache_reg           ( as defined in frame section )
// 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//

// ----------------------------
// 32 Bit Register Classes
// ----------------------------

// We specify registers twice, once as read/write, and once read-only.
// We use the read-only registers for source operands. With this, we
// can include preset read only registers in this class, as a hard-coded
// '0'-register. (We used to simulate this on ppc.)

// 32 bit registers that can be read and written i.e. these registers
// can be dest (or src) of normal instructions.
reg_class bits32_reg_rw(
/*R0*/              // R0
/*R1*/              // SP
  R2,               // TOC
  R3,
  R4,
  R5,
  R6,
  R7,
  R8,
  R9,
  R10,
  R11,
  R12,
/*R13*/             // system thread id
  R14,
  R15,
/*R16*/             // R16_thread
  R17,
  R18,
  R19,
  R20,
  R21,
  R22,
  R23,
  R24,
  R25,
  R26,
  R27,
  R28,
/*R29,*/             // global TOC
  R30,
  R31
);

// 32 bit registers that can only be read i.e. these registers can
// only be src of all instructions.
reg_class bits32_reg_ro(
/*R0*/              // R0
/*R1*/              // SP
  R2                // TOC
  R3,
  R4,
  R5,
  R6,
  R7,
  R8,
  R9,
  R10,
  R11,
  R12,
/*R13*/             // system thread id
  R14,
  R15,
/*R16*/             // R16_thread
  R17,
  R18,
  R19,
  R20,
  R21,
  R22,
  R23,
  R24,
  R25,
  R26,
  R27,
  R28,
/*R29,*/
  R30,
  R31
);

reg_class rscratch1_bits32_reg(R11);
reg_class rscratch2_bits32_reg(R12);
reg_class rarg1_bits32_reg(R3);
reg_class rarg2_bits32_reg(R4);
reg_class rarg3_bits32_reg(R5);
reg_class rarg4_bits32_reg(R6);

// ----------------------------
// 64 Bit Register Classes
// ----------------------------
// 64-bit build means 64-bit pointers means hi/lo pairs

reg_class rscratch1_bits64_reg(R11_H, R11);
reg_class rscratch2_bits64_reg(R12_H, R12);
reg_class rarg1_bits64_reg(R3_H, R3);
reg_class rarg2_bits64_reg(R4_H, R4);
reg_class rarg3_bits64_reg(R5_H, R5);
reg_class rarg4_bits64_reg(R6_H, R6);
// Thread register, 'written' by tlsLoadP, see there.
reg_class thread_bits64_reg(R16_H, R16);

reg_class r19_bits64_reg(R19_H, R19);

// 64 bit registers that can be read and written i.e. these registers
// can be dest (or src) of normal instructions.
reg_class bits64_reg_rw(
/*R0_H,  R0*/     // R0
/*R1_H,  R1*/     // SP
  R2_H,  R2,      // TOC
  R3_H,  R3,
  R4_H,  R4,
  R5_H,  R5,
  R6_H,  R6,
  R7_H,  R7,
  R8_H,  R8,
  R9_H,  R9,
  R10_H, R10,
  R11_H, R11,
  R12_H, R12,
/*R13_H, R13*/   // system thread id
  R14_H, R14,
  R15_H, R15,
/*R16_H, R16*/   // R16_thread
  R17_H, R17,
  R18_H, R18,
  R19_H, R19,
  R20_H, R20,
  R21_H, R21,
  R22_H, R22,
  R23_H, R23,
  R24_H, R24,
  R25_H, R25,
  R26_H, R26,
  R27_H, R27,
  R28_H, R28,
/*R29_H, R29,*/
  R30_H, R30,
  R31_H, R31
);

// 64 bit registers used excluding r2, r11 and r12
// Used to hold the TOC to avoid collisions with expanded LeafCall which uses
// r2, r11 and r12 internally.
reg_class bits64_reg_leaf_call(
/*R0_H,  R0*/     // R0
/*R1_H,  R1*/     // SP
/*R2_H,  R2*/     // TOC
  R3_H,  R3,
  R4_H,  R4,
  R5_H,  R5,
  R6_H,  R6,
  R7_H,  R7,
  R8_H,  R8,
  R9_H,  R9,
  R10_H, R10,
/*R11_H, R11*/
/*R12_H, R12*/
/*R13_H, R13*/   // system thread id
  R14_H, R14,
  R15_H, R15,
/*R16_H, R16*/   // R16_thread
  R17_H, R17,
  R18_H, R18,
  R19_H, R19,
  R20_H, R20,
  R21_H, R21,
  R22_H, R22,
  R23_H, R23,
  R24_H, R24,
  R25_H, R25,
  R26_H, R26,
  R27_H, R27,
  R28_H, R28,
/*R29_H, R29,*/
  R30_H, R30,
  R31_H, R31
);

// Used to hold the TOC to avoid collisions with expanded DynamicCall
// which uses r19 as inline cache internally and expanded LeafCall which uses
// r2, r11 and r12 internally.
reg_class bits64_constant_table_base(
/*R0_H,  R0*/     // R0
/*R1_H,  R1*/     // SP
/*R2_H,  R2*/     // TOC
  R3_H,  R3,
  R4_H,  R4,
  R5_H,  R5,
  R6_H,  R6,
  R7_H,  R7,
  R8_H,  R8,
  R9_H,  R9,
  R10_H, R10,
/*R11_H, R11*/
/*R12_H, R12*/
/*R13_H, R13*/   // system thread id
  R14_H, R14,
  R15_H, R15,
/*R16_H, R16*/   // R16_thread
  R17_H, R17,
  R18_H, R18,
/*R19_H, R19*/
  R20_H, R20,
  R21_H, R21,
  R22_H, R22,
  R23_H, R23,
  R24_H, R24,
  R25_H, R25,
  R26_H, R26,
  R27_H, R27,
  R28_H, R28,
/*R29_H, R29,*/
  R30_H, R30,
  R31_H, R31
);

// 64 bit registers that can only be read i.e. these registers can
// only be src of all instructions.
reg_class bits64_reg_ro(
/*R0_H,  R0*/     // R0
  R1_H,  R1,
  R2_H,  R2,       // TOC
  R3_H,  R3,
  R4_H,  R4,
  R5_H,  R5,
  R6_H,  R6,
  R7_H,  R7,
  R8_H,  R8,
  R9_H,  R9,
  R10_H, R10,
  R11_H, R11,
  R12_H, R12,
/*R13_H, R13*/   // system thread id
  R14_H, R14,
  R15_H, R15,
  R16_H, R16,    // R16_thread
  R17_H, R17,
  R18_H, R18,
  R19_H, R19,
  R20_H, R20,
  R21_H, R21,
  R22_H, R22,
  R23_H, R23,
  R24_H, R24,
  R25_H, R25,
  R26_H, R26,
  R27_H, R27,
  R28_H, R28,
/*R29_H, R29,*/ // TODO: let allocator handle TOC!!
  R30_H, R30,
  R31_H, R31
);


// ----------------------------
// Special Class for Condition Code Flags Register

reg_class int_flags(
/*CCR0*/             // scratch
/*CCR1*/             // scratch
/*CCR2*/             // nv!
/*CCR3*/             // nv!
/*CCR4*/             // nv!
  CCR5,
  CCR6,
  CCR7
);

reg_class int_flags_ro(
  CCR0,
  CCR1,
  CCR2,
  CCR3,
  CCR4,
  CCR5,
  CCR6,
  CCR7
);

reg_class int_flags_CR0(CCR0);
reg_class int_flags_CR1(CCR1);
reg_class int_flags_CR6(CCR6);
reg_class ctr_reg(SR_CTR);

// ----------------------------
// Float Register Classes
// ----------------------------

reg_class flt_reg(
  F0,
  F1,
  F2,
  F3,
  F4,
  F5,
  F6,
  F7,
  F8,
  F9,
  F10,
  F11,
  F12,
  F13,
  F14,              // nv!
  F15,              // nv!
  F16,              // nv!
  F17,              // nv!
  F18,              // nv!
  F19,              // nv!
  F20,              // nv!
  F21,              // nv!
  F22,              // nv!
  F23,              // nv!
  F24,              // nv!
  F25,              // nv!
  F26,              // nv!
  F27,              // nv!
  F28,              // nv!
  F29,              // nv!
  F30,              // nv!
  F31               // nv!
);

// Double precision float registers have virtual `high halves' that
// are needed by the allocator.
reg_class dbl_reg(
  F0,  F0_H,
  F1,  F1_H,
  F2,  F2_H,
  F3,  F3_H,
  F4,  F4_H,
  F5,  F5_H,
  F6,  F6_H,
  F7,  F7_H,
  F8,  F8_H,
  F9,  F9_H,
  F10, F10_H,
  F11, F11_H,
  F12, F12_H,
  F13, F13_H,
  F14, F14_H,    // nv!
  F15, F15_H,    // nv!
  F16, F16_H,    // nv!
  F17, F17_H,    // nv!
  F18, F18_H,    // nv!
  F19, F19_H,    // nv!
  F20, F20_H,    // nv!
  F21, F21_H,    // nv!
  F22, F22_H,    // nv!
  F23, F23_H,    // nv!
  F24, F24_H,    // nv!
  F25, F25_H,    // nv!
  F26, F26_H,    // nv!
  F27, F27_H,    // nv!
  F28, F28_H,    // nv!
  F29, F29_H,    // nv!
  F30, F30_H,    // nv!
  F31, F31_H     // nv!
);

 %}

//----------DEFINITION BLOCK---------------------------------------------------
// Define name --> value mappings to inform the ADLC of an integer valued name
// Current support includes integer values in the range [0, 0x7FFFFFFF]
// Format:
//        int_def  <name>         ( <int_value>, <expression>);
// Generated Code in ad_<arch>.hpp
//        #define  <name>   (<expression>)
//        // value == <int_value>
// Generated code in ad_<arch>.cpp adlc_verification()
//        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
//
definitions %{
  // The default cost (of an ALU instruction).
  int_def DEFAULT_COST_LOW        (     30,      30);
  int_def DEFAULT_COST            (    100,     100);
  int_def HUGE_COST               (1000000, 1000000);

  // Memory refs
  int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
  int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);

  // Branches are even more expensive.
  int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
  int_def CALL_COST               (   1300, DEFAULT_COST * 13);
%}


//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description.
source_hpp %{
  // Header information of the source block.
  // Method declarations/definitions which are used outside
  // the ad-scope can conveniently be defined here.
  //
  // To keep related declarations/definitions/uses close together,
  // we switch between source %{ }% and source_hpp %{ }% freely as needed.

  // Returns true if Node n is followed by a MemBar node that
  // will do an acquire. If so, this node must not do the acquire
  // operation.
  bool followed_by_acquire(const Node *n);
%}

source %{

// Optimize load-acquire.
//
// Check if acquire is unnecessary due to following operation that does
// acquire anyways.
// Walk the pattern:
//
//      n: Load.acq
//           |
//      MemBarAcquire
//       |         |
//  Proj(ctrl)  Proj(mem)
//       |         |
//   MemBarRelease/Volatile
//
bool followed_by_acquire(const Node *load) {
  assert(load->is_Load(), "So far implemented only for loads.");

  // Find MemBarAcquire.
  const Node *mba = NULL;
  for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
    const Node *out = load->fast_out(i);
    if (out->Opcode() == Op_MemBarAcquire) {
      if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
      mba = out;
      break;
    }
  }
  if (!mba) return false;

  // Find following MemBar node.
  //
  // The following node must be reachable by control AND memory
  // edge to assure no other operations are in between the two nodes.
  //
  // So first get the Proj node, mem_proj, to use it to iterate forward.
  Node *mem_proj = NULL;
  for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
    mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
    assert(mem_proj->is_Proj(), "only projections here");
    ProjNode *proj = mem_proj->as_Proj();
    if (proj->_con == TypeFunc::Memory &&
        !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
      break;
  }
  assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");

  // Search MemBar behind Proj. If there are other memory operations
  // behind the Proj we lost.
  for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
    Node *x = mem_proj->fast_out(j);
    // Proj might have an edge to a store or load node which precedes the membar.
    if (x->is_Mem()) return false;

    // On PPC64 release and volatile are implemented by an instruction
    // that also has acquire semantics. I.e. there is no need for an
    // acquire before these.
    int xop = x->Opcode();
    if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
      // Make sure we're not missing Call/Phi/MergeMem by checking
      // control edges. The control edge must directly lead back
      // to the MemBarAcquire
      Node *ctrl_proj = x->in(0);
      if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
        return true;
      }
    }
  }

  return false;
}

#define __ _masm.

// Tertiary op of a LoadP or StoreP encoding.
#define REGP_OP true

// ****************************************************************************

// REQUIRED FUNCTIONALITY

// !!!!! Special hack to get all type of calls to specify the byte offset
//       from the start of the call to the point where the return address
//       will point.

// PPC port: Removed use of lazy constant construct.

int MachCallStaticJavaNode::ret_addr_offset() {
  // It's only a single branch-and-link instruction.
  return 4;
}

int MachCallDynamicJavaNode::ret_addr_offset() {
  // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
  // postalloc expanded calls if we use inline caches and do not update method data.
  if (UseInlineCaches)
    return 4;

  int vtable_index = this->_vtable_index;
  if (vtable_index < 0) {
    // Must be invalid_vtable_index, not nonvirtual_vtable_index.
    assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
    return 12;
  } else {
    assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
    return 24;
  }
}

int MachCallRuntimeNode::ret_addr_offset() {
#if defined(ABI_ELFv2)
  return 28;
#else
  return 40;
#endif
}

//=============================================================================

// condition code conversions

static int cc_to_boint(int cc) {
  return Assembler::bcondCRbiIs0 | (cc & 8);
}

static int cc_to_inverse_boint(int cc) {
  return Assembler::bcondCRbiIs0 | (8-(cc & 8));
}

static int cc_to_biint(int cc, int flags_reg) {
  return (flags_reg << 2) | (cc & 3);
}

//=============================================================================

// Compute padding required for nodes which need alignment. The padding
// is the number of bytes (not instructions) which will be inserted before
// the instruction. The padding must match the size of a NOP instruction.

int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
  return (3*4-current_offset)&31;
}

int string_indexOf_imm1Node::compute_padding(int current_offset) const {
  return (2*4-current_offset)&31;
}

int string_indexOf_immNode::compute_padding(int current_offset) const {
  return (3*4-current_offset)&31;
}

int string_indexOfNode::compute_padding(int current_offset) const {
  return (1*4-current_offset)&31;
}

int string_compareNode::compute_padding(int current_offset) const {
  return (4*4-current_offset)&31;
}

int string_equals_immNode::compute_padding(int current_offset) const {
  if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
  return (2*4-current_offset)&31;
}

int string_equalsNode::compute_padding(int current_offset) const {
  return (7*4-current_offset)&31;
}

int inlineCallClearArrayNode::compute_padding(int current_offset) const {
  return (2*4-current_offset)&31;
}

//=============================================================================

// Indicate if the safepoint node needs the polling page as an input.
bool SafePointNode::needs_polling_address_input() {
  // The address is loaded from thread by a seperate node.
  return true;
}

//=============================================================================

// Emit an interrupt that is caught by the debugger (for debugging compiler).
void emit_break(CodeBuffer &cbuf) {
  MacroAssembler _masm(&cbuf);
  __ illtrap();
}

#ifndef PRODUCT
void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  st->print("BREAKPOINT");
}
#endif

void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  emit_break(cbuf);
}

uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  return MachNode::size(ra_);
}

//=============================================================================

void emit_nop(CodeBuffer &cbuf) {
  MacroAssembler _masm(&cbuf);
  __ nop();
}

static inline void emit_long(CodeBuffer &cbuf, int value) {
  *((int*)(cbuf.insts_end())) = value;
  cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
}

//=============================================================================

%} // interrupt source

source_hpp %{ // Header information of the source block.

//--------------------------------------------------------------
//---<  Used for optimization in Compile::Shorten_branches  >---
//--------------------------------------------------------------

class CallStubImpl {

 public:

  // Emit call stub, compiled java to interpreter.
  static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);

  // Size of call trampoline stub.
  // This doesn't need to be accurate to the byte, but it
  // must be larger than or equal to the real size of the stub.
  static uint size_call_trampoline() {
    return MacroAssembler::trampoline_stub_size;
  }

  // number of relocations needed by a call trampoline stub
  static uint reloc_call_trampoline() {
    return 5;
  }

};

%} // end source_hpp

source %{

// Emit a trampoline stub for a call to a target which is too far away.
//
// code sequences:
//
// call-site:
//   branch-and-link to <destination> or <trampoline stub>
//
// Related trampoline stub for this call-site in the stub section:
//   load the call target from the constant pool
//   branch via CTR (LR/link still points to the call-site above)

void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
  address stub = __ emit_trampoline_stub(destination_toc_offset, insts_call_instruction_offset);
  if (stub == NULL) {
    ciEnv::current()->record_out_of_memory_failure();
  }
}

//=============================================================================

// Emit an inline branch-and-link call and a related trampoline stub.
//
// code sequences:
//
// call-site:
//   branch-and-link to <destination> or <trampoline stub>
//
// Related trampoline stub for this call-site in the stub section:
//   load the call target from the constant pool
//   branch via CTR (LR/link still points to the call-site above)
//

typedef struct {
  int insts_call_instruction_offset;
  int ret_addr_offset;
} EmitCallOffsets;

// Emit a branch-and-link instruction that branches to a trampoline.
// - Remember the offset of the branch-and-link instruction.
// - Add a relocation at the branch-and-link instruction.
// - Emit a branch-and-link.
// - Remember the return pc offset.
EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
  EmitCallOffsets offsets = { -1, -1 };
  const int start_offset = __ offset();
  offsets.insts_call_instruction_offset = __ offset();

  // No entry point given, use the current pc.
  if (entry_point == NULL) entry_point = __ pc();

  if (!Compile::current()->in_scratch_emit_size()) {
    // Put the entry point as a constant into the constant pool.
    const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
    if (entry_point_toc_addr == NULL) {
      ciEnv::current()->record_out_of_memory_failure();
      return offsets;
    }
    const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);

    // Emit the trampoline stub which will be related to the branch-and-link below.
    CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
    if (ciEnv::current()->failing()) { return offsets; } // Code cache may be full.
    __ relocate(rtype);
  }

  // Note: At this point we do not have the address of the trampoline
  // stub, and the entry point might be too far away for bl, so __ pc()
  // serves as dummy and the bl will be patched later.
  __ bl((address) __ pc());

  offsets.ret_addr_offset = __ offset() - start_offset;

  return offsets;
}

//=============================================================================

// Factory for creating loadConL* nodes for large/small constant pool.

static inline jlong replicate_immF(float con) {
  // Replicate float con 2 times and pack into vector.
  int val = *((int*)&con);
  jlong lval = val;
  lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  return lval;
}

//=============================================================================

const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
int Compile::ConstantTable::calculate_table_base_offset() const {
  return 0;  // absolute addressing, no offset
}

bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  iRegPdstOper *op_dst = new iRegPdstOper();
  MachNode *m1 = new loadToc_hiNode();
  MachNode *m2 = new loadToc_loNode();

  m1->add_req(NULL);
  m2->add_req(NULL, m1);
  m1->_opnds[0] = op_dst;
  m2->_opnds[0] = op_dst;
  m2->_opnds[1] = op_dst;
  ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  nodes->push(m1);
  nodes->push(m2);
}

void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  // Is postalloc expanded.
  ShouldNotReachHere();
}

uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  return 0;
}

#ifndef PRODUCT
void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  st->print("-- \t// MachConstantBaseNode (empty encoding)");
}
#endif

//=============================================================================

#ifndef PRODUCT
void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  Compile* C = ra_->C;
  const long framesize = C->frame_slots() << LogBytesPerInt;

  st->print("PROLOG\n\t");
  if (C->need_stack_bang(framesize)) {
    st->print("stack_overflow_check\n\t");
  }

  if (!false /* TODO: PPC port C->is_frameless_method()*/) {
    st->print("save return pc\n\t");
    st->print("push frame %ld\n\t", -framesize);
  }
}
#endif

// Macro used instead of the common __ to emulate the pipes of PPC.
// Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
// micro scheduler to cope with "hand written" assembler like in the prolog. Though
// still no scheduling of this code is possible, the micro scheduler is aware of the
// code and can update its internal data. The following mechanism is used to achieve this:
// The micro scheduler calls size() of each compound node during scheduling. size() does a
// dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
#if 0 // TODO: PPC port
#define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
                  C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
                _masm.
#define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
                  C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
#define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
                  C->hb_scheduling()->_pdScheduling->advance_offset
#else
#define ___(op) if (UsePower6SchedulerPPC64)                                          \
                  Unimplemented();                                                    \
                _masm.
#define ___stop if (UsePower6SchedulerPPC64)                                          \
                  Unimplemented()
#define ___advance if (UsePower6SchedulerPPC64)                                       \
                  Unimplemented()
#endif

void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  Compile* C = ra_->C;
  MacroAssembler _masm(&cbuf);

  const long framesize = C->frame_size_in_bytes();
  assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");

  const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;

  const Register return_pc            = R20; // Must match return_addr() in frame section.
  const Register callers_sp           = R21;
  const Register push_frame_temp      = R22;
  const Register toc_temp             = R23;
  assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);

  if (method_is_frameless) {
    // Add nop at beginning of all frameless methods to prevent any
    // oop instructions from getting overwritten by make_not_entrant
    // (patching attempt would fail).
    ___(nop) nop();
  } else {
    // Get return pc.
    ___(mflr) mflr(return_pc);
  }

  // Calls to C2R adapters often do not accept exceptional returns.
  // We require that their callers must bang for them. But be
  // careful, because some VM calls (such as call site linkage) can
  // use several kilobytes of stack. But the stack safety zone should
  // account for that. See bugs 4446381, 4468289, 4497237.

  int bangsize = C->bang_size_in_bytes();
  assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
  if (C->need_stack_bang(bangsize) && UseStackBanging) {
    // Unfortunately we cannot use the function provided in
    // assembler.cpp as we have to emulate the pipes. So I had to
    // insert the code of generate_stack_overflow_check(), see
    // assembler.cpp for some illuminative comments.
    const int page_size = os::vm_page_size();
    int bang_end = StackShadowPages * page_size;

    // This is how far the previous frame's stack banging extended.
    const int bang_end_safe = bang_end;

    if (bangsize > page_size) {
      bang_end += bangsize;
    }

    int bang_offset = bang_end_safe;

    while (bang_offset <= bang_end) {
      // Need at least one stack bang at end of shadow zone.

      // Again I had to copy code, this time from assembler_ppc.cpp,
      // bang_stack_with_offset - see there for comments.

      // Stack grows down, caller passes positive offset.
      assert(bang_offset > 0, "must bang with positive offset");

      long stdoffset = -bang_offset;

      if (Assembler::is_simm(stdoffset, 16)) {
        // Signed 16 bit offset, a simple std is ok.
        if (UseLoadInstructionsForStackBangingPPC64) {
          ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
        } else {
          ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
        }
      } else if (Assembler::is_simm(stdoffset, 31)) {
        // Use largeoffset calculations for addis & ld/std.
        const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
        const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);

        Register tmp = R11;
        ___(addis) addis(tmp, R1_SP, hi);
        if (UseLoadInstructionsForStackBangingPPC64) {
          ___(ld) ld(R0, lo, tmp);
        } else {
          ___(std) std(R0, lo, tmp);
        }
      } else {
        ShouldNotReachHere();
      }

      bang_offset += page_size;
    }
    // R11 trashed
  } // C->need_stack_bang(framesize) && UseStackBanging

  unsigned int bytes = (unsigned int)framesize;
  long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  ciMethod *currMethod = C->method();

  // Optimized version for most common case.
  if (UsePower6SchedulerPPC64 &&
      !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
      !(false /* ConstantsALot TODO: PPC port*/)) {
    ___(or) mr(callers_sp, R1_SP);
    ___(std) std(return_pc, _abi(lr), R1_SP);
    ___(stdu) stdu(R1_SP, -offset, R1_SP);
    return;
  }

  if (!method_is_frameless) {
    // Get callers sp.
    ___(or) mr(callers_sp, R1_SP);

    // Push method's frame, modifies SP.
    assert(Assembler::is_uimm(framesize, 32U), "wrong type");
    // The ABI is already accounted for in 'framesize' via the
    // 'out_preserve' area.
    Register tmp = push_frame_temp;
    // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
    if (Assembler::is_simm(-offset, 16)) {
      ___(stdu) stdu(R1_SP, -offset, R1_SP);
    } else {
      long x = -offset;
      // Had to insert load_const(tmp, -offset).
      ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
      ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
      ___(rldicr) sldi(tmp, tmp, 32);
      ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
      ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));

      ___(stdux) stdux(R1_SP, R1_SP, tmp);
    }
  }
#if 0 // TODO: PPC port
  // For testing large constant pools, emit a lot of constants to constant pool.
  // "Randomize" const_size.
  if (ConstantsALot) {
    const int num_consts = const_size();
    for (int i = 0; i < num_consts; i++) {
      __ long_constant(0xB0B5B00BBABE);
    }
  }
#endif
  if (!method_is_frameless) {
    // Save return pc.
    ___(std) std(return_pc, _abi(lr), callers_sp);
  }
}
#undef ___
#undef ___stop
#undef ___advance

uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  // Variable size. determine dynamically.
  return MachNode::size(ra_);
}

int MachPrologNode::reloc() const {
  // Return number of relocatable values contained in this instruction.
  return 1; // 1 reloc entry for load_const(toc).
}

//=============================================================================

#ifndef PRODUCT
void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  Compile* C = ra_->C;

  st->print("EPILOG\n\t");
  st->print("restore return pc\n\t");
  st->print("pop frame\n\t");

  if (do_polling() && C->is_method_compilation()) {
    st->print("touch polling page\n\t");
  }
}
#endif

void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  Compile* C = ra_->C;
  MacroAssembler _masm(&cbuf);

  const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  assert(framesize >= 0, "negative frame-size?");

  const bool method_needs_polling = do_polling() && C->is_method_compilation();
  const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
  const Register return_pc        = R11;
  const Register polling_page     = R12;

  if (!method_is_frameless) {
    // Restore return pc relative to callers' sp.
    __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
  }

  if (method_needs_polling) {
    if (LoadPollAddressFromThread) {
      // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
      Unimplemented();
    } else {
      __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
    }
  }

  if (!method_is_frameless) {
    // Move return pc to LR.
    __ mtlr(return_pc);
    // Pop frame (fixed frame-size).
    __ addi(R1_SP, R1_SP, (int)framesize);
  }

  if (method_needs_polling) {
    // We need to mark the code position where the load from the safepoint
    // polling page was emitted as relocInfo::poll_return_type here.
    __ relocate(relocInfo::poll_return_type);
    __ load_from_polling_page(polling_page);
  }
}

uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  // Variable size. Determine dynamically.
  return MachNode::size(ra_);
}

int MachEpilogNode::reloc() const {
  // Return number of relocatable values contained in this instruction.
  return 1; // 1 for load_from_polling_page.
}

const Pipeline * MachEpilogNode::pipeline() const {
  return MachNode::pipeline_class();
}

// This method seems to be obsolete. It is declared in machnode.hpp
// and defined in all *.ad files, but it is never called. Should we
// get rid of it?
int MachEpilogNode::safepoint_offset() const {
  assert(do_polling(), "no return for this epilog node");
  return 0;
}

#if 0 // TODO: PPC port
void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  MacroAssembler _masm(&cbuf);
  if (LoadPollAddressFromThread) {
    _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  } else {
    _masm.nop();
  }
}

uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
  if (LoadPollAddressFromThread) {
    return 4;
  } else {
    return 4;
  }
}

#ifndef PRODUCT
void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
}
#endif

const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
  return RSCRATCH1_BITS64_REG_mask();
}
#endif // PPC port

// =============================================================================

// Figure out which register class each belongs in: rc_int, rc_float or
// rc_stack.
enum RC { rc_bad, rc_int, rc_float, rc_stack };

static enum RC rc_class(OptoReg::Name reg) {
  // Return the register class for the given register. The given register
  // reg is a <register>_num value, which is an index into the MachRegisterNumbers
  // enumeration in adGlobals_ppc.hpp.

  if (reg == OptoReg::Bad) return rc_bad;

  // We have 64 integer register halves, starting at index 0.
  if (reg < 64) return rc_int;

  // We have 64 floating-point register halves, starting at index 64.
  if (reg < 64+64) return rc_float;

  // Between float regs & stack are the flags regs.
  assert(OptoReg::is_stack(reg), "blow up if spilling flags");

  return rc_stack;
}

static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
                        bool do_print, Compile* C, outputStream *st) {

  assert(opcode == Assembler::LD_OPCODE   ||
         opcode == Assembler::STD_OPCODE  ||
         opcode == Assembler::LWZ_OPCODE  ||
         opcode == Assembler::STW_OPCODE  ||
         opcode == Assembler::LFD_OPCODE  ||
         opcode == Assembler::STFD_OPCODE ||
         opcode == Assembler::LFS_OPCODE  ||
         opcode == Assembler::STFS_OPCODE,
         "opcode not supported");

  if (cbuf) {
    int d =
      (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
        Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
      : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
    emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
  }
#ifndef PRODUCT
  else if (do_print) {
    st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
              op_str,
              Matcher::regName[reg],
              offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
  }
#endif
  return 4; // size
}

uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
  Compile* C = ra_->C;

  // Get registers to move.
  OptoReg::Name src_hi = ra_->get_reg_second(in(1));
  OptoReg::Name src_lo = ra_->get_reg_first(in(1));
  OptoReg::Name dst_hi = ra_->get_reg_second(this);
  OptoReg::Name dst_lo = ra_->get_reg_first(this);

  enum RC src_hi_rc = rc_class(src_hi);
  enum RC src_lo_rc = rc_class(src_lo);
  enum RC dst_hi_rc = rc_class(dst_hi);
  enum RC dst_lo_rc = rc_class(dst_lo);

  assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
  if (src_hi != OptoReg::Bad)
    assert((src_lo&1)==0 && src_lo+1==src_hi &&
           (dst_lo&1)==0 && dst_lo+1==dst_hi,
           "expected aligned-adjacent pairs");
  // Generate spill code!
  int size = 0;

  if (src_lo == dst_lo && src_hi == dst_hi)
    return size;            // Self copy, no move.

  // --------------------------------------
  // Memory->Memory Spill. Use R0 to hold the value.
  if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
    int src_offset = ra_->reg2offset(src_lo);
    int dst_offset = ra_->reg2offset(dst_lo);
    if (src_hi != OptoReg::Bad) {
      assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
             "expected same type of move for high parts");
      size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
      if (!cbuf && !do_size) st->print("\n\t");
      size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
    } else {
      size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
      if (!cbuf && !do_size) st->print("\n\t");
      size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
    }
    return size;
  }

  // --------------------------------------
  // Check for float->int copy; requires a trip through memory.
  if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
    Unimplemented();
  }

  // --------------------------------------
  // Check for integer reg-reg copy.
  if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
      Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
      Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
      size = (Rsrc != Rdst) ? 4 : 0;

      if (cbuf) {
        MacroAssembler _masm(cbuf);
        if (size) {
          __ mr(Rdst, Rsrc);
        }
      }
#ifndef PRODUCT
      else if (!do_size) {
        if (size) {
          st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
        } else {
          st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
        }
      }
#endif
      return size;
  }

  // Check for integer store.
  if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
    int dst_offset = ra_->reg2offset(dst_lo);
    if (src_hi != OptoReg::Bad) {
      assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
             "expected same type of move for high parts");
      size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
    } else {
      size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
    }
    return size;
  }

  // Check for integer load.
  if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
    int src_offset = ra_->reg2offset(src_lo);
    if (src_hi != OptoReg::Bad) {
      assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
             "expected same type of move for high parts");
      size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
    } else {
      size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
    }
    return size;
  }

  // Check for float reg-reg copy.
  if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
    if (cbuf) {
      MacroAssembler _masm(cbuf);
      FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
      FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
      __ fmr(Rdst, Rsrc);
    }
#ifndef PRODUCT
    else if (!do_size) {
      st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
    }
#endif
    return 4;
  }

  // Check for float store.
  if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
    int dst_offset = ra_->reg2offset(dst_lo);
    if (src_hi != OptoReg::Bad) {
      assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
             "expected same type of move for high parts");
      size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
    } else {
      size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
    }
    return size;
  }

  // Check for float load.
  if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
    int src_offset = ra_->reg2offset(src_lo);
    if (src_hi != OptoReg::Bad) {
      assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
             "expected same type of move for high parts");
      size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
    } else {
      size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
    }
    return size;
  }

  // --------------------------------------------------------------------
  // Check for hi bits still needing moving. Only happens for misaligned
  // arguments to native calls.
  if (src_hi == dst_hi)
    return size;               // Self copy; no move.

  assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
  ShouldNotReachHere(); // Unimplemented
  return 0;
}

#ifndef PRODUCT
void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  if (!ra_)
    st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
  else
    implementation(NULL, ra_, false, st);
}
#endif

void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  implementation(&cbuf, ra_, false, NULL);
}

uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  return implementation(NULL, ra_, true, NULL);
}

#if 0 // TODO: PPC port
ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
#ifndef PRODUCT
  if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
#endif
  assert(ra_->node_regs_max_index() != 0, "");

  // Get registers to move.
  OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
  OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
  OptoReg::Name dst_hi = ra_->get_reg_second(n);
  OptoReg::Name dst_lo = ra_->get_reg_first(n);

  enum RC src_lo_rc = rc_class(src_lo);
  enum RC dst_lo_rc = rc_class(dst_lo);

  if (src_lo == dst_lo && src_hi == dst_hi)
    return ppc64Opcode_none;            // Self copy, no move.

  // --------------------------------------
  // Memory->Memory Spill. Use R0 to hold the value.
  if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
    return ppc64Opcode_compound;
  }

  // --------------------------------------
  // Check for float->int copy; requires a trip through memory.
  if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
    Unimplemented();
  }

  // --------------------------------------
  // Check for integer reg-reg copy.
  if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
    Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
    Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
    if (Rsrc == Rdst) {
      return ppc64Opcode_none;
    } else {
      return ppc64Opcode_or;
    }
  }

  // Check for integer store.
  if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
    if (src_hi != OptoReg::Bad) {
      return ppc64Opcode_std;
    } else {
      return ppc64Opcode_stw;
    }
  }

  // Check for integer load.
  if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
    if (src_hi != OptoReg::Bad) {
      return ppc64Opcode_ld;
    } else {
      return ppc64Opcode_lwz;
    }
  }

  // Check for float reg-reg copy.
  if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
    return ppc64Opcode_fmr;
  }

  // Check for float store.
  if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
    if (src_hi != OptoReg::Bad) {
      return ppc64Opcode_stfd;
    } else {
      return ppc64Opcode_stfs;
    }
  }

  // Check for float load.
  if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
    if (src_hi != OptoReg::Bad) {
      return ppc64Opcode_lfd;
    } else {
      return ppc64Opcode_lfs;
    }
  }

  // --------------------------------------------------------------------
  // Check for hi bits still needing moving. Only happens for misaligned
  // arguments to native calls.
  if (src_hi == dst_hi) {
    return ppc64Opcode_none;               // Self copy; no move.
  }

  ShouldNotReachHere();
  return ppc64Opcode_undefined;
}
#endif // PPC port

#ifndef PRODUCT
void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  st->print("NOP \t// %d nops to pad for loops.", _count);
}
#endif

void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
  MacroAssembler _masm(&cbuf);
  // _count contains the number of nops needed for padding.
  for (int i = 0; i < _count; i++) {
    __ nop();
  }
}

uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  return _count * 4;
}

#ifndef PRODUCT
void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  char reg_str[128];
  ra_->dump_register(this, reg_str);
  st->print("ADDI    %s, SP, %d \t// box node", reg_str, offset);
}
#endif

void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  MacroAssembler _masm(&cbuf);

  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  int reg    = ra_->get_encode(this);

  if (Assembler::is_simm(offset, 16)) {
    __ addi(as_Register(reg), R1, offset);
  } else {
    ShouldNotReachHere();
  }
}

uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
  return 4;
}

#ifndef PRODUCT
void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  st->print_cr("---- MachUEPNode ----");
  st->print_cr("...");
}
#endif

void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  // This is the unverified entry point.
  MacroAssembler _masm(&cbuf);

  // Inline_cache contains a klass.
  Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
  Register receiver_klass = R12_scratch2;  // tmp

  assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
  assert(R11_scratch1 == R11, "need prologue scratch register");

  // Check for NULL argument if we don't have implicit null checks.
  if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
    if (TrapBasedNullChecks) {
      __ trap_null_check(R3_ARG1);
    } else {
      Label valid;
      __ cmpdi(CCR0, R3_ARG1, 0);
      __ bne_predict_taken(CCR0, valid);
      // We have a null argument, branch to ic_miss_stub.
      __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
                           relocInfo::runtime_call_type);
      __ bind(valid);
    }
  }
  // Assume argument is not NULL, load klass from receiver.
  __ load_klass(receiver_klass, R3_ARG1);

  if (TrapBasedICMissChecks) {
    __ trap_ic_miss_check(receiver_klass, ic_klass);
  } else {
    Label valid;
    __ cmpd(CCR0, receiver_klass, ic_klass);
    __ beq_predict_taken(CCR0, valid);
    // We have an unexpected klass, branch to ic_miss_stub.
    __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
                         relocInfo::runtime_call_type);
    __ bind(valid);
  }

  // Argument is valid and klass is as expected, continue.
}

#if 0 // TODO: PPC port
// Optimize UEP code on z (save a load_const() call in main path).
int MachUEPNode::ep_offset() {
  return 0;
}
#endif

uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  // Variable size. Determine dynamically.
  return MachNode::size(ra_);
}

//=============================================================================

%} // interrupt source

source_hpp %{ // Header information of the source block.

class HandlerImpl {

 public:

  static int emit_exception_handler(CodeBuffer &cbuf);
  static int emit_deopt_handler(CodeBuffer& cbuf);

  static uint size_exception_handler() {
    // The exception_handler is a b64_patchable.
    return MacroAssembler::b64_patchable_size;
  }

  static uint size_deopt_handler() {
    // The deopt_handler is a bl64_patchable.
    return MacroAssembler::bl64_patchable_size;
  }

};

%} // end source_hpp

source %{

int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
  MacroAssembler _masm(&cbuf);

  address base = __ start_a_stub(size_exception_handler());
  if (base == NULL) return 0; // CodeBuffer::expand failed

  int offset = __ offset();
  __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
                       relocInfo::runtime_call_type);
  assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
  __ end_a_stub();

  return offset;
}

// The deopt_handler is like the exception handler, but it calls to
// the deoptimization blob instead of jumping to the exception blob.
int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  MacroAssembler _masm(&cbuf);

  address base = __ start_a_stub(size_deopt_handler());
  if (base == NULL) return 0; // CodeBuffer::expand failed

  int offset = __ offset();
  __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
                        relocInfo::runtime_call_type);
  assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
  __ end_a_stub();

  return offset;
}

//=============================================================================

// Use a frame slots bias for frameless methods if accessing the stack.
static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
  if (as_Register(reg_enc) == R1_SP) {
    return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
  }
  return 0;
}

const bool Matcher::match_rule_supported(int opcode) {
  if (!has_match_rule(opcode))
    return false;

  switch (opcode) {
  case Op_SqrtD:
    return VM_Version::has_fsqrt();
  case Op_CountLeadingZerosI:
  case Op_CountLeadingZerosL:
  case Op_CountTrailingZerosI:
  case Op_CountTrailingZerosL:
    if (!UseCountLeadingZerosInstructionsPPC64)
      return false;
    break;

  case Op_PopCountI:
  case Op_PopCountL:
    return (UsePopCountInstruction && VM_Version::has_popcntw());

  case Op_StrComp:
    return SpecialStringCompareTo && !CompactStrings;
  case Op_StrEquals:
    return SpecialStringEquals && !CompactStrings;
  case Op_StrIndexOf:
    return SpecialStringIndexOf && !CompactStrings;
  }

  return true;  // Per default match rules are supported.
}

const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {

  // TODO
  // identify extra cases that we might want to provide match rules for
  // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
  bool ret_value = match_rule_supported(opcode);
  // Add rules here.

  return ret_value;  // Per default match rules are supported.
}

const int Matcher::float_pressure(int default_pressure_threshold) {
  return default_pressure_threshold;
}

int Matcher::regnum_to_fpu_offset(int regnum) {
  // No user for this method?
  Unimplemented();
  return 999;
}

const bool Matcher::convL2FSupported(void) {
  // fcfids can do the conversion (>= Power7).
  // fcfid + frsp showed rounding problem when result should be 0x3f800001.
  return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
}

// Vector width in bytes.
const int Matcher::vector_width_in_bytes(BasicType bt) {
  assert(MaxVectorSize == 8, "");
  return 8;
}

// Vector ideal reg.
const int Matcher::vector_ideal_reg(int size) {
  assert(MaxVectorSize == 8 && size == 8, "");
  return Op_RegL;
}

const int Matcher::vector_shift_count_ideal_reg(int size) {
  fatal("vector shift is not supported");
  return Node::NotAMachineReg;
}

// Limits on vector size (number of elements) loaded into vector.
const int Matcher::max_vector_size(const BasicType bt) {
  assert(is_java_primitive(bt), "only primitive type vectors");
  return vector_width_in_bytes(bt)/type2aelembytes(bt);
}

const int Matcher::min_vector_size(const BasicType bt) {
  return max_vector_size(bt); // Same as max.
}

// PPC doesn't support misaligned vectors store/load.
const bool Matcher::misaligned_vectors_ok() {
  return false;
}

// PPC AES support not yet implemented
const bool Matcher::pass_original_key_for_aes() {
  return false;
}

// RETURNS: whether this branch offset is short enough that a short
// branch can be used.
//
// If the platform does not provide any short branch variants, then
// this method should return `false' for offset 0.
//
// `Compile::Fill_buffer' will decide on basis of this information
// whether to do the pass `Compile::Shorten_branches' at all.
//
// And `Compile::Shorten_branches' will decide on basis of this
// information whether to replace particular branch sites by short
// ones.
bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  // Is the offset within the range of a ppc64 pc relative branch?
  bool b;

  const int safety_zone = 3 * BytesPerInstWord;
  b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
                         29 - 16 + 1 + 2);
  return b;
}

const bool Matcher::isSimpleConstant64(jlong value) {
  // Probably always true, even if a temp register is required.
  return true;
}
/* TODO: PPC port
// Make a new machine dependent decode node (with its operands).
MachTypeNode *Matcher::make_decode_node() {
  assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
         "This method is only implemented for unscaled cOops mode so far");
  MachTypeNode *decode = new decodeN_unscaledNode();
  decode->set_opnd_array(0, new iRegPdstOper());
  decode->set_opnd_array(1, new iRegNsrcOper());
  return decode;
}
*/
// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;

// false => size gets scaled to BytesPerLong, ok.
const bool Matcher::init_array_count_is_in_bytes = false;

// Use conditional move (CMOVL) on Power7.
const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves

// Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
// fsel doesn't accept a condition register as input, so this would be slightly different.
const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }

// Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
const bool Matcher::require_postalloc_expand = true;

// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers? True for Intel but false for most RISCs.
const bool Matcher::clone_shift_expressions = false;

// Do we need to mask the count passed to shift instructions or does
// the cpu only look at the lower 5/6 bits anyway?
// PowerPC requires masked shift counts.
const bool Matcher::need_masked_shift_count = true;

// This affects two different things:
//  - how Decode nodes are matched
//  - how ImplicitNullCheck opportunities are recognized
// If true, the matcher will try to remove all Decodes and match them
// (as operands) into nodes. NullChecks are not prepared to deal with
// Decodes by final_graph_reshaping().
// If false, final_graph_reshaping() forces the decode behind the Cmp
// for a NullCheck. The matcher matches the Decode node into a register.
// Implicit_null_check optimization moves the Decode along with the
// memory operation back up before the NullCheck.
bool Matcher::narrow_oop_use_complex_address() {
  // TODO: PPC port if (MatchDecodeNodes) return true;
  return false;
}

bool Matcher::narrow_klass_use_complex_address() {
  NOT_LP64(ShouldNotCallThis());
  assert(UseCompressedClassPointers, "only for compressed klass code");
  // TODO: PPC port if (MatchDecodeNodes) return true;
  return false;
}

// Is it better to copy float constants, or load them directly from memory?
// Intel can load a float constant from a direct address, requiring no
// extra registers. Most RISCs will have to materialize an address into a
// register first, so they would do better to copy the constant from stack.
const bool Matcher::rematerialize_float_constants = false;

// If CPU can load and store mis-aligned doubles directly then no fixup is
// needed. Else we split the double into 2 integer pieces and move it
// piece-by-piece. Only happens when passing doubles into C code as the
// Java calling convention forces doubles to be aligned.
const bool Matcher::misaligned_doubles_ok = true;

void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
 Unimplemented();
}

// Advertise here if the CPU requires explicit rounding operations
// to implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = false;

// Do floats take an entire double register or just half?
//
// A float occupies a ppc64 double register. For the allocator, a
// ppc64 double register appears as a pair of float registers.
bool Matcher::float_in_double() { return true; }

// Do ints take an entire long register or just half?
// The relevant question is how the int is callee-saved:
// the whole long is written but de-opt'ing will have to extract
// the relevant 32 bits.
const bool Matcher::int_in_long = true;

// Constants for c2c and c calling conventions.

const MachRegisterNumbers iarg_reg[8] = {
  R3_num, R4_num, R5_num, R6_num,
  R7_num, R8_num, R9_num, R10_num
};

const MachRegisterNumbers farg_reg[13] = {
  F1_num, F2_num, F3_num, F4_num,
  F5_num, F6_num, F7_num, F8_num,
  F9_num, F10_num, F11_num, F12_num,
  F13_num
};

const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);

const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);

// Return whether or not this register is ever used as an argument. This
// function is used on startup to build the trampoline stubs in generateOptoStub.
// Registers not mentioned will be killed by the VM call in the trampoline, and
// arguments in those registers not be available to the callee.
bool Matcher::can_be_java_arg(int reg) {
  // We return true for all registers contained in iarg_reg[] and
  // farg_reg[] and their virtual halves.
  // We must include the virtual halves in order to get STDs and LDs
  // instead of STWs and LWs in the trampoline stubs.

  if (   reg == R3_num  || reg == R3_H_num
      || reg == R4_num  || reg == R4_H_num
      || reg == R5_num  || reg == R5_H_num
      || reg == R6_num  || reg == R6_H_num
      || reg == R7_num  || reg == R7_H_num
      || reg == R8_num  || reg == R8_H_num
      || reg == R9_num  || reg == R9_H_num
      || reg == R10_num || reg == R10_H_num)
    return true;

  if (   reg == F1_num  || reg == F1_H_num
      || reg == F2_num  || reg == F2_H_num
      || reg == F3_num  || reg == F3_H_num
      || reg == F4_num  || reg == F4_H_num
      || reg == F5_num  || reg == F5_H_num
      || reg == F6_num  || reg == F6_H_num
      || reg == F7_num  || reg == F7_H_num
      || reg == F8_num  || reg == F8_H_num
      || reg == F9_num  || reg == F9_H_num
      || reg == F10_num || reg == F10_H_num
      || reg == F11_num || reg == F11_H_num
      || reg == F12_num || reg == F12_H_num
      || reg == F13_num || reg == F13_H_num)
    return true;

  return false;
}

bool Matcher::is_spillable_arg(int reg) {
  return can_be_java_arg(reg);
}

bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
  return false;
}

// Register for DIVI projection of divmodI.
RegMask Matcher::divI_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

// Register for MODI projection of divmodI.
RegMask Matcher::modI_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

// Register for DIVL projection of divmodL.
RegMask Matcher::divL_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

// Register for MODL projection of divmodL.
RegMask Matcher::modL_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  return RegMask();
}

%}

//----------ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to output
// byte streams. Encoding classes are parameterized macros used by
// Machine Instruction Nodes in order to generate the bit encoding of the
// instruction. Operands specify their base encoding interface with the
// interface keyword. There are currently supported four interfaces,
// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
// operand to generate a function which returns its register number when
// queried. CONST_INTER causes an operand to generate a function which
// returns the value of the constant when queried. MEMORY_INTER causes an
// operand to generate four functions which return the Base Register, the
// Index Register, the Scale Value, and the Offset Value of the operand when
// queried. COND_INTER causes an operand to generate six functions which
// return the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional instruction.
//
// Instructions specify two basic values for encoding. Again, a function
// is available to check if the constant displacement is an oop. They use the
// ins_encode keyword to specify their encoding classes (which must be
// a sequence of enc_class names, and their parameters, specified in
// the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode. Only the opcode sections which a particular instruction
// needs for encoding need to be specified.
encode %{
  enc_class enc_unimplemented %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    MacroAssembler _masm(&cbuf);
    __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
  %}

  enc_class enc_untested %{
#ifdef ASSERT
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    MacroAssembler _masm(&cbuf);
    __ untested("Untested mach node encoding in AD file.");
#else
    // TODO: PPC port $archOpcode(ppc64Opcode_none);
#endif
  %}

  enc_class enc_lbz(iRegIdst dst, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  %}

  // Load acquire.
  enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
    __ twi_0($dst$$Register);
    __ isync();
  %}

  enc_class enc_lhz(iRegIdst dst, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lhz);

    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  %}

  // Load acquire.
  enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
    __ twi_0($dst$$Register);
    __ isync();
  %}

  enc_class enc_lwz(iRegIdst dst, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lwz);

    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  %}

  // Load acquire.
  enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
    __ twi_0($dst$$Register);
    __ isync();
  %}

  enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    // Operand 'ds' requires 4-alignment.
    assert((Idisp & 0x3) == 0, "unaligned offset");
    __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  %}

  // Load acquire.
  enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    // Operand 'ds' requires 4-alignment.
    assert((Idisp & 0x3) == 0, "unaligned offset");
    __ ld($dst$$Register, Idisp, $mem$$base$$Register);
    __ twi_0($dst$$Register);
    __ isync();
  %}

  enc_class enc_lfd(RegF dst, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  %}

  enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ld);

    MacroAssembler _masm(&cbuf);
    int toc_offset = 0;

    if (!ra_->C->in_scratch_emit_size()) {
      address const_toc_addr;
      // Create a non-oop constant, no relocation needed.
      // If it is an IC, it has a virtual_call_Relocation.
      const_toc_addr = __ long_constant((jlong)$src$$constant);
      if (const_toc_addr == NULL) {
        ciEnv::current()->record_out_of_memory_failure();
        return;
      }

      // Get the constant's TOC offset.
      toc_offset = __ offset_to_method_toc(const_toc_addr);

      // Keep the current instruction offset in mind.
      ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
    }

    __ ld($dst$$Register, toc_offset, $toc$$Register);
  %}

  enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);

    MacroAssembler _masm(&cbuf);

    if (!ra_->C->in_scratch_emit_size()) {
      address const_toc_addr;
      // Create a non-oop constant, no relocation needed.
      // If it is an IC, it has a virtual_call_Relocation.
      const_toc_addr = __ long_constant((jlong)$src$$constant);
      if (const_toc_addr == NULL) {
        ciEnv::current()->record_out_of_memory_failure();
        return;
      }

      // Get the constant's TOC offset.
      const int toc_offset = __ offset_to_method_toc(const_toc_addr);
      // Store the toc offset of the constant.
      ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;

      // Also keep the current instruction offset in mind.
      ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
    }

    __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  %}

%} // encode

source %{

typedef struct {
  loadConL_hiNode *_large_hi;
  loadConL_loNode *_large_lo;
  loadConLNode    *_small;
  MachNode        *_last;
} loadConLNodesTuple;

loadConLNodesTuple loadConLNodesTuple_create(PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
                                             OptoReg::Name reg_second, OptoReg::Name reg_first) {
  loadConLNodesTuple nodes;

  const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  if (large_constant_pool) {
    // Create new nodes.
    loadConL_hiNode *m1 = new loadConL_hiNode();
    loadConL_loNode *m2 = new loadConL_loNode();

    // inputs for new nodes
    m1->add_req(NULL, toc);
    m2->add_req(NULL, m1);

    // operands for new nodes
    m1->_opnds[0] = new iRegLdstOper(); // dst
    m1->_opnds[1] = immSrc;             // src
    m1->_opnds[2] = new iRegPdstOper(); // toc
    m2->_opnds[0] = new iRegLdstOper(); // dst
    m2->_opnds[1] = immSrc;             // src
    m2->_opnds[2] = new iRegLdstOper(); // base

    // Initialize ins_attrib TOC fields.
    m1->_const_toc_offset = -1;
    m2->_const_toc_offset_hi_node = m1;

    // Initialize ins_attrib instruction offset.
    m1->_cbuf_insts_offset = -1;

    // register allocation for new nodes
    ra_->set_pair(m1->_idx, reg_second, reg_first);
    ra_->set_pair(m2->_idx, reg_second, reg_first);

    // Create result.
    nodes._large_hi = m1;
    nodes._large_lo = m2;
    nodes._small = NULL;
    nodes._last = nodes._large_lo;
    assert(m2->bottom_type()->isa_long(), "must be long");
  } else {
    loadConLNode *m2 = new loadConLNode();

    // inputs for new nodes
    m2->add_req(NULL, toc);

    // operands for new nodes
    m2->_opnds[0] = new iRegLdstOper(); // dst
    m2->_opnds[1] = immSrc;             // src
    m2->_opnds[2] = new iRegPdstOper(); // toc

    // Initialize ins_attrib instruction offset.
    m2->_cbuf_insts_offset = -1;

    // register allocation for new nodes
    ra_->set_pair(m2->_idx, reg_second, reg_first);

    // Create result.
    nodes._large_hi = NULL;
    nodes._large_lo = NULL;
    nodes._small = m2;
    nodes._last = nodes._small;
    assert(m2->bottom_type()->isa_long(), "must be long");
  }

  return nodes;
}

%} // source

encode %{
  // Postalloc expand emitter for loading a long constant from the method's TOC.
  // Enc_class needed as consttanttablebase is not supported by postalloc
  // expand.
  enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
    // Create new nodes.
    loadConLNodesTuple loadConLNodes =
      loadConLNodesTuple_create(ra_, n_toc, op_src,
                                ra_->get_reg_second(this), ra_->get_reg_first(this));

    // Push new nodes.
    if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
    if (loadConLNodes._last)     nodes->push(loadConLNodes._last);

    // some asserts
    assert(nodes->length() >= 1, "must have created at least 1 node");
    assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  %}

  enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ld);

    MacroAssembler _masm(&cbuf);
    int toc_offset = 0;

    if (!ra_->C->in_scratch_emit_size()) {
      intptr_t val = $src$$constant;
      relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
      address const_toc_addr;
      if (constant_reloc == relocInfo::oop_type) {
        // Create an oop constant and a corresponding relocation.
        AddressLiteral a = __ allocate_oop_address((jobject)val);
        const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
        __ relocate(a.rspec());
      } else if (constant_reloc == relocInfo::metadata_type) {
        AddressLiteral a = __ constant_metadata_address((Metadata *)val);
        const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
        __ relocate(a.rspec());
      } else {
        // Create a non-oop constant, no relocation needed.
        const_toc_addr = __ long_constant((jlong)$src$$constant);
      }

      if (const_toc_addr == NULL) {
        ciEnv::current()->record_out_of_memory_failure();
        return;
      }
      // Get the constant's TOC offset.
      toc_offset = __ offset_to_method_toc(const_toc_addr);
    }

    __ ld($dst$$Register, toc_offset, $toc$$Register);
  %}

  enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);

    MacroAssembler _masm(&cbuf);
    if (!ra_->C->in_scratch_emit_size()) {
      intptr_t val = $src$$constant;
      relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
      address const_toc_addr;
      if (constant_reloc == relocInfo::oop_type) {
        // Create an oop constant and a corresponding relocation.
        AddressLiteral a = __ allocate_oop_address((jobject)val);
        const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
        __ relocate(a.rspec());
      } else if (constant_reloc == relocInfo::metadata_type) {
        AddressLiteral a = __ constant_metadata_address((Metadata *)val);
        const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
        __ relocate(a.rspec());
      } else {  // non-oop pointers, e.g. card mark base, heap top
        // Create a non-oop constant, no relocation needed.
        const_toc_addr = __ long_constant((jlong)$src$$constant);
      }

      if (const_toc_addr == NULL) {
        ciEnv::current()->record_out_of_memory_failure();
        return;
      }
      // Get the constant's TOC offset.
      const int toc_offset = __ offset_to_method_toc(const_toc_addr);
      // Store the toc offset of the constant.
      ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
    }

    __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  %}

  // Postalloc expand emitter for loading a ptr constant from the method's TOC.
  // Enc_class needed as consttanttablebase is not supported by postalloc
  // expand.
  enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
    const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
    if (large_constant_pool) {
      // Create new nodes.
      loadConP_hiNode *m1 = new loadConP_hiNode();
      loadConP_loNode *m2 = new loadConP_loNode();

      // inputs for new nodes
      m1->add_req(NULL, n_toc);
      m2->add_req(NULL, m1);

      // operands for new nodes
      m1->_opnds[0] = new iRegPdstOper(); // dst
      m1->_opnds[1] = op_src;             // src
      m1->_opnds[2] = new iRegPdstOper(); // toc
      m2->_opnds[0] = new iRegPdstOper(); // dst
      m2->_opnds[1] = op_src;             // src
      m2->_opnds[2] = new iRegLdstOper(); // base

      // Initialize ins_attrib TOC fields.
      m1->_const_toc_offset = -1;
      m2->_const_toc_offset_hi_node = m1;

      // Register allocation for new nodes.
      ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

      nodes->push(m1);
      nodes->push(m2);
      assert(m2->bottom_type()->isa_ptr(), "must be ptr");
    } else {
      loadConPNode *m2 = new loadConPNode();

      // inputs for new nodes
      m2->add_req(NULL, n_toc);

      // operands for new nodes
      m2->_opnds[0] = new iRegPdstOper(); // dst
      m2->_opnds[1] = op_src;             // src
      m2->_opnds[2] = new iRegPdstOper(); // toc

      // Register allocation for new nodes.
      ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

      nodes->push(m2);
      assert(m2->bottom_type()->isa_ptr(), "must be ptr");
    }
  %}

  // Enc_class needed as consttanttablebase is not supported by postalloc
  // expand.
  enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
    bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;

    MachNode *m2;
    if (large_constant_pool) {
      m2 = new loadConFCompNode();
    } else {
      m2 = new loadConFNode();
    }
    // inputs for new nodes
    m2->add_req(NULL, n_toc);

    // operands for new nodes
    m2->_opnds[0] = op_dst;
    m2->_opnds[1] = op_src;
    m2->_opnds[2] = new iRegPdstOper(); // constanttablebase

    // register allocation for new nodes
    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    nodes->push(m2);
  %}

  // Enc_class needed as consttanttablebase is not supported by postalloc
  // expand.
  enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
    bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;

    MachNode *m2;
    if (large_constant_pool) {
      m2 = new loadConDCompNode();
    } else {
      m2 = new loadConDNode();
    }
    // inputs for new nodes
    m2->add_req(NULL, n_toc);

    // operands for new nodes
    m2->_opnds[0] = op_dst;
    m2->_opnds[1] = op_src;
    m2->_opnds[2] = new iRegPdstOper(); // constanttablebase

    // register allocation for new nodes
    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    nodes->push(m2);
  %}

  enc_class enc_stw(iRegIsrc src, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_stw);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ stw($src$$Register, Idisp, $mem$$base$$Register);
  %}

  enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_std);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    // Operand 'ds' requires 4-alignment.
    assert((Idisp & 0x3) == 0, "unaligned offset");
    __ std($src$$Register, Idisp, $mem$$base$$Register);
  %}

  enc_class enc_stfs(RegF src, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
  %}

  enc_class enc_stfd(RegF src, memory mem) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
  %}

  // Use release_store for card-marking to ensure that previous
  // oop-stores are visible before the card-mark change.
  enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr, flagsReg crx) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    // FIXME: Implement this as a cmove and use a fixed condition code
    // register which is written on every transition to compiled code,
    // e.g. in call-stub and when returning from runtime stubs.
    //
    // Proposed code sequence for the cmove implementation:
    //
    // Label skip_release;
    // __ beq(CCRfixed, skip_release);
    // __ release();
    // __ bind(skip_release);
    // __ stb(card mark);

    MacroAssembler _masm(&cbuf);
    Label skip_storestore;

#if 0 // TODO: PPC port
    // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
    // StoreStore barrier conditionally.
    __ lwz(R0, 0, $releaseFieldAddr$$Register);
    __ cmpwi($crx$$CondRegister, R0, 0);
    __ beq_predict_taken($crx$$CondRegister, skip_storestore);
#endif
    __ li(R0, 0);
    __ membar(Assembler::StoreStore);
#if 0 // TODO: PPC port
    __ bind(skip_storestore);
#endif

    // Do the store.
    if ($mem$$index == 0) {
      __ stb(R0, $mem$$disp, $mem$$base$$Register);
    } else {
      assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
      __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
    }
  %}

  enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{

    if (VM_Version::has_isel()) {
      // use isel instruction with Power 7
      cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
      encodeP_subNode    *n_sub_base = new encodeP_subNode();
      encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
      cond_set_0_oopNode *n_cond_set = new cond_set_0_oopNode();

      n_compare->add_req(n_region, n_src);
      n_compare->_opnds[0] = op_crx;
      n_compare->_opnds[1] = op_src;
      n_compare->_opnds[2] = new immL16Oper(0);

      n_sub_base->add_req(n_region, n_src);
      n_sub_base->_opnds[0] = op_dst;
      n_sub_base->_opnds[1] = op_src;
      n_sub_base->_bottom_type = _bottom_type;

      n_shift->add_req(n_region, n_sub_base);
      n_shift->_opnds[0] = op_dst;
      n_shift->_opnds[1] = op_dst;
      n_shift->_bottom_type = _bottom_type;

      n_cond_set->add_req(n_region, n_compare, n_shift);
      n_cond_set->_opnds[0] = op_dst;
      n_cond_set->_opnds[1] = op_crx;
      n_cond_set->_opnds[2] = op_dst;
      n_cond_set->_bottom_type = _bottom_type;

      ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
      ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

      nodes->push(n_compare);
      nodes->push(n_sub_base);
      nodes->push(n_shift);
      nodes->push(n_cond_set);

    } else {
      // before Power 7
      moveRegNode        *n_move     = new moveRegNode();
      cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
      encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
      cond_sub_baseNode  *n_sub_base = new cond_sub_baseNode();

      n_move->add_req(n_region, n_src);
      n_move->_opnds[0] = op_dst;
      n_move->_opnds[1] = op_src;
      ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.

      n_compare->add_req(n_region, n_src);
      n_compare->add_prec(n_move);

      n_compare->_opnds[0] = op_crx;
      n_compare->_opnds[1] = op_src;
      n_compare->_opnds[2] = new immL16Oper(0);

      n_sub_base->add_req(n_region, n_compare, n_src);
      n_sub_base->_opnds[0] = op_dst;
      n_sub_base->_opnds[1] = op_crx;
      n_sub_base->_opnds[2] = op_src;
      n_sub_base->_bottom_type = _bottom_type;

      n_shift->add_req(n_region, n_sub_base);
      n_shift->_opnds[0] = op_dst;
      n_shift->_opnds[1] = op_dst;
      n_shift->_bottom_type = _bottom_type;

      ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
      ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

      nodes->push(n_move);
      nodes->push(n_compare);
      nodes->push(n_sub_base);
      nodes->push(n_shift);
    }

    assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  %}

  enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{

    encodeP_subNode *n1 = new encodeP_subNode();
    n1->add_req(n_region, n_src);
    n1->_opnds[0] = op_dst;
    n1->_opnds[1] = op_src;
    n1->_bottom_type = _bottom_type;

    encodeP_shiftNode *n2 = new encodeP_shiftNode();
    n2->add_req(n_region, n1);
    n2->_opnds[0] = op_dst;
    n2->_opnds[1] = op_dst;
    n2->_bottom_type = _bottom_type;
    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

    nodes->push(n1);
    nodes->push(n2);
    assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  %}

  enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
    decodeN_shiftNode *n_shift    = new decodeN_shiftNode();
    cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();

    n_compare->add_req(n_region, n_src);
    n_compare->_opnds[0] = op_crx;
    n_compare->_opnds[1] = op_src;
    n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);

    n_shift->add_req(n_region, n_src);
    n_shift->_opnds[0] = op_dst;
    n_shift->_opnds[1] = op_src;
    n_shift->_bottom_type = _bottom_type;

    if (VM_Version::has_isel()) {
      // use isel instruction with Power 7

      decodeN_addNode *n_add_base = new decodeN_addNode();
      n_add_base->add_req(n_region, n_shift);
      n_add_base->_opnds[0] = op_dst;
      n_add_base->_opnds[1] = op_dst;
      n_add_base->_bottom_type = _bottom_type;

      cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
      n_cond_set->add_req(n_region, n_compare, n_add_base);
      n_cond_set->_opnds[0] = op_dst;
      n_cond_set->_opnds[1] = op_crx;
      n_cond_set->_opnds[2] = op_dst;
      n_cond_set->_bottom_type = _bottom_type;

      assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
      ra_->set_oop(n_cond_set, true);

      ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
      ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

      nodes->push(n_compare);
      nodes->push(n_shift);
      nodes->push(n_add_base);
      nodes->push(n_cond_set);

    } else {
      // before Power 7
      cond_add_baseNode *n_add_base = new cond_add_baseNode();

      n_add_base->add_req(n_region, n_compare, n_shift);
      n_add_base->_opnds[0] = op_dst;
      n_add_base->_opnds[1] = op_crx;
      n_add_base->_opnds[2] = op_dst;
      n_add_base->_bottom_type = _bottom_type;

      assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
      ra_->set_oop(n_add_base, true);

      ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
      ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

      nodes->push(n_compare);
      nodes->push(n_shift);
      nodes->push(n_add_base);
    }
  %}

  enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
    decodeN_shiftNode *n1 = new decodeN_shiftNode();
    n1->add_req(n_region, n_src);
    n1->_opnds[0] = op_dst;
    n1->_opnds[1] = op_src;
    n1->_bottom_type = _bottom_type;

    decodeN_addNode *n2 = new decodeN_addNode();
    n2->add_req(n_region, n1);
    n2->_opnds[0] = op_dst;
    n2->_opnds[1] = op_dst;
    n2->_bottom_type = _bottom_type;
    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

    assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
    ra_->set_oop(n2, true);

    nodes->push(n1);
    nodes->push(n2);
  %}

  enc_class enc_cmove_reg(iRegIdst dst, flagsRegSrc crx, iRegIsrc src, cmpOp cmp) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);

    MacroAssembler _masm(&cbuf);
    int cc        = $cmp$$cmpcode;
    int flags_reg = $crx$$reg;
    Label done;
    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
    // Branch if not (cmp crx).
    __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
    __ mr($dst$$Register, $src$$Register);
    // TODO PPC port __ endgroup_if_needed(_size == 12);
    __ bind(done);
  %}

  enc_class enc_cmove_imm(iRegIdst dst, flagsRegSrc crx, immI16 src, cmpOp cmp) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);

    MacroAssembler _masm(&cbuf);
    Label done;
    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
    // Branch if not (cmp crx).
    __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
    __ li($dst$$Register, $src$$constant);
    // TODO PPC port __ endgroup_if_needed(_size == 12);
    __ bind(done);
  %}

  // New atomics.
  enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);
    Register Rtmp   = R0;
    Register Rres   = $res$$Register;
    Register Rsrc   = $src$$Register;
    Register Rptr   = $mem_ptr$$Register;
    bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
    Register Rold   = RegCollision ? Rtmp : Rres;

    Label Lretry;
    __ bind(Lretry);
    __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
    __ add(Rtmp, Rsrc, Rold);
    __ stwcx_(Rtmp, Rptr);
    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
      __ bne_predict_not_taken(CCR0, Lretry);
    } else {
      __ bne(                  CCR0, Lretry);
    }
    if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
    __ fence();
  %}

  enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);
    Register Rtmp   = R0;
    Register Rres   = $res$$Register;
    Register Rsrc   = $src$$Register;
    Register Rptr   = $mem_ptr$$Register;
    bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
    Register Rold   = RegCollision ? Rtmp : Rres;

    Label Lretry;
    __ bind(Lretry);
    __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
    __ add(Rtmp, Rsrc, Rold);
    __ stdcx_(Rtmp, Rptr);
    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
      __ bne_predict_not_taken(CCR0, Lretry);
    } else {
      __ bne(                  CCR0, Lretry);
    }
    if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
    __ fence();
  %}

  enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);
    Register Rtmp   = R0;
    Register Rres   = $res$$Register;
    Register Rsrc   = $src$$Register;
    Register Rptr   = $mem_ptr$$Register;
    bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
    Register Rold   = RegCollision ? Rtmp : Rres;

    Label Lretry;
    __ bind(Lretry);
    __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
    __ stwcx_(Rsrc, Rptr);
    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
      __ bne_predict_not_taken(CCR0, Lretry);
    } else {
      __ bne(                  CCR0, Lretry);
    }
    if (RegCollision) __ mr(Rres, Rtmp);
    __ fence();
  %}

  enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);
    Register Rtmp   = R0;
    Register Rres   = $res$$Register;
    Register Rsrc   = $src$$Register;
    Register Rptr   = $mem_ptr$$Register;
    bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
    Register Rold   = RegCollision ? Rtmp : Rres;

    Label Lretry;
    __ bind(Lretry);
    __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
    __ stdcx_(Rsrc, Rptr);
    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
      __ bne_predict_not_taken(CCR0, Lretry);
    } else {
      __ bne(                  CCR0, Lretry);
    }
    if (RegCollision) __ mr(Rres, Rtmp);
    __ fence();
  %}

  // This enc_class is needed so that scheduler gets proper
  // input mapping for latency computation.
  enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_andc);
    MacroAssembler _masm(&cbuf);
    __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  %}

  enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);

    Label done;
    __ cmpwi($crx$$CondRegister, $src$$Register, 0);
    __ li($dst$$Register, $zero$$constant);
    __ beq($crx$$CondRegister, done);
    __ li($dst$$Register, $notzero$$constant);
    __ bind(done);
  %}

  enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);

    Label done;
    __ cmpdi($crx$$CondRegister, $src$$Register, 0);
    __ li($dst$$Register, $zero$$constant);
    __ beq($crx$$CondRegister, done);
    __ li($dst$$Register, $notzero$$constant);
    __ bind(done);
  %}

  enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsRegSrc crx, stackSlotL mem ) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);

    MacroAssembler _masm(&cbuf);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    Label done;
    __ bso($crx$$CondRegister, done);
    __ ld($dst$$Register, Idisp, $mem$$base$$Register);
    // TODO PPC port __ endgroup_if_needed(_size == 12);
    __ bind(done);
  %}

  enc_class enc_bc(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_bc);

    MacroAssembler _masm(&cbuf);
    Label d;   // dummy
    __ bind(d);
    Label* p = ($lbl$$label);
    // `p' is `NULL' when this encoding class is used only to
    // determine the size of the encoded instruction.
    Label& l = (NULL == p)? d : *(p);
    int cc = $cmp$$cmpcode;
    int flags_reg = $crx$$reg;
    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
    int bhint = Assembler::bhintNoHint;

    if (UseStaticBranchPredictionForUncommonPathsPPC64) {
      if (_prob <= PROB_NEVER) {
        bhint = Assembler::bhintIsNotTaken;
      } else if (_prob >= PROB_ALWAYS) {
        bhint = Assembler::bhintIsTaken;
      }
    }

    __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
          cc_to_biint(cc, flags_reg),
          l);
  %}

  enc_class enc_bc_far(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
    // The scheduler doesn't know about branch shortening, so we set the opcode
    // to ppc64Opcode_bc in order to hide this detail from the scheduler.
    // TODO: PPC port $archOpcode(ppc64Opcode_bc);

    MacroAssembler _masm(&cbuf);
    Label d;    // dummy
    __ bind(d);
    Label* p = ($lbl$$label);
    // `p' is `NULL' when this encoding class is used only to
    // determine the size of the encoded instruction.
    Label& l = (NULL == p)? d : *(p);
    int cc = $cmp$$cmpcode;
    int flags_reg = $crx$$reg;
    int bhint = Assembler::bhintNoHint;

    if (UseStaticBranchPredictionForUncommonPathsPPC64) {
      if (_prob <= PROB_NEVER) {
        bhint = Assembler::bhintIsNotTaken;
      } else if (_prob >= PROB_ALWAYS) {
        bhint = Assembler::bhintIsTaken;
      }
    }

    // Tell the conditional far branch to optimize itself when being relocated.
    __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
                  cc_to_biint(cc, flags_reg),
                  l,
                  MacroAssembler::bc_far_optimize_on_relocate);
  %}

  // Branch used with Power6 scheduling (can be shortened without changing the node).
  enc_class enc_bc_short_far(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
    // The scheduler doesn't know about branch shortening, so we set the opcode
    // to ppc64Opcode_bc in order to hide this detail from the scheduler.
    // TODO: PPC port $archOpcode(ppc64Opcode_bc);

    MacroAssembler _masm(&cbuf);
    Label d;   // dummy
    __ bind(d);
    Label* p = ($lbl$$label);
    // `p' is `NULL' when this encoding class is used only to
    // determine the size of the encoded instruction.
    Label& l = (NULL == p)? d : *(p);
    int cc = $cmp$$cmpcode;
    int flags_reg = $crx$$reg;
    int bhint = Assembler::bhintNoHint;

    if (UseStaticBranchPredictionForUncommonPathsPPC64) {
      if (_prob <= PROB_NEVER) {
        bhint = Assembler::bhintIsNotTaken;
      } else if (_prob >= PROB_ALWAYS) {
        bhint = Assembler::bhintIsTaken;
      }
    }

#if 0 // TODO: PPC port
    if (_size == 8) {
      // Tell the conditional far branch to optimize itself when being relocated.
      __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
                    cc_to_biint(cc, flags_reg),
                    l,
                    MacroAssembler::bc_far_optimize_on_relocate);
    } else {
      __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
                    cc_to_biint(cc, flags_reg),
                    l);
    }
#endif
    Unimplemented();
  %}

  // Postalloc expand emitter for loading a replicatef float constant from
  // the method's TOC.
  // Enc_class needed as consttanttablebase is not supported by postalloc
  // expand.
  enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
    // Create new nodes.

    // Make an operand with the bit pattern to load as float.
    immLOper *op_repl = new immLOper((jlong)replicate_immF(op_src->constantF()));

    loadConLNodesTuple loadConLNodes =
      loadConLNodesTuple_create(ra_, n_toc, op_repl,
                                ra_->get_reg_second(this), ra_->get_reg_first(this));

    // Push new nodes.
    if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
    if (loadConLNodes._last)     nodes->push(loadConLNodes._last);

    assert(nodes->length() >= 1, "must have created at least 1 node");
    assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  %}

  // This enc_class is needed so that scheduler gets proper
  // input mapping for latency computation.
  enc_class enc_poll(immI dst, iRegLdst poll) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
    // Fake operand dst needed for PPC scheduler.
    assert($dst$$constant == 0x0, "dst must be 0x0");

    MacroAssembler _masm(&cbuf);
    // Mark the code position where the load from the safepoint
    // polling page was emitted as relocInfo::poll_type.
    __ relocate(relocInfo::poll_type);
    __ load_from_polling_page($poll$$Register);
  %}

  // A Java static call or a runtime call.
  //
  // Branch-and-link relative to a trampoline.
  // The trampoline loads the target address and does a long branch to there.
  // In case we call java, the trampoline branches to a interpreter_stub
  // which loads the inline cache and the real call target from the constant pool.
  //
  // This basically looks like this:
  //
  // >>>> consts      -+  -+
  //                   |   |- offset1
  // [call target1]    | <-+
  // [IC cache]        |- offset2
  // [call target2] <--+
  //
  // <<<< consts
  // >>>> insts
  //
  // bl offset16               -+  -+             ??? // How many bits available?
  //                            |   |
  // <<<< insts                 |   |
  // >>>> stubs                 |   |
  //                            |   |- trampoline_stub_Reloc
  // trampoline stub:           | <-+
  //   r2 = toc                 |
  //   r2 = [r2 + offset1]      |       // Load call target1 from const section
  //   mtctr r2                 |
  //   bctr                     |- static_stub_Reloc
  // comp_to_interp_stub:   <---+
  //   r1 = toc
  //   ICreg = [r1 + IC_offset]         // Load IC from const section
  //   r1    = [r1 + offset2]           // Load call target2 from const section
  //   mtctr r1
  //   bctr
  //
  // <<<< stubs
  //
  // The call instruction in the code either
  // - Branches directly to a compiled method if the offset is encodable in instruction.
  // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
  // - Branches to the compiled_to_interp stub if the target is interpreted.
  //
  // Further there are three relocations from the loads to the constants in
  // the constant section.
  //
  // Usage of r1 and r2 in the stubs allows to distinguish them.
  enc_class enc_java_static_call(method meth) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_bl);

    MacroAssembler _masm(&cbuf);
    address entry_point = (address)$meth$$method;

    if (!_method) {
      // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
      emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
    } else {
      // Remember the offset not the address.
      const int start_offset = __ offset();
      // The trampoline stub.
      if (!Compile::current()->in_scratch_emit_size()) {
        // No entry point given, use the current pc.
        // Make sure branch fits into
        if (entry_point == 0) entry_point = __ pc();

        // Put the entry point as a constant into the constant pool.
        const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
        if (entry_point_toc_addr == NULL) {
          ciEnv::current()->record_out_of_memory_failure();
          return;
        }
        const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);


        // Emit the trampoline stub which will be related to the branch-and-link below.
        CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
        if (ciEnv::current()->failing()) { return; } // Code cache may be full.
        int method_index = resolved_method_index(cbuf);
        __ relocate(_optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
                                       : static_call_Relocation::spec(method_index));
      }

      // The real call.
      // Note: At this point we do not have the address of the trampoline
      // stub, and the entry point might be too far away for bl, so __ pc()
      // serves as dummy and the bl will be patched later.
      cbuf.set_insts_mark();
      __ bl(__ pc());  // Emits a relocation.

      // The stub for call to interpreter.
      address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
      if (stub == NULL) {
        ciEnv::current()->record_failure("CodeCache is full");
        return;
      }
    }
  %}

  // Second node of expanded dynamic call - the call.
  enc_class enc_java_dynamic_call_sched(method meth) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_bl);

    MacroAssembler _masm(&cbuf);

    if (!ra_->C->in_scratch_emit_size()) {
      // Create a call trampoline stub for the given method.
      const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
      const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
      if (entry_point_const == NULL) {
        ciEnv::current()->record_out_of_memory_failure();
        return;
      }
      const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
      CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
      if (ra_->C->env()->failing()) { return; } // Code cache may be full.

      // Build relocation at call site with ic position as data.
      assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
             (_load_ic_hi_node == NULL && _load_ic_node != NULL),
             "must have one, but can't have both");
      assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
             (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
             "must contain instruction offset");
      const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
        ? _load_ic_hi_node->_cbuf_insts_offset
        : _load_ic_node->_cbuf_insts_offset;
      const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
      assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
             "should be load from TOC");
      int method_index = resolved_method_index(cbuf);
      __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr, method_index));
    }

    // At this point I do not have the address of the trampoline stub,
    // and the entry point might be too far away for bl. Pc() serves
    // as dummy and bl will be patched later.
    __ bl((address) __ pc());
  %}

  // postalloc expand emitter for virtual calls.
  enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{

    // Create the nodes for loading the IC from the TOC.
    loadConLNodesTuple loadConLNodes_IC =
      loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong)Universe::non_oop_word()),
                                OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));

    // Create the call node.
    CallDynamicJavaDirectSchedNode *call = new CallDynamicJavaDirectSchedNode();
    call->_method_handle_invoke = _method_handle_invoke;
    call->_vtable_index      = _vtable_index;
    call->_method            = _method;
    call->_bci               = _bci;
    call->_optimized_virtual = _optimized_virtual;
    call->_tf                = _tf;
    call->_entry_point       = _entry_point;
    call->_cnt               = _cnt;
    call->_argsize           = _argsize;
    call->_oop_map           = _oop_map;
    call->_jvms              = _jvms;
    call->_jvmadj            = _jvmadj;
    call->_in_rms            = _in_rms;
    call->_nesting           = _nesting;
    call->_override_symbolic_info = _override_symbolic_info;

    // New call needs all inputs of old call.
    // Req...
    for (uint i = 0; i < req(); ++i) {
      // The expanded node does not need toc any more.
      // Add the inline cache constant here instead. This expresses the
      // register of the inline cache must be live at the call.
      // Else we would have to adapt JVMState by -1.
      if (i == mach_constant_base_node_input()) {
        call->add_req(loadConLNodes_IC._last);
      } else {
        call->add_req(in(i));
      }
    }
    // ...as well as prec
    for (uint i = req(); i < len(); ++i) {
      call->add_prec(in(i));
    }

    // Remember nodes loading the inline cache into r19.
    call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
    call->_load_ic_node    = loadConLNodes_IC._small;

    // Operands for new nodes.
    call->_opnds[0] = _opnds[0];
    call->_opnds[1] = _opnds[1];

    // Only the inline cache is associated with a register.
    assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");

    // Push new nodes.
    if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
    if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
    nodes->push(call);
  %}

  // Compound version of call dynamic
  // Toc is only passed so that it can be used in ins_encode statement.
  // In the code we have to use $constanttablebase.
  enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    MacroAssembler _masm(&cbuf);
    int start_offset = __ offset();

    Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
#if 0
    int vtable_index = this->_vtable_index;
    if (_vtable_index < 0) {
      // Must be invalid_vtable_index, not nonvirtual_vtable_index.
      assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
      Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());

      // Virtual call relocation will point to ic load.
      address virtual_call_meta_addr = __ pc();
      // Load a clear inline cache.
      AddressLiteral empty_ic((address) Universe::non_oop_word());
      bool success = __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc, /*fixed_size*/ true);
      if (!success) {
        ciEnv::current()->record_out_of_memory_failure();
        return;
      }
      // CALL to fixup routine.  Fixup routine uses ScopeDesc info
      // to determine who we intended to call.
      __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
      emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
      assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
             "Fix constant in ret_addr_offset()");
    } else {
      assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
      // Go thru the vtable. Get receiver klass. Receiver already
      // checked for non-null. If we'll go thru a C2I adapter, the
      // interpreter expects method in R19_method.

      __ load_klass(R11_scratch1, R3);

      int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
      int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
      __ li(R19_method, v_off);
      __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
      // NOTE: for vtable dispatches, the vtable entry will never be
      // null. However it may very well end up in handle_wrong_method
      // if the method is abstract for the particular class.
      __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
      // Call target. Either compiled code or C2I adapter.
      __ mtctr(R11_scratch1);
      __ bctrl();
      if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
        tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
      }
      assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
             "Fix constant in ret_addr_offset()");
    }
#endif
    Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
  %}

  // a runtime call
  enc_class enc_java_to_runtime_call (method meth) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);

    MacroAssembler _masm(&cbuf);
    const address start_pc = __ pc();

#if defined(ABI_ELFv2)
    address entry= !($meth$$method) ? NULL : (address)$meth$$method;
    __ call_c(entry, relocInfo::runtime_call_type);
#else
    // The function we're going to call.
    FunctionDescriptor fdtemp;
    const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;

    Register Rtoc = R12_scratch2;
    // Calculate the method's TOC.
    __ calculate_address_from_global_toc(Rtoc, __ method_toc());
    // Put entry, env, toc into the constant pool, this needs up to 3 constant
    // pool entries; call_c_using_toc will optimize the call.
    bool success = __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
    if (!success) {
      ciEnv::current()->record_out_of_memory_failure();
      return;
    }
#endif

    // Check the ret_addr_offset.
    assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
           "Fix constant in ret_addr_offset()");
  %}

  // Move to ctr for leaf call.
  // This enc_class is needed so that scheduler gets proper
  // input mapping for latency computation.
  enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
    MacroAssembler _masm(&cbuf);
    __ mtctr($src$$Register);
  %}

  // Postalloc expand emitter for runtime leaf calls.
  enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
    loadConLNodesTuple loadConLNodes_Entry;
#if defined(ABI_ELFv2)
    jlong entry_address = (jlong) this->entry_point();
    assert(entry_address, "need address here");
    loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
                                                    OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
#else
    // Get the struct that describes the function we are about to call.
    FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
    assert(fd, "need fd here");
    jlong entry_address = (jlong) fd->entry();
    // new nodes
    loadConLNodesTuple loadConLNodes_Env;
    loadConLNodesTuple loadConLNodes_Toc;

    // Create nodes and operands for loading the entry point.
    loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
                                                    OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));


    // Create nodes and operands for loading the env pointer.
    if (fd->env() != NULL) {
      loadConLNodes_Env = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->env()),
                                                    OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
    } else {
      loadConLNodes_Env._large_hi = NULL;
      loadConLNodes_Env._large_lo = NULL;
      loadConLNodes_Env._small    = NULL;
      loadConLNodes_Env._last = new loadConL16Node();
      loadConLNodes_Env._last->_opnds[0] = new iRegLdstOper();
      loadConLNodes_Env._last->_opnds[1] = new immL16Oper(0);
      ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
    }

    // Create nodes and operands for loading the Toc point.
    loadConLNodes_Toc = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->toc()),
                                                  OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
#endif // ABI_ELFv2
    // mtctr node
    MachNode *mtctr = new CallLeafDirect_mtctrNode();

    assert(loadConLNodes_Entry._last != NULL, "entry must exist");
    mtctr->add_req(0, loadConLNodes_Entry._last);

    mtctr->_opnds[0] = new iRegLdstOper();
    mtctr->_opnds[1] = new iRegLdstOper();

    // call node
    MachCallLeafNode *call = new CallLeafDirectNode();

    call->_opnds[0] = _opnds[0];
    call->_opnds[1] = new methodOper((intptr_t) entry_address); // May get set later.

    // Make the new call node look like the old one.
    call->_name        = _name;
    call->_tf          = _tf;
    call->_entry_point = _entry_point;
    call->_cnt         = _cnt;
    call->_argsize     = _argsize;
    call->_oop_map     = _oop_map;
    guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
    call->_jvms        = NULL;
    call->_jvmadj      = _jvmadj;
    call->_in_rms      = _in_rms;
    call->_nesting     = _nesting;


    // New call needs all inputs of old call.
    // Req...
    for (uint i = 0; i < req(); ++i) {
      if (i != mach_constant_base_node_input()) {
        call->add_req(in(i));
      }
    }

    // These must be reqired edges, as the registers are live up to
    // the call. Else the constants are handled as kills.
    call->add_req(mtctr);
#if !defined(ABI_ELFv2)
    call->add_req(loadConLNodes_Env._last);
    call->add_req(loadConLNodes_Toc._last);
#endif

    // ...as well as prec
    for (uint i = req(); i < len(); ++i) {
      call->add_prec(in(i));
    }

    // registers
    ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));

    // Insert the new nodes.
    if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
    if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
#if !defined(ABI_ELFv2)
    if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
    if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
    if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
    if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
#endif
    nodes->push(mtctr);
    nodes->push(call);
  %}
%}

//----------FRAME--------------------------------------------------------------
// Definition of frame structure and management information.

frame %{
  // What direction does stack grow in (assumed to be same for native & Java).
  stack_direction(TOWARDS_LOW);

  // These two registers define part of the calling convention between
  // compiled code and the interpreter.

  // Inline Cache Register or method for I2C.
  inline_cache_reg(R19); // R19_method

  // Method Oop Register when calling interpreter.
  interpreter_method_oop_reg(R19); // R19_method

  // Optional: name the operand used by cisc-spilling to access
  // [stack_pointer + offset].
  cisc_spilling_operand_name(indOffset);

  // Number of stack slots consumed by a Monitor enter.
  sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));

  // Compiled code's Frame Pointer.
  frame_pointer(R1); // R1_SP

  // Interpreter stores its frame pointer in a register which is
  // stored to the stack by I2CAdaptors. I2CAdaptors convert from
  // interpreted java to compiled java.
  //
  // R14_state holds pointer to caller's cInterpreter.
  interpreter_frame_pointer(R14); // R14_state

  stack_alignment(frame::alignment_in_bytes);

  in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));

  // Number of outgoing stack slots killed above the
  // out_preserve_stack_slots for calls to C. Supports the var-args
  // backing area for register parms.
  //
  varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));

  // The after-PROLOG location of the return address. Location of
  // return address specifies a type (REG or STACK) and a number
  // representing the register number (i.e. - use a register name) or
  // stack slot.
  //
  // A: Link register is stored in stack slot ...
  // M:  ... but it's in the caller's frame according to PPC-64 ABI.
  // J: Therefore, we make sure that the link register is also in R11_scratch1
  //    at the end of the prolog.
  // B: We use R20, now.
  //return_addr(REG R20);

  // G: After reading the comments made by all the luminaries on their
  //    failure to tell the compiler where the return address really is,
  //    I hardly dare to try myself.  However, I'm convinced it's in slot
  //    4 what apparently works and saves us some spills.
  return_addr(STACK 4);

  // This is the body of the function
  //
  // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
  //                                  uint length,      // length of array
  //                                  bool is_outgoing)
  //
  // The `sig' array is to be updated. sig[j] represents the location
  // of the j-th argument, either a register or a stack slot.

  // Comment taken from i486.ad:
  // Body of function which returns an integer array locating
  // arguments either in registers or in stack slots. Passed an array
  // of ideal registers called "sig" and a "length" count. Stack-slot
  // offsets are based on outgoing arguments, i.e. a CALLER setting up
  // arguments for a CALLEE. Incoming stack arguments are
  // automatically biased by the preserve_stack_slots field above.
  calling_convention %{
    // No difference between ingoing/outgoing. Just pass false.
    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  %}

  // Comment taken from i486.ad:
  // Body of function which returns an integer array locating
  // arguments either in registers or in stack slots. Passed an array
  // of ideal registers called "sig" and a "length" count. Stack-slot
  // offsets are based on outgoing arguments, i.e. a CALLER setting up
  // arguments for a CALLEE. Incoming stack arguments are
  // automatically biased by the preserve_stack_slots field above.
  c_calling_convention %{
    // This is obviously always outgoing.
    // C argument in register AND stack slot.
    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  %}

  // Location of native (C/C++) and interpreter return values. This
  // is specified to be the same as Java. In the 32-bit VM, long
  // values are actually returned from native calls in O0:O1 and
  // returned to the interpreter in I0:I1. The copying to and from
  // the register pairs is done by the appropriate call and epilog
  // opcodes. This simplifies the register allocator.
  c_return_value %{
    assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
            (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
            "only return normal values");
    // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
    static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
    static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
    return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  %}

  // Location of compiled Java return values.  Same as C
  return_value %{
    assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
            (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
            "only return normal values");
    // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
    static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
    static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
    return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  %}
%}


//----------ATTRIBUTES---------------------------------------------------------

//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(1);          // Required cost attribute.

//----------Instruction Attributes---------------------------------------------

// Cost attribute. required.
ins_attrib ins_cost(DEFAULT_COST);

// Is this instruction a non-matching short branch variant of some
// long branch? Not required.
ins_attrib ins_short_branch(0);

ins_attrib ins_is_TrapBasedCheckNode(true);

// Number of constants.
// This instruction uses the given number of constants
// (optional attribute).
// This is needed to determine in time whether the constant pool will
// exceed 4000 entries. Before postalloc_expand the overall number of constants
// is determined. It's also used to compute the constant pool size
// in Output().
ins_attrib ins_num_consts(0);

// Required alignment attribute (must be a power of 2) specifies the
// alignment that some part of the instruction (not necessarily the
// start) requires. If > 1, a compute_padding() function must be
// provided for the instruction.
ins_attrib ins_alignment(1);

// Enforce/prohibit rematerializations.
// - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
//   then rematerialization of that instruction is prohibited and the
//   instruction's value will be spilled if necessary.
//   Causes that MachNode::rematerialize() returns false.
// - If an instruction is attributed with 'ins_should_rematerialize(true)'
//   then rematerialization should be enforced and a copy of the instruction
//   should be inserted if possible; rematerialization is not guaranteed.
//   Note: this may result in rematerializations in front of every use.
//   Causes that MachNode::rematerialize() can return true.
// (optional attribute)
ins_attrib ins_cannot_rematerialize(false);
ins_attrib ins_should_rematerialize(false);

// Instruction has variable size depending on alignment.
ins_attrib ins_variable_size_depending_on_alignment(false);

// Instruction is a nop.
ins_attrib ins_is_nop(false);

// Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
ins_attrib ins_use_mach_if_fast_lock_node(false);

// Field for the toc offset of a constant.
//
// This is needed if the toc offset is not encodable as an immediate in
// the PPC load instruction. If so, the upper (hi) bits of the offset are
// added to the toc, and from this a load with immediate is performed.
// With postalloc expand, we get two nodes that require the same offset
// but which don't know about each other. The offset is only known
// when the constant is added to the constant pool during emitting.
// It is generated in the 'hi'-node adding the upper bits, and saved
// in this node.  The 'lo'-node has a link to the 'hi'-node and reads
// the offset from there when it gets encoded.
ins_attrib ins_field_const_toc_offset(0);
ins_attrib ins_field_const_toc_offset_hi_node(0);

// A field that can hold the instructions offset in the code buffer.
// Set in the nodes emitter.
ins_attrib ins_field_cbuf_insts_offset(-1);

// Fields for referencing a call's load-IC-node.
// If the toc offset can not be encoded as an immediate in a load, we
// use two nodes.
ins_attrib ins_field_load_ic_hi_node(0);
ins_attrib ins_field_load_ic_node(0);

//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct
// parsing in the ADLC because operands constitute user defined types
// which are used in instruction definitions.
//
// Formats are generated automatically for constants and base registers.

//----------Simple Operands----------------------------------------------------
// Immediate Operands

// Integer Immediate: 32-bit
operand immI() %{
  match(ConI);
  op_cost(40);
  format %{ %}
  interface(CONST_INTER);
%}

operand immI8() %{
  predicate(Assembler::is_simm(n->get_int(), 8));
  op_cost(0);
  match(ConI);
  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: 16-bit
operand immI16() %{
  predicate(Assembler::is_simm(n->get_int(), 16));
  op_cost(0);
  match(ConI);
  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
operand immIhi16() %{
  predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immInegpow2() %{
  predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immIpow2minus1() %{
  predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immIpowerOf2() %{
  predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Unsigned Integer Immediate: the values 0-31
operand uimmI5() %{
  predicate(Assembler::is_uimm(n->get_int(), 5));
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Unsigned Integer Immediate: 6-bit
operand uimmI6() %{
  predicate(Assembler::is_uimm(n->get_int(), 6));
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Unsigned Integer Immediate:  6-bit int, greater than 32
operand uimmI6_ge32() %{
  predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Unsigned Integer Immediate: 15-bit
operand uimmI15() %{
  predicate(Assembler::is_uimm(n->get_int(), 15));
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Unsigned Integer Immediate: 16-bit
operand uimmI16() %{
  predicate(Assembler::is_uimm(n->get_int(), 16));
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// constant 'int 0'.
operand immI_0() %{
  predicate(n->get_int() == 0);
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// constant 'int 1'.
operand immI_1() %{
  predicate(n->get_int() == 1);
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// constant 'int -1'.
operand immI_minus1() %{
  predicate(n->get_int() == -1);
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// int value 16.
operand immI_16() %{
  predicate(n->get_int() == 16);
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// int value 24.
operand immI_24() %{
  predicate(n->get_int() == 24);
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Compressed oops constants
// Pointer Immediate
operand immN() %{
  match(ConN);

  op_cost(10);
  format %{ %}
  interface(CONST_INTER);
%}

// NULL Pointer Immediate
operand immN_0() %{
  predicate(n->get_narrowcon() == 0);
  match(ConN);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Compressed klass constants
operand immNKlass() %{
  match(ConNKlass);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// This operand can be used to avoid matching of an instruct
// with chain rule.
operand immNKlass_NM() %{
  match(ConNKlass);
  predicate(false);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Pointer Immediate: 64-bit
operand immP() %{
  match(ConP);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Operand to avoid match of loadConP.
// This operand can be used to avoid matching of an instruct
// with chain rule.
operand immP_NM() %{
  match(ConP);
  predicate(false);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// costant 'pointer 0'.
operand immP_0() %{
  predicate(n->get_ptr() == 0);
  match(ConP);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// pointer 0x0 or 0x1
operand immP_0or1() %{
  predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
  match(ConP);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immL() %{
  match(ConL);
  op_cost(40);
  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: 16-bit
operand immL16() %{
  predicate(Assembler::is_simm(n->get_long(), 16));
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: 16-bit, 4-aligned
operand immL16Alg4() %{
  predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
operand immL32hi16() %{
  predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: 32-bit
operand immL32() %{
  predicate(Assembler::is_simm(n->get_long(), 32));
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
operand immLhighest16() %{
  predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immLnegpow2() %{
  predicate(is_power_of_2_long((jlong)-(n->get_long())));
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immLpow2minus1() %{
  predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
            (n->get_long() != (jlong)0xffffffffffffffffL));
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// constant 'long 0'.
operand immL_0() %{
  predicate(n->get_long() == 0L);
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// constat ' long -1'.
operand immL_minus1() %{
  predicate(n->get_long() == -1L);
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: low 32-bit mask
operand immL_32bits() %{
  predicate(n->get_long() == 0xFFFFFFFFL);
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Unsigned Long Immediate: 16-bit
operand uimmL16() %{
  predicate(Assembler::is_uimm(n->get_long(), 16));
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Float Immediate
operand immF() %{
  match(ConF);
  op_cost(40);
  format %{ %}
  interface(CONST_INTER);
%}

// Float Immediate: +0.0f.
operand immF_0() %{
  predicate(jint_cast(n->getf()) == 0);
  match(ConF);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Double Immediate
operand immD() %{
  match(ConD);
  op_cost(40);
  format %{ %}
  interface(CONST_INTER);
%}

// Integer Register Operands
// Integer Destination Register
// See definition of reg_class bits32_reg_rw.
operand iRegIdst() %{
  constraint(ALLOC_IN_RC(bits32_reg_rw));
  match(RegI);
  match(rscratch1RegI);
  match(rscratch2RegI);
  match(rarg1RegI);
  match(rarg2RegI);
  match(rarg3RegI);
  match(rarg4RegI);
  format %{ %}
  interface(REG_INTER);
%}

// Integer Source Register
// See definition of reg_class bits32_reg_ro.
operand iRegIsrc() %{
  constraint(ALLOC_IN_RC(bits32_reg_ro));
  match(RegI);
  match(rscratch1RegI);
  match(rscratch2RegI);
  match(rarg1RegI);
  match(rarg2RegI);
  match(rarg3RegI);
  match(rarg4RegI);
  format %{ %}
  interface(REG_INTER);
%}

operand rscratch1RegI() %{
  constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
  match(iRegIdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rscratch2RegI() %{
  constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
  match(iRegIdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg1RegI() %{
  constraint(ALLOC_IN_RC(rarg1_bits32_reg));
  match(iRegIdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg2RegI() %{
  constraint(ALLOC_IN_RC(rarg2_bits32_reg));
  match(iRegIdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg3RegI() %{
  constraint(ALLOC_IN_RC(rarg3_bits32_reg));
  match(iRegIdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg4RegI() %{
  constraint(ALLOC_IN_RC(rarg4_bits32_reg));
  match(iRegIdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg1RegL() %{
  constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  match(iRegLdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg2RegL() %{
  constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  match(iRegLdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg3RegL() %{
  constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  match(iRegLdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg4RegL() %{
  constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  match(iRegLdst);
  format %{ %}
  interface(REG_INTER);
%}

// Pointer Destination Register
// See definition of reg_class bits64_reg_rw.
operand iRegPdst() %{
  constraint(ALLOC_IN_RC(bits64_reg_rw));
  match(RegP);
  match(rscratch1RegP);
  match(rscratch2RegP);
  match(rarg1RegP);
  match(rarg2RegP);
  match(rarg3RegP);
  match(rarg4RegP);
  format %{ %}
  interface(REG_INTER);
%}

// Pointer Destination Register
// Operand not using r11 and r12 (killed in epilog).
operand iRegPdstNoScratch() %{
  constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
  match(RegP);
  match(rarg1RegP);
  match(rarg2RegP);
  match(rarg3RegP);
  match(rarg4RegP);
  format %{ %}
  interface(REG_INTER);
%}

// Pointer Source Register
// See definition of reg_class bits64_reg_ro.
operand iRegPsrc() %{
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(RegP);
  match(iRegPdst);
  match(rscratch1RegP);
  match(rscratch2RegP);
  match(rarg1RegP);
  match(rarg2RegP);
  match(rarg3RegP);
  match(rarg4RegP);
  match(threadRegP);
  format %{ %}
  interface(REG_INTER);
%}

// Thread operand.
operand threadRegP() %{
  constraint(ALLOC_IN_RC(thread_bits64_reg));
  match(iRegPdst);
  format %{ "R16" %}
  interface(REG_INTER);
%}

operand rscratch1RegP() %{
  constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  match(iRegPdst);
  format %{ "R11" %}
  interface(REG_INTER);
%}

operand rscratch2RegP() %{
  constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  match(iRegPdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg1RegP() %{
  constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  match(iRegPdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg2RegP() %{
  constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  match(iRegPdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg3RegP() %{
  constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  match(iRegPdst);
  format %{ %}
  interface(REG_INTER);
%}

operand rarg4RegP() %{
  constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  match(iRegPdst);
  format %{ %}
  interface(REG_INTER);
%}

operand iRegNsrc() %{
  constraint(ALLOC_IN_RC(bits32_reg_ro));
  match(RegN);
  match(iRegNdst);

  format %{ %}
  interface(REG_INTER);
%}

operand iRegNdst() %{
  constraint(ALLOC_IN_RC(bits32_reg_rw));
  match(RegN);

  format %{ %}
  interface(REG_INTER);
%}

// Long Destination Register
// See definition of reg_class bits64_reg_rw.
operand iRegLdst() %{
  constraint(ALLOC_IN_RC(bits64_reg_rw));
  match(RegL);
  match(rscratch1RegL);
  match(rscratch2RegL);
  format %{ %}
  interface(REG_INTER);
%}

// Long Source Register
// See definition of reg_class bits64_reg_ro.
operand iRegLsrc() %{
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(RegL);
  match(iRegLdst);
  match(rscratch1RegL);
  match(rscratch2RegL);
  format %{ %}
  interface(REG_INTER);
%}

// Special operand for ConvL2I.
operand iRegL2Isrc(iRegLsrc reg) %{
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(ConvL2I reg);
  format %{ "ConvL2I($reg)" %}
  interface(REG_INTER)
%}

operand rscratch1RegL() %{
  constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  match(RegL);
  format %{ %}
  interface(REG_INTER);
%}

operand rscratch2RegL() %{
  constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  match(RegL);
  format %{ %}
  interface(REG_INTER);
%}

// Condition Code Flag Registers
operand flagsReg() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);
  format %{ %}
  interface(REG_INTER);
%}

operand flagsRegSrc() %{
  constraint(ALLOC_IN_RC(int_flags_ro));
  match(RegFlags);
  match(flagsReg);
  match(flagsRegCR0);
  format %{ %}
  interface(REG_INTER);
%}

// Condition Code Flag Register CR0
operand flagsRegCR0() %{
  constraint(ALLOC_IN_RC(int_flags_CR0));
  match(RegFlags);
  format %{ "CR0" %}
  interface(REG_INTER);
%}

operand flagsRegCR1() %{
  constraint(ALLOC_IN_RC(int_flags_CR1));
  match(RegFlags);
  format %{ "CR1" %}
  interface(REG_INTER);
%}

operand flagsRegCR6() %{
  constraint(ALLOC_IN_RC(int_flags_CR6));
  match(RegFlags);
  format %{ "CR6" %}
  interface(REG_INTER);
%}

operand regCTR() %{
  constraint(ALLOC_IN_RC(ctr_reg));
  // RegFlags should work. Introducing a RegSpecial type would cause a
  // lot of changes.
  match(RegFlags);
  format %{"SR_CTR" %}
  interface(REG_INTER);
%}

operand regD() %{
  constraint(ALLOC_IN_RC(dbl_reg));
  match(RegD);
  format %{ %}
  interface(REG_INTER);
%}

operand regF() %{
  constraint(ALLOC_IN_RC(flt_reg));
  match(RegF);
  format %{ %}
  interface(REG_INTER);
%}

// Special Registers

// Method Register
operand inline_cache_regP(iRegPdst reg) %{
  constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
  match(reg);
  format %{ %}
  interface(REG_INTER);
%}

operand compiler_method_oop_regP(iRegPdst reg) %{
  constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
  match(reg);
  format %{ %}
  interface(REG_INTER);
%}

operand interpreter_method_oop_regP(iRegPdst reg) %{
  constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
  match(reg);
  format %{ %}
  interface(REG_INTER);
%}

// Operands to remove register moves in unscaled mode.
// Match read/write registers with an EncodeP node if neither shift nor add are required.
operand iRegP2N(iRegPsrc reg) %{
  predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(EncodeP reg);
  format %{ "$reg" %}
  interface(REG_INTER)
%}

operand iRegN2P(iRegNsrc reg) %{
  predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  constraint(ALLOC_IN_RC(bits32_reg_ro));
  match(DecodeN reg);
  format %{ "$reg" %}
  interface(REG_INTER)
%}

operand iRegN2P_klass(iRegNsrc reg) %{
  predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
  constraint(ALLOC_IN_RC(bits32_reg_ro));
  match(DecodeNKlass reg);
  format %{ "$reg" %}
  interface(REG_INTER)
%}

//----------Complex Operands---------------------------------------------------
// Indirect Memory Reference
operand indirect(iRegPsrc reg) %{
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(reg);
  op_cost(100);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp(0x0);
  %}
%}

// Indirect with Offset
operand indOffset16(iRegPsrc reg, immL16 offset) %{
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(AddP reg offset);
  op_cost(100);
  format %{ "[$reg + $offset]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp($offset);
  %}
%}

// Indirect with 4-aligned Offset
operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(AddP reg offset);
  op_cost(100);
  format %{ "[$reg + $offset]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp($offset);
  %}
%}

//----------Complex Operands for Compressed OOPs-------------------------------
// Compressed OOPs with narrow_oop_shift == 0.

// Indirect Memory Reference, compressed OOP
operand indirectNarrow(iRegNsrc reg) %{
  predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(DecodeN reg);
  op_cost(100);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp(0x0);
  %}
%}

operand indirectNarrow_klass(iRegNsrc reg) %{
  predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(DecodeNKlass reg);
  op_cost(100);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp(0x0);
  %}
%}

// Indirect with Offset, compressed OOP
operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
  predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(AddP (DecodeN reg) offset);
  op_cost(100);
  format %{ "[$reg + $offset]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp($offset);
  %}
%}

operand indOffset16Narrow_klass(iRegNsrc reg, immL16 offset) %{
  predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(AddP (DecodeNKlass reg) offset);
  op_cost(100);
  format %{ "[$reg + $offset]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp($offset);
  %}
%}

// Indirect with 4-aligned Offset, compressed OOP
operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
  predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(AddP (DecodeN reg) offset);
  op_cost(100);
  format %{ "[$reg + $offset]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp($offset);
  %}
%}

operand indOffset16NarrowAlg4_klass(iRegNsrc reg, immL16Alg4 offset) %{
  predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
  constraint(ALLOC_IN_RC(bits64_reg_ro));
  match(AddP (DecodeNKlass reg) offset);
  op_cost(100);
  format %{ "[$reg + $offset]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp($offset);
  %}
%}

//----------Special Memory Operands--------------------------------------------
// Stack Slot Operand
//
// This operand is used for loading and storing temporary values on
// the stack where a match requires a value to flow through memory.
operand stackSlotI(sRegI reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegI);
  format %{ "[sp+$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x1);   // R1_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotL(sRegL reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegL);
  format %{ "[sp+$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x1);   // R1_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotP(sRegP reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegP);
  format %{ "[sp+$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x1);   // R1_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotF(sRegF reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegF);
  format %{ "[sp+$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x1);   // R1_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotD(sRegD reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegD);
  format %{ "[sp+$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x1);   // R1_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}

// Operands for expressing Control Flow
// NOTE: Label is a predefined operand which should not be redefined in
//       the AD file. It is generically handled within the ADLC.

//----------Conditional Branch Operands----------------------------------------
// Comparison Op
//
// This is the operation of the comparison, and is limited to the
// following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
// (!=).
//
// Other attributes of the comparison, such as unsignedness, are specified
// by the comparison instruction that sets a condition code flags register.
// That result is represented by a flags operand whose subtype is appropriate
// to the unsignedness (etc.) of the comparison.
//
// Later, the instruction which matches both the Comparison Op (a Bool) and
// the flags (produced by the Cmp) specifies the coding of the comparison op
// by matching a specific subtype of Bool operand below.

// When used for floating point comparisons: unordered same as less.
operand cmpOp() %{
  match(Bool);
  format %{ "" %}
  interface(COND_INTER) %{
                           // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
                           //           BO          &  BI
    equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
    not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
    less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
    greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
    less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
    greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
    overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
    no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
  %}
%}

//----------OPERAND CLASSES----------------------------------------------------
// Operand Classes are groups of operands that are used to simplify
// instruction definitions by not requiring the AD writer to specify
// seperate instructions for every form of operand when the
// instruction accepts multiple operand types with the same basic
// encoding and format. The classic case of this is memory operands.
// Indirect is not included since its use is limited to Compare & Swap.

opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indirectNarrow_klass, indOffset16Narrow, indOffset16Narrow_klass);
// Memory operand where offsets are 4-aligned. Required for ld, std.
opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4, indOffset16NarrowAlg4_klass);
opclass indirectMemory(indirect, indirectNarrow);

// Special opclass for I and ConvL2I.
opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);

// Operand classes to match encode and decode. iRegN_P2N is only used
// for storeN. I have never seen an encode node elsewhere.
opclass iRegN_P2N(iRegNsrc, iRegP2N);
opclass iRegP_N2P(iRegPsrc, iRegN2P, iRegN2P_klass);

//----------PIPELINE-----------------------------------------------------------

pipeline %{

// See J.M.Tendler et al. "Power4 system microarchitecture", IBM
// J. Res. & Dev., No. 1, Jan. 2002.

//----------ATTRIBUTES---------------------------------------------------------
attributes %{

  // Power4 instructions are of fixed length.
  fixed_size_instructions;

  // TODO: if `bundle' means number of instructions fetched
  // per cycle, this is 8. If `bundle' means Power4 `group', that is
  // max instructions issued per cycle, this is 5.
  max_instructions_per_bundle = 8;

  // A Power4 instruction is 4 bytes long.
  instruction_unit_size = 4;

  // The Power4 processor fetches 64 bytes...
  instruction_fetch_unit_size = 64;

  // ...in one line
  instruction_fetch_units = 1

  // Unused, list one so that array generated by adlc is not empty.
  // Aix compiler chokes if _nop_count = 0.
  nops(fxNop);
%}

//----------RESOURCES----------------------------------------------------------
// Resources are the functional units available to the machine
resources(
   PPC_BR,         // branch unit
   PPC_CR,         // condition unit
   PPC_FX1,        // integer arithmetic unit 1
   PPC_FX2,        // integer arithmetic unit 2
   PPC_LDST1,      // load/store unit 1
   PPC_LDST2,      // load/store unit 2
   PPC_FP1,        // float arithmetic unit 1
   PPC_FP2,        // float arithmetic unit 2
   PPC_LDST = PPC_LDST1 | PPC_LDST2,
   PPC_FX = PPC_FX1 | PPC_FX2,
   PPC_FP = PPC_FP1 | PPC_FP2
 );

//----------PIPELINE DESCRIPTION-----------------------------------------------
// Pipeline Description specifies the stages in the machine's pipeline
pipe_desc(
   // Power4 longest pipeline path
   PPC_IF,   // instruction fetch
   PPC_IC,
   //PPC_BP, // branch prediction
   PPC_D0,   // decode
   PPC_D1,   // decode
   PPC_D2,   // decode
   PPC_D3,   // decode
   PPC_Xfer1,
   PPC_GD,   // group definition
   PPC_MP,   // map
   PPC_ISS,  // issue
   PPC_RF,   // resource fetch
   PPC_EX1,  // execute (all units)
   PPC_EX2,  // execute (FP, LDST)
   PPC_EX3,  // execute (FP, LDST)
   PPC_EX4,  // execute (FP)
   PPC_EX5,  // execute (FP)
   PPC_EX6,  // execute (FP)
   PPC_WB,   // write back
   PPC_Xfer2,
   PPC_CP
 );

//----------PIPELINE CLASSES---------------------------------------------------
// Pipeline Classes describe the stages in which input and output are
// referenced by the hardware pipeline.

// Simple pipeline classes.

// Default pipeline class.
pipe_class pipe_class_default() %{
  single_instruction;
  fixed_latency(2);
%}

// Pipeline class for empty instructions.
pipe_class pipe_class_empty() %{
  single_instruction;
  fixed_latency(0);
%}

// Pipeline class for compares.
pipe_class pipe_class_compare() %{
  single_instruction;
  fixed_latency(16);
%}

// Pipeline class for traps.
pipe_class pipe_class_trap() %{
  single_instruction;
  fixed_latency(100);
%}

// Pipeline class for memory operations.
pipe_class pipe_class_memory() %{
  single_instruction;
  fixed_latency(16);
%}

// Pipeline class for call.
pipe_class pipe_class_call() %{
  single_instruction;
  fixed_latency(100);
%}

// Define the class for the Nop node.
define %{
   MachNop = pipe_class_default;
%}

%}

//----------INSTRUCTIONS-------------------------------------------------------

// Naming of instructions:
//   opA_operB / opA_operB_operC:
//     Operation 'op' with one or two source operands 'oper'. Result
//     type is A, source operand types are B and C.
//     Iff A == B == C, B and C are left out.
//
// The instructions are ordered according to the following scheme:
//  - loads
//  - load constants
//  - prefetch
//  - store
//  - encode/decode
//  - membar
//  - conditional moves
//  - compare & swap
//  - arithmetic and logic operations
//    * int: Add, Sub, Mul, Div, Mod
//    * int: lShift, arShift, urShift, rot
//    * float: Add, Sub, Mul, Div
//    * and, or, xor ...
//  - register moves: float <-> int, reg <-> stack, repl
//  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
//  - conv (low level type cast requiring bit changes (sign extend etc)
//  - compares, range & zero checks.
//  - branches
//  - complex operations, intrinsics, min, max, replicate
//  - lock
//  - Calls
//
// If there are similar instructions with different types they are sorted:
// int before float
// small before big
// signed before unsigned
// e.g., loadS before loadUS before loadI before loadF.


//----------Load/Store Instructions--------------------------------------------

//----------Load Instructions--------------------------------------------------

// Converts byte to int.
// As convB2I_reg, but without match rule.  The match rule of convB2I_reg
// reuses the 'amount' operand, but adlc expects that operand specification
// and operands in match rule are equivalent.
instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
  effect(DEF dst, USE src);
  format %{ "EXTSB   $dst, $src \t// byte->int" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
    __ extsb($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
  // match-rule, false predicate
  match(Set dst (LoadB mem));
  predicate(false);

  format %{ "LBZ     $dst, $mem" %}
  size(4);
  ins_encode( enc_lbz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
  // match-rule, false predicate
  match(Set dst (LoadB mem));
  predicate(false);

  format %{ "LBZ     $dst, $mem\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_lbz_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
  match(Set dst (LoadB mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  expand %{
    iRegIdst tmp;
    loadUB_indirect(tmp, mem);
    convB2I_reg_2(dst, tmp);
  %}
%}

instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
  match(Set dst (LoadB mem));
  ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  expand %{
    iRegIdst tmp;
    loadUB_indirect_ac(tmp, mem);
    convB2I_reg_2(dst, tmp);
  %}
%}

instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
  // match-rule, false predicate
  match(Set dst (LoadB mem));
  predicate(false);

  format %{ "LBZ     $dst, $mem" %}
  size(4);
  ins_encode( enc_lbz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
  // match-rule, false predicate
  match(Set dst (LoadB mem));
  predicate(false);

  format %{ "LBZ     $dst, $mem\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_lbz_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
  match(Set dst (LoadB mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST + DEFAULT_COST);

  expand %{
    iRegIdst tmp;
    loadUB_indOffset16(tmp, mem);
    convB2I_reg_2(dst, tmp);
  %}
%}

instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
  match(Set dst (LoadB mem));
  ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);

  expand %{
    iRegIdst tmp;
    loadUB_indOffset16_ac(tmp, mem);
    convB2I_reg_2(dst, tmp);
  %}
%}

// Load Unsigned Byte (8bit UNsigned) into an int reg.
instruct loadUB(iRegIdst dst, memory mem) %{
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  match(Set dst (LoadUB mem));
  ins_cost(MEMORY_REF_COST);

  format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
  size(4);
  ins_encode( enc_lbz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load  Unsigned Byte (8bit UNsigned) acquire.
instruct loadUB_ac(iRegIdst dst, memory mem) %{
  match(Set dst (LoadUB mem));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_lbz_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Unsigned Byte (8bit UNsigned) into a Long Register.
instruct loadUB2L(iRegLdst dst, memory mem) %{
  match(Set dst (ConvI2L (LoadUB mem)));
  predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  ins_cost(MEMORY_REF_COST);

  format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
  size(4);
  ins_encode( enc_lbz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
  match(Set dst (ConvI2L (LoadUB mem)));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_lbz_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Short (16bit signed)
instruct loadS(iRegIdst dst, memory mem) %{
  match(Set dst (LoadS mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST);

  format %{ "LHA     $dst, $mem" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lha);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Load Short (16bit signed) acquire.
instruct loadS_ac(iRegIdst dst, memory mem) %{
  match(Set dst (LoadS mem));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LHA     $dst, $mem\t acquire\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lha($dst$$Register, Idisp, $mem$$base$$Register);
    __ twi_0($dst$$Register);
    __ isync();
  %}
  ins_pipe(pipe_class_memory);
%}

// Load Char (16bit unsigned)
instruct loadUS(iRegIdst dst, memory mem) %{
  match(Set dst (LoadUS mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST);

  format %{ "LHZ     $dst, $mem" %}
  size(4);
  ins_encode( enc_lhz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Char (16bit unsigned) acquire.
instruct loadUS_ac(iRegIdst dst, memory mem) %{
  match(Set dst (LoadUS mem));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LHZ     $dst, $mem \t// acquire\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_lhz_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
instruct loadUS2L(iRegLdst dst, memory mem) %{
  match(Set dst (ConvI2L (LoadUS mem)));
  predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  ins_cost(MEMORY_REF_COST);

  format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
  size(4);
  ins_encode( enc_lhz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
  match(Set dst (ConvI2L (LoadUS mem)));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_lhz_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Integer.
instruct loadI(iRegIdst dst, memory mem) %{
  match(Set dst (LoadI mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem" %}
  size(4);
  ins_encode( enc_lwz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Integer acquire.
instruct loadI_ac(iRegIdst dst, memory mem) %{
  match(Set dst (LoadI mem));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_lwz_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Match loading integer and casting it to unsigned int in
// long register.
// LoadI + ConvI2L + AndL 0xffffffff.
instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
  match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
  size(4);
  ins_encode( enc_lwz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Match loading integer and casting it to long.
instruct loadI2L(iRegLdst dst, memory mem) %{
  match(Set dst (ConvI2L (LoadI mem)));
  predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  ins_cost(MEMORY_REF_COST);

  format %{ "LWA     $dst, $mem \t// loadI2L" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Match loading integer and casting it to long - acquire.
instruct loadI2L_ac(iRegLdst dst, memory mem) %{
  match(Set dst (ConvI2L (LoadI mem)));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LWA     $dst, $mem \t// loadI2L acquire"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
    __ twi_0($dst$$Register);
    __ isync();
  %}
  ins_pipe(pipe_class_memory);
%}

// Load Long - aligned
instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
  match(Set dst (LoadL mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST);

  format %{ "LD      $dst, $mem \t// long" %}
  size(4);
  ins_encode( enc_ld(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Long - aligned acquire.
instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
  match(Set dst (LoadL mem));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LD      $dst, $mem \t// long acquire\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_ld_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Long - UNaligned
instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
  match(Set dst (LoadL_unaligned mem));
  // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  ins_cost(MEMORY_REF_COST);

  format %{ "LD      $dst, $mem \t// unaligned long" %}
  size(4);
  ins_encode( enc_ld(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load nodes for superwords

// Load Aligned Packed Byte
instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
  predicate(n->as_LoadVector()->memory_size() == 8);
  match(Set dst (LoadVector mem));
  ins_cost(MEMORY_REF_COST);

  format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
  size(4);
  ins_encode( enc_ld(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Range, range = array length (=jint)
instruct loadRange(iRegIdst dst, memory mem) %{
  match(Set dst (LoadRange mem));
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem \t// range" %}
  size(4);
  ins_encode( enc_lwz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Compressed Pointer
instruct loadN(iRegNdst dst, memory mem) %{
  match(Set dst (LoadN mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
  size(4);
  ins_encode( enc_lwz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Compressed Pointer acquire.
instruct loadN_ac(iRegNdst dst, memory mem) %{
  match(Set dst (LoadN mem));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_lwz_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Compressed Pointer and decode it if narrow_oop_shift == 0.
instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
  match(Set dst (DecodeN (LoadN mem)));
  predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  size(4);
  ins_encode( enc_lwz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

instruct loadN2P_klass_unscaled(iRegPdst dst, memory mem) %{
  match(Set dst (DecodeNKlass (LoadNKlass mem)));
  predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0 &&
            _kids[0]->_leaf->as_Load()->is_unordered());
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  size(4);
  ins_encode( enc_lwz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Pointer
instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
  match(Set dst (LoadP mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST);

  format %{ "LD      $dst, $mem \t// ptr" %}
  size(4);
  ins_encode( enc_ld(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Pointer acquire.
instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
  match(Set dst (LoadP mem));
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
            "TWI     $dst\n\t"
            "ISYNC" %}
  size(12);
  ins_encode( enc_ld_ac(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// LoadP + CastP2L
instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
  match(Set dst (CastP2X (LoadP mem)));
  predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  ins_cost(MEMORY_REF_COST);

  format %{ "LD      $dst, $mem \t// ptr + p2x" %}
  size(4);
  ins_encode( enc_ld(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load compressed klass pointer.
instruct loadNKlass(iRegNdst dst, memory mem) %{
  match(Set dst (LoadNKlass mem));
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
  size(4);
  ins_encode( enc_lwz(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Klass Pointer
instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
  match(Set dst (LoadKlass mem));
  ins_cost(MEMORY_REF_COST);

  format %{ "LD      $dst, $mem \t// klass ptr" %}
  size(4);
  ins_encode( enc_ld(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Float
instruct loadF(regF dst, memory mem) %{
  match(Set dst (LoadF mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST);

  format %{ "LFS     $dst, $mem" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Load Float acquire.
instruct loadF_ac(regF dst, memory mem, flagsRegCR0 cr0) %{
  match(Set dst (LoadF mem));
  effect(TEMP cr0);
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LFS     $dst, $mem \t// acquire\n\t"
            "FCMPU   cr0, $dst, $dst\n\t"
            "BNE     cr0, next\n"
            "next:\n\t"
            "ISYNC" %}
  size(16);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    Label next;
    __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
    __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
    __ bne(CCR0, next);
    __ bind(next);
    __ isync();
  %}
  ins_pipe(pipe_class_memory);
%}

// Load Double - aligned
instruct loadD(regD dst, memory mem) %{
  match(Set dst (LoadD mem));
  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  ins_cost(MEMORY_REF_COST);

  format %{ "LFD     $dst, $mem" %}
  size(4);
  ins_encode( enc_lfd(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

// Load Double - aligned acquire.
instruct loadD_ac(regD dst, memory mem, flagsRegCR0 cr0) %{
  match(Set dst (LoadD mem));
  effect(TEMP cr0);
  ins_cost(3*MEMORY_REF_COST);

  format %{ "LFD     $dst, $mem \t// acquire\n\t"
            "FCMPU   cr0, $dst, $dst\n\t"
            "BNE     cr0, next\n"
            "next:\n\t"
            "ISYNC" %}
  size(16);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    Label next;
    __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
    __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
    __ bne(CCR0, next);
    __ bind(next);
    __ isync();
  %}
  ins_pipe(pipe_class_memory);
%}

// Load Double - UNaligned
instruct loadD_unaligned(regD dst, memory mem) %{
  match(Set dst (LoadD_unaligned mem));
  // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  ins_cost(MEMORY_REF_COST);

  format %{ "LFD     $dst, $mem" %}
  size(4);
  ins_encode( enc_lfd(dst, mem) );
  ins_pipe(pipe_class_memory);
%}

//----------Constants--------------------------------------------------------

// Load MachConstantTableBase: add hi offset to global toc.
// TODO: Handle hidden register r29 in bundler!
instruct loadToc_hi(iRegLdst dst) %{
  effect(DEF dst);
  ins_cost(DEFAULT_COST);

  format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
    __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
  %}
  ins_pipe(pipe_class_default);
%}

// Load MachConstantTableBase: add lo offset to global toc.
instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
  effect(DEF dst, USE src);
  ins_cost(DEFAULT_COST);

  format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
    __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
  %}
  ins_pipe(pipe_class_default);
%}

// Load 16-bit integer constant 0xssss????
instruct loadConI16(iRegIdst dst, immI16 src) %{
  match(Set dst src);

  format %{ "LI      $dst, $src" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

// Load integer constant 0x????0000
instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST);

  format %{ "LIS     $dst, $src.hi" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
    // Lis sign extends 16-bit src then shifts it 16 bit to the left.
    __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  %}
  ins_pipe(pipe_class_default);
%}

// Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
// and sign extended), this adds the low 16 bits.
instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
    __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  %}
  ins_pipe(pipe_class_default);
%}

instruct loadConI_Ex(iRegIdst dst, immI src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST*2);

  expand %{
    // Would like to use $src$$constant.
    immI16 srcLo %{ _opnds[1]->constant() %}
    // srcHi can be 0000 if srcLo sign-extends to a negative number.
    immIhi16 srcHi %{ _opnds[1]->constant() %}
    iRegIdst tmpI;
    loadConIhi16(tmpI, srcHi);
    loadConI32_lo16(dst, tmpI, srcLo);
  %}
%}

// No constant pool entries required.
instruct loadConL16(iRegLdst dst, immL16 src) %{
  match(Set dst src);

  format %{ "LI      $dst, $src \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

// Load long constant 0xssssssss????0000
instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST);

  format %{ "LIS     $dst, $src.hi \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
    __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  %}
  ins_pipe(pipe_class_default);
%}

// To load a 32 bit constant: merge lower 16 bits into already loaded
// high 16 bits.
instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "ORI     $dst, $src1, $src2.lo" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
    __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  %}
  ins_pipe(pipe_class_default);
%}

// Load 32-bit long constant
instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST*2);

  expand %{
    // Would like to use $src$$constant.
    immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
    // srcHi can be 0000 if srcLo sign-extends to a negative number.
    immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
    iRegLdst tmpL;
    loadConL32hi16(tmpL, srcHi);
    loadConL32_lo16(dst, tmpL, srcLo);
  %}
%}

// Load long constant 0x????000000000000.
instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST);

  expand %{
    immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
    immI shift32 %{ 32 %}
    iRegLdst tmpL;
    loadConL32hi16(tmpL, srcHi);
    lshiftL_regL_immI(dst, tmpL, shift32);
  %}
%}

// Expand node for constant pool load: small offset.
instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
  effect(DEF dst, USE src, USE toc);
  ins_cost(MEMORY_REF_COST);

  ins_num_consts(1);
  // Needed so that CallDynamicJavaDirect can compute the address of this
  // instruction for relocation.
  ins_field_cbuf_insts_offset(int);

  format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
  size(4);
  ins_encode( enc_load_long_constL(dst, src, toc) );
  ins_pipe(pipe_class_memory);
%}

// Expand node for constant pool load: large offset.
instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
  effect(DEF dst, USE src, USE toc);
  predicate(false);

  ins_num_consts(1);
  ins_field_const_toc_offset(int);
  // Needed so that CallDynamicJavaDirect can compute the address of this
  // instruction for relocation.
  ins_field_cbuf_insts_offset(int);

  format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
  size(4);
  ins_encode( enc_load_long_constL_hi(dst, toc, src) );
  ins_pipe(pipe_class_default);
%}

// Expand node for constant pool load: large offset.
// No constant pool entries required.
instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
  effect(DEF dst, USE src, USE base);
  predicate(false);

  ins_field_const_toc_offset_hi_node(loadConL_hiNode*);

  format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
    int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
    __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Load long constant from constant table. Expand in case of
// offset > 16 bit is needed.
// Adlc adds toc node MachConstantTableBase.
instruct loadConL_Ex(iRegLdst dst, immL src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
  // We can not inline the enc_class for the expand as that does not support constanttablebase.
  postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
%}

// Load NULL as compressed oop.
instruct loadConN0(iRegNdst dst, immN_0 src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST);

  format %{ "LI      $dst, $src \t// compressed ptr" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, 0);
  %}
  ins_pipe(pipe_class_default);
%}

// Load hi part of compressed oop constant.
instruct loadConN_hi(iRegNdst dst, immN src) %{
  effect(DEF dst, USE src);
  ins_cost(DEFAULT_COST);

  format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
    __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
  %}
  ins_pipe(pipe_class_default);
%}

// Add lo part of compressed oop constant to already loaded hi part.
instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
  effect(DEF dst, USE src1, USE src2);
  ins_cost(DEFAULT_COST);

  format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
    int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
    RelocationHolder rspec = oop_Relocation::spec(oop_index);
    __ relocate(rspec, 1);
    __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
  %}
  ins_pipe(pipe_class_default);
%}

// Needed to postalloc expand loadConN: ConN is loaded as ConI
// leaving the upper 32 bits with sign-extension bits.
// This clears these bits: dst = src & 0xFFFFFFFF.
// TODO: Eventually call this maskN_regN_FFFFFFFF.
instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ clrldi($dst$$Register, $src$$Register, 0x20);
  %}
  ins_pipe(pipe_class_default);
%}

// Optimize DecodeN for disjoint base.
// Load base of compressed oops into a register
instruct loadBase(iRegLdst dst) %{
  effect(DEF dst);

  format %{ "LoadConst $dst, heapbase" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ load_const_optimized($dst$$Register, Universe::narrow_oop_base(), R0);
  %}
  ins_pipe(pipe_class_default);
%}

// Loading ConN must be postalloc expanded so that edges between
// the nodes are safe. They may not interfere with a safepoint.
// GL TODO: This needs three instructions: better put this into the constant pool.
instruct loadConN_Ex(iRegNdst dst, immN src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST*2);

  format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  postalloc_expand %{
    MachNode *m1 = new loadConN_hiNode();
    MachNode *m2 = new loadConN_loNode();
    MachNode *m3 = new clearMs32bNode();
    m1->add_req(NULL);
    m2->add_req(NULL, m1);
    m3->add_req(NULL, m2);
    m1->_opnds[0] = op_dst;
    m1->_opnds[1] = op_src;
    m2->_opnds[0] = op_dst;
    m2->_opnds[1] = op_dst;
    m2->_opnds[2] = op_src;
    m3->_opnds[0] = op_dst;
    m3->_opnds[1] = op_dst;
    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    nodes->push(m1);
    nodes->push(m2);
    nodes->push(m3);
  %}
%}

// We have seen a safepoint between the hi and lo parts, and this node was handled
// as an oop. Therefore this needs a match rule so that build_oop_map knows this is
// not a narrow oop.
instruct loadConNKlass_hi(iRegNdst dst, immNKlass_NM src) %{
  match(Set dst src);
  effect(DEF dst, USE src);
  ins_cost(DEFAULT_COST);

  format %{ "LIS     $dst, $src \t// narrow klass hi" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
    intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
    __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
  %}
  ins_pipe(pipe_class_default);
%}

// As loadConNKlass_hi this must be recognized as narrow klass, not oop!
instruct loadConNKlass_mask(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  match(Set dst src1);
  effect(TEMP src2);
  ins_cost(DEFAULT_COST);

  format %{ "MASK    $dst, $src2, 0xFFFFFFFF" %} // mask
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ clrldi($dst$$Register, $src2$$Register, 0x20);
  %}
  ins_pipe(pipe_class_default);
%}

// This needs a match rule so that build_oop_map knows this is
// not a narrow oop.
instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  match(Set dst src1);
  effect(TEMP src2);
  ins_cost(DEFAULT_COST);

  format %{ "ORI     $dst, $src1, $src2 \t// narrow klass lo" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
    intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
    assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
    int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
    RelocationHolder rspec = metadata_Relocation::spec(klass_index);

    __ relocate(rspec, 1);
    __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
  %}
  ins_pipe(pipe_class_default);
%}

// Loading ConNKlass must be postalloc expanded so that edges between
// the nodes are safe. They may not interfere with a safepoint.
instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST*2);

  format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  postalloc_expand %{
    // Load high bits into register. Sign extended.
    MachNode *m1 = new loadConNKlass_hiNode();
    m1->add_req(NULL);
    m1->_opnds[0] = op_dst;
    m1->_opnds[1] = op_src;
    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    nodes->push(m1);

    MachNode *m2 = m1;
    if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
      // Value might be 1-extended. Mask out these bits.
      m2 = new loadConNKlass_maskNode();
      m2->add_req(NULL, m1);
      m2->_opnds[0] = op_dst;
      m2->_opnds[1] = op_src;
      m2->_opnds[2] = op_dst;
      ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
      nodes->push(m2);
    }

    MachNode *m3 = new loadConNKlass_loNode();
    m3->add_req(NULL, m2);
    m3->_opnds[0] = op_dst;
    m3->_opnds[1] = op_src;
    m3->_opnds[2] = op_dst;
    ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    nodes->push(m3);
  %}
%}

// 0x1 is used in object initialization (initial object header).
// No constant pool entries required.
instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
  match(Set dst src);

  format %{ "LI      $dst, $src \t// ptr" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

// Expand node for constant pool load: small offset.
// The match rule is needed to generate the correct bottom_type(),
// however this node should never match. The use of predicate is not
// possible since ADLC forbids predicates for chain rules. The higher
// costs do not prevent matching in this case. For that reason the
// operand immP_NM with predicate(false) is used.
instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  match(Set dst src);
  effect(TEMP toc);

  ins_num_consts(1);

  format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
  size(4);
  ins_encode( enc_load_long_constP(dst, src, toc) );
  ins_pipe(pipe_class_memory);
%}

// Expand node for constant pool load: large offset.
instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  effect(DEF dst, USE src, USE toc);
  predicate(false);

  ins_num_consts(1);
  ins_field_const_toc_offset(int);

  format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
  size(4);
  ins_encode( enc_load_long_constP_hi(dst, src, toc) );
  ins_pipe(pipe_class_default);
%}

// Expand node for constant pool load: large offset.
instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
  match(Set dst src);
  effect(TEMP base);

  ins_field_const_toc_offset_hi_node(loadConP_hiNode*);

  format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
    int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
    __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Load pointer constant from constant table. Expand in case an
// offset > 16 bit is needed.
// Adlc adds toc node MachConstantTableBase.
instruct loadConP_Ex(iRegPdst dst, immP src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  // This rule does not use "expand" because then
  // the result type is not known to be an Oop.  An ADLC
  // enhancement will be needed to make that work - not worth it!

  // If this instruction rematerializes, it prolongs the live range
  // of the toc node, causing illegal graphs.
  // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
  ins_cannot_rematerialize(true);

  format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
  postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
%}

// Expand node for constant pool load: small offset.
instruct loadConF(regF dst, immF src, iRegLdst toc) %{
  effect(DEF dst, USE src, USE toc);
  ins_cost(MEMORY_REF_COST);

  ins_num_consts(1);

  format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
    address float_address = __ float_constant($src$$constant);
    if (float_address == NULL) {
      ciEnv::current()->record_out_of_memory_failure();
      return;
    }
    __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Expand node for constant pool load: large offset.
instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
  effect(DEF dst, USE src, USE toc);
  ins_cost(MEMORY_REF_COST);

  ins_num_consts(1);

  format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
            "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
            "ADDIS   $toc, $toc, -offset_hi"%}
  size(12);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    FloatRegister Rdst    = $dst$$FloatRegister;
    Register Rtoc         = $toc$$Register;
    address float_address = __ float_constant($src$$constant);
    if (float_address == NULL) {
      ciEnv::current()->record_out_of_memory_failure();
      return;
    }
    int offset            = __ offset_to_method_toc(float_address);
    int hi = (offset + (1<<15))>>16;
    int lo = offset - hi * (1<<16);

    __ addis(Rtoc, Rtoc, hi);
    __ lfs(Rdst, lo, Rtoc);
    __ addis(Rtoc, Rtoc, -hi);
  %}
  ins_pipe(pipe_class_memory);
%}

// Adlc adds toc node MachConstantTableBase.
instruct loadConF_Ex(regF dst, immF src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  // See loadConP.
  ins_cannot_rematerialize(true);

  format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
%}

// Expand node for constant pool load: small offset.
instruct loadConD(regD dst, immD src, iRegLdst toc) %{
  effect(DEF dst, USE src, USE toc);
  ins_cost(MEMORY_REF_COST);

  ins_num_consts(1);

  format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
    address float_address = __ double_constant($src$$constant);
    if (float_address == NULL) {
      ciEnv::current()->record_out_of_memory_failure();
      return;
    }
    int offset =  __ offset_to_method_toc(float_address);
    __ lfd($dst$$FloatRegister, offset, $toc$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Expand node for constant pool load: large offset.
instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
  effect(DEF dst, USE src, USE toc);
  ins_cost(MEMORY_REF_COST);

  ins_num_consts(1);

  format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
            "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
            "ADDIS   $toc, $toc, -offset_hi" %}
  size(12);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    FloatRegister Rdst    = $dst$$FloatRegister;
    Register      Rtoc    = $toc$$Register;
    address float_address = __ double_constant($src$$constant);
    if (float_address == NULL) {
      ciEnv::current()->record_out_of_memory_failure();
      return;
    }
    int offset = __ offset_to_method_toc(float_address);
    int hi = (offset + (1<<15))>>16;
    int lo = offset - hi * (1<<16);

    __ addis(Rtoc, Rtoc, hi);
    __ lfd(Rdst, lo, Rtoc);
    __ addis(Rtoc, Rtoc, -hi);
  %}
  ins_pipe(pipe_class_memory);
%}

// Adlc adds toc node MachConstantTableBase.
instruct loadConD_Ex(regD dst, immD src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  // See loadConP.
  ins_cannot_rematerialize(true);

  format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
%}

// Prefetch instructions.
// Must be safe to execute with invalid address (cannot fault).

// Special prefetch versions which use the dcbz instruction.
instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
  match(PrefetchAllocation (AddP mem src));
  predicate(AllocatePrefetchStyle == 3);
  ins_cost(MEMORY_REF_COST);

  format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
    __ dcbz($src$$Register, $mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
  match(PrefetchAllocation mem);
  predicate(AllocatePrefetchStyle == 3);
  ins_cost(MEMORY_REF_COST);

  format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
    __ dcbz($mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
  match(PrefetchAllocation (AddP mem src));
  predicate(AllocatePrefetchStyle != 3);
  ins_cost(MEMORY_REF_COST);

  format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
    __ dcbtst($src$$Register, $mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

instruct prefetch_alloc_no_offset(indirectMemory mem) %{
  match(PrefetchAllocation mem);
  predicate(AllocatePrefetchStyle != 3);
  ins_cost(MEMORY_REF_COST);

  format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
    __ dcbtst($mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

//----------Store Instructions-------------------------------------------------

// Store Byte
instruct storeB(memory mem, iRegIsrc src) %{
  match(Set mem (StoreB mem src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STB     $src, $mem \t// byte" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_stb);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ stb($src$$Register, Idisp, $mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Store Char/Short
instruct storeC(memory mem, iRegIsrc src) %{
  match(Set mem (StoreC mem src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STH     $src, $mem \t// short" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_sth);
    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
    __ sth($src$$Register, Idisp, $mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Store Integer
instruct storeI(memory mem, iRegIsrc src) %{
  match(Set mem (StoreI mem src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STW     $src, $mem" %}
  size(4);
  ins_encode( enc_stw(src, mem) );
  ins_pipe(pipe_class_memory);
%}

// ConvL2I + StoreI.
instruct storeI_convL2I(memory mem, iRegLsrc src) %{
  match(Set mem (StoreI mem (ConvL2I src)));
  ins_cost(MEMORY_REF_COST);

  format %{ "STW     l2i($src), $mem" %}
  size(4);
  ins_encode( enc_stw(src, mem) );
  ins_pipe(pipe_class_memory);
%}

// Store Long
instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
  match(Set mem (StoreL mem src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STD     $src, $mem \t// long" %}
  size(4);
  ins_encode( enc_std(src, mem) );
  ins_pipe(pipe_class_memory);
%}

// Store super word nodes.

// Store Aligned Packed Byte long register to memory
instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
  predicate(n->as_StoreVector()->memory_size() == 8);
  match(Set mem (StoreVector mem src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STD     $mem, $src \t// packed8B" %}
  size(4);
  ins_encode( enc_std(src, mem) );
  ins_pipe(pipe_class_memory);
%}

// Store Compressed Oop
instruct storeN(memory dst, iRegN_P2N src) %{
  match(Set dst (StoreN dst src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STW     $src, $dst \t// compressed oop" %}
  size(4);
  ins_encode( enc_stw(src, dst) );
  ins_pipe(pipe_class_memory);
%}

// Store Compressed KLass
instruct storeNKlass(memory dst, iRegN_P2N src) %{
  match(Set dst (StoreNKlass dst src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STW     $src, $dst \t// compressed klass" %}
  size(4);
  ins_encode( enc_stw(src, dst) );
  ins_pipe(pipe_class_memory);
%}

// Store Pointer
instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
  match(Set dst (StoreP dst src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STD     $src, $dst \t// ptr" %}
  size(4);
  ins_encode( enc_std(src, dst) );
  ins_pipe(pipe_class_memory);
%}

// Store Float
instruct storeF(memory mem, regF src) %{
  match(Set mem (StoreF mem src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STFS    $src, $mem" %}
  size(4);
  ins_encode( enc_stfs(src, mem) );
  ins_pipe(pipe_class_memory);
%}

// Store Double
instruct storeD(memory mem, regD src) %{
  match(Set mem (StoreD mem src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STFD    $src, $mem" %}
  size(4);
  ins_encode( enc_stfd(src, mem) );
  ins_pipe(pipe_class_memory);
%}

//----------Store Instructions With Zeros--------------------------------------

// Card-mark for CMS garbage collection.
// This cardmark does an optimization so that it must not always
// do a releasing store. For this, it gets the address of
// CMSCollectorCardTableModRefBSExt::_requires_release as input.
// (Using releaseFieldAddr in the match rule is a hack.)
instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr, flagsReg crx) %{
  match(Set mem (StoreCM mem releaseFieldAddr));
  effect(TEMP crx);
  predicate(false);
  ins_cost(MEMORY_REF_COST);

  // See loadConP.
  ins_cannot_rematerialize(true);

  format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
  ins_encode( enc_cms_card_mark(mem, releaseFieldAddr, crx) );
  ins_pipe(pipe_class_memory);
%}

// Card-mark for CMS garbage collection.
// This cardmark does an optimization so that it must not always
// do a releasing store. For this, it needs the constant address of
// CMSCollectorCardTableModRefBSExt::_requires_release.
// This constant address is split off here by expand so we can use
// adlc / matcher functionality to load it from the constant section.
instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
  match(Set mem (StoreCM mem zero));
  predicate(UseConcMarkSweepGC);

  expand %{
    immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
    iRegLdst releaseFieldAddress;
    flagsReg crx;
    loadConL_Ex(releaseFieldAddress, baseImm);
    storeCM_CMS(mem, releaseFieldAddress, crx);
  %}
%}

instruct storeCM_G1(memory mem, immI_0 zero) %{
  match(Set mem (StoreCM mem zero));
  predicate(UseG1GC);
  ins_cost(MEMORY_REF_COST);

  ins_cannot_rematerialize(true);

  format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
  size(8);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ li(R0, 0);
    //__ release(); // G1: oops are allowed to get visible after dirty marking
    guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
    __ stb(R0, $mem$$disp, $mem$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Convert oop pointer into compressed form.

// Nodes for postalloc expand.

// Shift node for expand.
instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (EncodeP src));
  predicate(false);

  format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// Add node for expand.
instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (EncodeP src));
  predicate(false);

  format %{ "SUB     $dst, $src, oop_base \t// encode" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ sub_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
  %}
  ins_pipe(pipe_class_default);
%}

// Conditional sub base.
instruct cond_sub_base(iRegNdst dst, flagsRegSrc crx, iRegPsrc src1) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (EncodeP (Binary crx src1)));
  predicate(false);

  format %{ "BEQ     $crx, done\n\t"
            "SUB     $dst, $src1, heapbase \t// encode: subtract base if != NULL\n"
            "done:" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    Label done;
    __ beq($crx$$CondRegister, done);
    __ sub_const_optimized($dst$$Register, $src1$$Register, Universe::narrow_oop_base(), R0);
    __ bind(done);
  %}
  ins_pipe(pipe_class_default);
%}

// Power 7 can use isel instruction
instruct cond_set_0_oop(iRegNdst dst, flagsRegSrc crx, iRegPsrc src1) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (EncodeP (Binary crx src1)));
  predicate(false);

  format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
  size(4);
  ins_encode %{
    // This is a Power7 instruction for which no machine description exists.
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Disjoint narrow oop base.
instruct encodeP_Disjoint(iRegNdst dst, iRegPsrc src) %{
  match(Set dst (EncodeP src));
  predicate(Universe::narrow_oop_base_disjoint());

  format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with disjoint base" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  %}
  ins_pipe(pipe_class_default);
%}

// shift != 0, base != 0
instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
  match(Set dst (EncodeP src));
  effect(TEMP crx);
  predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
            Universe::narrow_oop_shift() != 0 &&
            Universe::narrow_oop_base_overlaps());

  format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
  postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
%}

// shift != 0, base != 0
instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
  match(Set dst (EncodeP src));
  predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
            Universe::narrow_oop_shift() != 0 &&
            Universe::narrow_oop_base_overlaps());

  format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
  postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
%}

// shift != 0, base == 0
// TODO: This is the same as encodeP_shift. Merge!
instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
  match(Set dst (EncodeP src));
  predicate(Universe::narrow_oop_shift() != 0 &&
            Universe::narrow_oop_base() ==0);

  format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// Compressed OOPs with narrow_oop_shift == 0.
// shift == 0, base == 0
instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
  match(Set dst (EncodeP src));
  predicate(Universe::narrow_oop_shift() == 0);

  format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
  // variable size, 0 or 4.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ mr_if_needed($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Decode nodes.

// Shift node for expand.
instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (DecodeN src));
  predicate(false);

  format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
    __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  %}
  ins_pipe(pipe_class_default);
%}

// Add node for expand.
instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (DecodeN src));
  predicate(false);

  format %{ "ADD     $dst, $src, heapbase \t// DecodeN, add oop base" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ add_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
  %}
  ins_pipe(pipe_class_default);
%}

// conditianal add base for expand
instruct cond_add_base(iRegPdst dst, flagsRegSrc crx, iRegPsrc src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  // NOTICE that the rule is nonsense - we just have to make sure that:
  //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  match(Set dst (DecodeN (Binary crx src)));
  predicate(false);

  format %{ "BEQ     $crx, done\n\t"
            "ADD     $dst, $src, heapbase \t// DecodeN: add oop base if $src != NULL\n"
            "done:" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    Label done;
    __ beq($crx$$CondRegister, done);
    __ add_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
    __ bind(done);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cond_set_0_ptr(iRegPdst dst, flagsRegSrc crx, iRegPsrc src1) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  // NOTICE that the rule is nonsense - we just have to make sure that:
  //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  match(Set dst (DecodeN (Binary crx src1)));
  predicate(false);

  format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
  size(4);
  ins_encode %{
    // This is a Power7 instruction for which no machine description exists.
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

//  shift != 0, base != 0
instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  match(Set dst (DecodeN src));
  predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
            Universe::narrow_oop_shift() != 0 &&
            Universe::narrow_oop_base() != 0);
  ins_cost(4 * DEFAULT_COST); // Should be more expensive than decodeN_Disjoint_isel_Ex.
  effect(TEMP crx);

  format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
  postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
%}

// shift != 0, base == 0
instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
  match(Set dst (DecodeN src));
  predicate(Universe::narrow_oop_shift() != 0 &&
            Universe::narrow_oop_base() == 0);

  format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
    __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  %}
  ins_pipe(pipe_class_default);
%}

// Optimize DecodeN for disjoint base.
// Shift narrow oop and or it into register that already contains the heap base.
// Base == dst must hold, and is assured by construction in postaloc_expand.
instruct decodeN_mergeDisjoint(iRegPdst dst, iRegNsrc src, iRegLsrc base) %{
  match(Set dst (DecodeN src));
  effect(TEMP base);
  predicate(false);

  format %{ "RLDIMI  $dst, $src, shift, 32-shift \t// DecodeN (disjoint base)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
    __ rldimi($dst$$Register, $src$$Register, Universe::narrow_oop_shift(), 32-Universe::narrow_oop_shift());
  %}
  ins_pipe(pipe_class_default);
%}

// Optimize DecodeN for disjoint base.
// This node requires only one cycle on the critical path.
// We must postalloc_expand as we can not express use_def effects where
// the used register is L and the def'ed register P.
instruct decodeN_Disjoint_notNull_Ex(iRegPdst dst, iRegNsrc src) %{
  match(Set dst (DecodeN src));
  effect(TEMP_DEF dst);
  predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
            Universe::narrow_oop_base_disjoint());
  ins_cost(DEFAULT_COST);

  format %{ "MOV     $dst, heapbase \t\n"
            "RLDIMI  $dst, $src, shift, 32-shift \t// decode with disjoint base" %}
  postalloc_expand %{
    loadBaseNode *n1 = new loadBaseNode();
    n1->add_req(NULL);
    n1->_opnds[0] = op_dst;

    decodeN_mergeDisjointNode *n2 = new decodeN_mergeDisjointNode();
    n2->add_req(n_region, n_src, n1);
    n2->_opnds[0] = op_dst;
    n2->_opnds[1] = op_src;
    n2->_opnds[2] = op_dst;
    n2->_bottom_type = _bottom_type;

    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

    nodes->push(n1);
    nodes->push(n2);
  %}
%}

instruct decodeN_Disjoint_isel_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  match(Set dst (DecodeN src));
  effect(TEMP_DEF dst, TEMP crx);
  predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
            Universe::narrow_oop_base_disjoint() && VM_Version::has_isel());
  ins_cost(3 * DEFAULT_COST);

  format %{ "DecodeN  $dst, $src \t// decode with disjoint base using isel" %}
  postalloc_expand %{
    loadBaseNode *n1 = new loadBaseNode();
    n1->add_req(NULL);
    n1->_opnds[0] = op_dst;

    cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();
    n_compare->add_req(n_region, n_src);
    n_compare->_opnds[0] = op_crx;
    n_compare->_opnds[1] = op_src;
    n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);

    decodeN_mergeDisjointNode *n2 = new decodeN_mergeDisjointNode();
    n2->add_req(n_region, n_src, n1);
    n2->_opnds[0] = op_dst;
    n2->_opnds[1] = op_src;
    n2->_opnds[2] = op_dst;
    n2->_bottom_type = _bottom_type;

    cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
    n_cond_set->add_req(n_region, n_compare, n2);
    n_cond_set->_opnds[0] = op_dst;
    n_cond_set->_opnds[1] = op_crx;
    n_cond_set->_opnds[2] = op_dst;
    n_cond_set->_bottom_type = _bottom_type;

    assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
    ra_->set_oop(n_cond_set, true);

    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

    nodes->push(n1);
    nodes->push(n_compare);
    nodes->push(n2);
    nodes->push(n_cond_set);
  %}
%}

// src != 0, shift != 0, base != 0
instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
  match(Set dst (DecodeN src));
  predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
            Universe::narrow_oop_shift() != 0 &&
            Universe::narrow_oop_base() != 0);
  ins_cost(2 * DEFAULT_COST);

  format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
  postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
%}

// Compressed OOPs with narrow_oop_shift == 0.
instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
  match(Set dst (DecodeN src));
  predicate(Universe::narrow_oop_shift() == 0);
  ins_cost(DEFAULT_COST);

  format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
  // variable size, 0 or 4.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ mr_if_needed($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Convert compressed oop into int for vectors alignment masking.
instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
  match(Set dst (ConvL2I (CastP2X (DecodeN src))));
  predicate(Universe::narrow_oop_shift() == 0);
  ins_cost(DEFAULT_COST);

  format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
  // variable size, 0 or 4.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ mr_if_needed($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Convert klass pointer into compressed form.

// Nodes for postalloc expand.

// Shift node for expand.
instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (EncodePKlass src));
  predicate(false);

  format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  %}
  ins_pipe(pipe_class_default);
%}

// Add node for expand.
instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (EncodePKlass (Binary base src)));
  predicate(false);

  format %{ "SUB     $dst, $base, $src \t// encode" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
    __ subf($dst$$Register, $base$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Disjoint narrow oop base.
instruct encodePKlass_Disjoint(iRegNdst dst, iRegPsrc src) %{
  match(Set dst (EncodePKlass src));
  predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);

  format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with disjoint base" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_klass_shift(), 32);
  %}
  ins_pipe(pipe_class_default);
%}

// shift != 0, base != 0
instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
  match(Set dst (EncodePKlass (Binary base src)));
  predicate(false);

  format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  postalloc_expand %{
    encodePKlass_sub_baseNode *n1 = new encodePKlass_sub_baseNode();
    n1->add_req(n_region, n_base, n_src);
    n1->_opnds[0] = op_dst;
    n1->_opnds[1] = op_base;
    n1->_opnds[2] = op_src;
    n1->_bottom_type = _bottom_type;

    encodePKlass_shiftNode *n2 = new encodePKlass_shiftNode();
    n2->add_req(n_region, n1);
    n2->_opnds[0] = op_dst;
    n2->_opnds[1] = op_dst;
    n2->_bottom_type = _bottom_type;
    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

    nodes->push(n1);
    nodes->push(n2);
  %}
%}

// shift != 0, base != 0
instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
  match(Set dst (EncodePKlass src));
  //predicate(Universe::narrow_klass_shift() != 0 &&
  //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);

  //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  ins_cost(DEFAULT_COST*2);  // Don't count constant.
  expand %{
    immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
    iRegLdst base;
    loadConL_Ex(base, baseImm);
    encodePKlass_not_null_Ex(dst, base, src);
  %}
%}

// Decode nodes.

// Shift node for expand.
instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (DecodeNKlass src));
  predicate(false);

  format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
    __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  %}
  ins_pipe(pipe_class_default);
%}

// Add node for expand.

instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  // The match rule is needed to make it a 'MachTypeNode'!
  match(Set dst (DecodeNKlass (Binary base src)));
  predicate(false);

  format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_add);
    __ add($dst$$Register, $base$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// src != 0, shift != 0, base != 0
instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
  match(Set dst (DecodeNKlass (Binary base src)));
  //effect(kill src); // We need a register for the immediate result after shifting.
  predicate(false);

  format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
  postalloc_expand %{
    decodeNKlass_add_baseNode *n1 = new decodeNKlass_add_baseNode();
    n1->add_req(n_region, n_base, n_src);
    n1->_opnds[0] = op_dst;
    n1->_opnds[1] = op_base;
    n1->_opnds[2] = op_src;
    n1->_bottom_type = _bottom_type;

    decodeNKlass_shiftNode *n2 = new decodeNKlass_shiftNode();
    n2->add_req(n_region, n1);
    n2->_opnds[0] = op_dst;
    n2->_opnds[1] = op_dst;
    n2->_bottom_type = _bottom_type;

    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));

    nodes->push(n1);
    nodes->push(n2);
  %}
%}

// src != 0, shift != 0, base != 0
instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
  match(Set dst (DecodeNKlass src));
  // predicate(Universe::narrow_klass_shift() != 0 &&
  //           Universe::narrow_klass_base() != 0);

  //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}

  ins_cost(DEFAULT_COST*2);  // Don't count constant.
  expand %{
    // We add first, then we shift. Like this, we can get along with one register less.
    // But we have to load the base pre-shifted.
    immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
    iRegLdst base;
    loadConL_Ex(base, baseImm);
    decodeNKlass_notNull_addBase_Ex(dst, base, src);
  %}
%}

//----------MemBar Instructions-----------------------------------------------
// Memory barrier flavors

instruct membar_acquire() %{
  match(LoadFence);
  ins_cost(4*MEMORY_REF_COST);

  format %{ "MEMBAR-acquire" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
    __ acquire();
  %}
  ins_pipe(pipe_class_default);
%}

instruct unnecessary_membar_acquire() %{
  match(MemBarAcquire);
  ins_cost(0);

  format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

instruct membar_acquire_lock() %{
  match(MemBarAcquireLock);
  ins_cost(0);

  format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

instruct membar_release() %{
  match(MemBarRelease);
  match(StoreFence);
  ins_cost(4*MEMORY_REF_COST);

  format %{ "MEMBAR-release" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
    __ release();
  %}
  ins_pipe(pipe_class_default);
%}

instruct membar_storestore() %{
  match(MemBarStoreStore);
  ins_cost(4*MEMORY_REF_COST);

  format %{ "MEMBAR-store-store" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
    __ membar(Assembler::StoreStore);
  %}
  ins_pipe(pipe_class_default);
%}

instruct membar_release_lock() %{
  match(MemBarReleaseLock);
  ins_cost(0);

  format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

instruct membar_volatile() %{
  match(MemBarVolatile);
  ins_cost(4*MEMORY_REF_COST);

  format %{ "MEMBAR-volatile" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_sync);
    __ fence();
  %}
  ins_pipe(pipe_class_default);
%}

// This optimization is wrong on PPC. The following pattern is not supported:
//  MemBarVolatile
//   ^        ^
//   |        |
//  CtrlProj MemProj
//   ^        ^
//   |        |
//   |       Load
//   |
//  MemBarVolatile
//
//  The first MemBarVolatile could get optimized out! According to
//  Vladimir, this pattern can not occur on Oracle platforms.
//  However, it does occur on PPC64 (because of membars in
//  inline_unsafe_load_store).
//
// Add this node again if we found a good solution for inline_unsafe_load_store().
// Don't forget to look at the implementation of post_store_load_barrier again,
// we did other fixes in that method.
//instruct unnecessary_membar_volatile() %{
//  match(MemBarVolatile);
//  predicate(Matcher::post_store_load_barrier(n));
//  ins_cost(0);
//
//  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
//  size(0);
//  ins_encode( /*empty*/ );
//  ins_pipe(pipe_class_default);
//%}

instruct membar_CPUOrder() %{
  match(MemBarCPUOrder);
  ins_cost(0);

  format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

//----------Conditional Move---------------------------------------------------

// Cmove using isel.
instruct cmovI_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, iRegIsrc src) %{
  match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  predicate(VM_Version::has_isel());
  ins_cost(DEFAULT_COST);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  size(4);
  ins_encode %{
    // This is a Power7 instruction for which no machine description
    // exists. Anyways, the scheduler should be off on Power7.
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    int cc        = $cmp$$cmpcode;
    __ isel($dst$$Register, $crx$$CondRegister,
            (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmovI_reg(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, iRegIsrc src) %{
  match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  predicate(!VM_Version::has_isel());
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  ins_pipe(pipe_class_default);
%}

instruct cmovI_imm(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, immI16 src) %{
  match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  ins_pipe(pipe_class_default);
%}

// Cmove using isel.
instruct cmovL_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, iRegLsrc src) %{
  match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  predicate(VM_Version::has_isel());
  ins_cost(DEFAULT_COST);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  size(4);
  ins_encode %{
    // This is a Power7 instruction for which no machine description
    // exists. Anyways, the scheduler should be off on Power7.
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    int cc        = $cmp$$cmpcode;
    __ isel($dst$$Register, $crx$$CondRegister,
            (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmovL_reg(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, iRegLsrc src) %{
  match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  predicate(!VM_Version::has_isel());
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  ins_pipe(pipe_class_default);
%}

instruct cmovL_imm(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, immL16 src) %{
  match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  ins_pipe(pipe_class_default);
%}

// Cmove using isel.
instruct cmovN_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, iRegNsrc src) %{
  match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  predicate(VM_Version::has_isel());
  ins_cost(DEFAULT_COST);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  size(4);
  ins_encode %{
    // This is a Power7 instruction for which no machine description
    // exists. Anyways, the scheduler should be off on Power7.
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    int cc        = $cmp$$cmpcode;
    __ isel($dst$$Register, $crx$$CondRegister,
            (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Conditional move for RegN. Only cmov(reg, reg).
instruct cmovN_reg(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, iRegNsrc src) %{
  match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  predicate(!VM_Version::has_isel());
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  ins_pipe(pipe_class_default);
%}

instruct cmovN_imm(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, immN_0 src) %{
  match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  ins_pipe(pipe_class_default);
%}

// Cmove using isel.
instruct cmovP_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, iRegPsrc src) %{
  match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  predicate(VM_Version::has_isel());
  ins_cost(DEFAULT_COST);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  size(4);
  ins_encode %{
    // This is a Power7 instruction for which no machine description
    // exists. Anyways, the scheduler should be off on Power7.
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    int cc        = $cmp$$cmpcode;
    __ isel($dst$$Register, $crx$$CondRegister,
            (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmovP_reg(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, iRegP_N2P src) %{
  match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  predicate(!VM_Version::has_isel());
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  ins_pipe(pipe_class_default);
%}

instruct cmovP_imm(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, immP_0 src) %{
  match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  ins_pipe(pipe_class_default);
%}

instruct cmovF_reg(cmpOp cmp, flagsRegSrc crx, regF dst, regF src) %{
  match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
    Label done;
    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
    // Branch if not (cmp crx).
    __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
    __ fmr($dst$$FloatRegister, $src$$FloatRegister);
    // TODO PPC port __ endgroup_if_needed(_size == 12);
    __ bind(done);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmovD_reg(cmpOp cmp, flagsRegSrc crx, regD dst, regD src) %{
  match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
  ins_cost(DEFAULT_COST+BRANCH_COST);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
    Label done;
    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
    // Branch if not (cmp crx).
    __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
    __ fmr($dst$$FloatRegister, $src$$FloatRegister);
    // TODO PPC port __ endgroup_if_needed(_size == 12);
    __ bind(done);
  %}
  ins_pipe(pipe_class_default);
%}

//----------Conditional_store--------------------------------------------------
// Conditional-store of the updated heap-top.
// Used during allocation of the shared heap.
// Sets flags (EQ) on success. Implemented with a CASA on Sparc.

// As compareAndSwapL, but return flag register instead of boolean value in
// int register.
// Used by sun/misc/AtomicLongCSImpl.java.
// Mem_ptr must be a memory operand, else this node does not get
// Flag_needs_anti_dependence_check set by adlc. If this is not set this node
// can be rematerialized which leads to errors.
instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal, flagsRegCR0 cr0) %{
  match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
  effect(TEMP cr0);
  format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
                MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_atomic_update(),
                noreg, NULL, true);
  %}
  ins_pipe(pipe_class_default);
%}

// As compareAndSwapP, but return flag register instead of boolean value in
// int register.
// This instruction is matched if UseTLAB is off.
// Mem_ptr must be a memory operand, else this node does not get
// Flag_needs_anti_dependence_check set by adlc. If this is not set this node
// can be rematerialized which leads to errors.
instruct storePConditional_regP_regP_regP(flagsRegCR0 cr0, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
  match(Set cr0 (StorePConditional mem_ptr (Binary oldVal newVal)));
  ins_cost(2*MEMORY_REF_COST);

  format %{ "STDCX_  if ($cr0 = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_stdcx_);
    __ stdcx_($newVal$$Register, $mem_ptr$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Implement LoadPLocked. Must be ordered against changes of the memory location
// by storePConditional.
// Don't know whether this is ever used.
instruct loadPLocked(iRegPdst dst, memory mem) %{
  match(Set dst (LoadPLocked mem));
  ins_cost(2*MEMORY_REF_COST);

  format %{ "LDARX   $dst, $mem \t// loadPLocked\n\t" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ldarx);
    __ ldarx($dst$$Register, $mem$$Register, MacroAssembler::cmpxchgx_hint_atomic_update());
  %}
  ins_pipe(pipe_class_memory);
%}

//----------Compare-And-Swap---------------------------------------------------

// CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
// (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
// matched.

instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2, flagsRegCR0 cr0) %{
  match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
  effect(TEMP cr0);
  format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
    __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
                MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
                $res$$Register, true);
  %}
  ins_pipe(pipe_class_default);
%}

instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2, flagsRegCR0 cr0) %{
  match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
  effect(TEMP cr0);
  format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
    __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
                MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
                $res$$Register, true);
  %}
  ins_pipe(pipe_class_default);
%}

instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
  match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
  effect(TEMP cr0);
  format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
    __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
                MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
                $res$$Register, NULL, true);
  %}
  ins_pipe(pipe_class_default);
%}

instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2, flagsRegCR0 cr0) %{
  match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
  effect(TEMP cr0);
  format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
    __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
                MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
                $res$$Register, NULL, true);
  %}
  ins_pipe(pipe_class_default);
%}

instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src, flagsRegCR0 cr0) %{
  match(Set res (GetAndAddI mem_ptr src));
  effect(TEMP cr0);
  format %{ "GetAndAddI $res, $mem_ptr, $src" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
  ins_pipe(pipe_class_default);
%}

instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src, flagsRegCR0 cr0) %{
  match(Set res (GetAndAddL mem_ptr src));
  effect(TEMP cr0);
  format %{ "GetAndAddL $res, $mem_ptr, $src" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
  ins_pipe(pipe_class_default);
%}

instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src, flagsRegCR0 cr0) %{
  match(Set res (GetAndSetI mem_ptr src));
  effect(TEMP cr0);
  format %{ "GetAndSetI $res, $mem_ptr, $src" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  ins_pipe(pipe_class_default);
%}

instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src, flagsRegCR0 cr0) %{
  match(Set res (GetAndSetL mem_ptr src));
  effect(TEMP cr0);
  format %{ "GetAndSetL $res, $mem_ptr, $src" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  ins_pipe(pipe_class_default);
%}

instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src, flagsRegCR0 cr0) %{
  match(Set res (GetAndSetP mem_ptr src));
  effect(TEMP cr0);
  format %{ "GetAndSetP $res, $mem_ptr, $src" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  ins_pipe(pipe_class_default);
%}

instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src, flagsRegCR0 cr0) %{
  match(Set res (GetAndSetN mem_ptr src));
  effect(TEMP cr0);
  format %{ "GetAndSetN $res, $mem_ptr, $src" %}
  // Variable size: instruction count smaller if regs are disjoint.
  ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  ins_pipe(pipe_class_default);
%}

//----------Arithmetic Instructions--------------------------------------------
// Addition Instructions

// Register Addition
instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
  match(Set dst (AddI src1 src2));
  format %{ "ADD     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_add);
    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Expand does not work with above instruct. (??)
instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  // no match-rule
  effect(DEF dst, USE src1, USE src2);
  format %{ "ADD     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_add);
    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
  ins_cost(DEFAULT_COST*3);

  expand %{
    // FIXME: we should do this in the ideal world.
    iRegIdst tmp1;
    iRegIdst tmp2;
    addI_reg_reg(tmp1, src1, src2);
    addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
    addI_reg_reg(dst, tmp1, tmp2);
  %}
%}

// Immediate Addition
instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  match(Set dst (AddI src1 src2));
  format %{ "ADDI    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate Addition with 16-bit shifted operand
instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
  match(Set dst (AddI src1 src2));
  format %{ "ADDIS   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
    __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  %}
  ins_pipe(pipe_class_default);
%}

// Long Addition
instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (AddL src1 src2));
  format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_add);
    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Expand does not work with above instruct. (??)
instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  // no match-rule
  effect(DEF dst, USE src1, USE src2);
  format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_add);
    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
  match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
  ins_cost(DEFAULT_COST*3);

  expand %{
    // FIXME: we should do this in the ideal world.
    iRegLdst tmp1;
    iRegLdst tmp2;
    addL_reg_reg(tmp1, src1, src2);
    addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
    addL_reg_reg(dst, tmp1, tmp2);
  %}
%}

// AddL + ConvL2I.
instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (ConvL2I (AddL src1 src2)));

  format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_add);
    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// No constant pool entries required.
instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  match(Set dst (AddL src1 src2));

  format %{ "ADDI    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Long Immediate Addition with 16-bit shifted operand.
// No constant pool entries required.
instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
  match(Set dst (AddL src1 src2));

  format %{ "ADDIS   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
    __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  %}
  ins_pipe(pipe_class_default);
%}

// Pointer Register Addition
instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
  match(Set dst (AddP src1 src2));
  format %{ "ADD     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_add);
    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Pointer Immediate Addition
// No constant pool entries required.
instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
  match(Set dst (AddP src1 src2));

  format %{ "ADDI    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Pointer Immediate Addition with 16-bit shifted operand.
// No constant pool entries required.
instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
  match(Set dst (AddP src1 src2));

  format %{ "ADDIS   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
    __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  %}
  ins_pipe(pipe_class_default);
%}

//---------------------
// Subtraction Instructions

// Register Subtraction
instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (SubI src1 src2));
  format %{ "SUBF    $dst, $src2, $src1" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
    __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate Subtraction
// Immediate Subtraction: The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
// Don't try to use addi with - $src2$$constant since it can overflow when $src2$$constant == minI16.

// SubI from constant (using subfic).
instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
  match(Set dst (SubI src1 src2));
  format %{ "SUBI    $dst, $src1, $src2" %}

  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
    __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
// positive integers and 0xF...F for negative ones.
instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "SRAWI   $dst, $src, #31" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
    __ srawi($dst$$Register, $src$$Register, 0x1f);
  %}
  ins_pipe(pipe_class_default);
%}

instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
  match(Set dst (AbsI src));
  ins_cost(DEFAULT_COST*3);

  expand %{
    iRegIdst tmp1;
    iRegIdst tmp2;
    signmask32I_regI(tmp1, src);
    xorI_reg_reg(tmp2, tmp1, src);
    subI_reg_reg(dst, tmp2, tmp1);
  %}
%}

instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
  match(Set dst (SubI zero src2));
  format %{ "NEG     $dst, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
    __ neg($dst$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Long subtraction
instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (SubL src1 src2));
  format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
    __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// SubL + convL2I.
instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (ConvL2I (SubL src1 src2)));

  format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
    __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
// positive longs and 0xF...F for negative ones.
instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "SRADI   $dst, $src, #63" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
    __ sradi($dst$$Register, $src$$Register, 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
// positive longs and 0xF...F for negative ones.
instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "SRADI   $dst, $src, #63" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
    __ sradi($dst$$Register, $src$$Register, 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// Long negation
instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
  match(Set dst (SubL zero src2));
  format %{ "NEG     $dst, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
    __ neg($dst$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// NegL + ConvL2I.
instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
  match(Set dst (ConvL2I (SubL zero src2)));

  format %{ "NEG     $dst, $src2 \t// long + l2i" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
    __ neg($dst$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Multiplication Instructions
// Integer Multiplication

// Register Multiplication
instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (MulI src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "MULLW   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
    __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate Multiplication
instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  match(Set dst (MulI src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "MULLI   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
    __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (MulL src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "MULLD   $dst $src1, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
    __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Multiply high for optimized long division by constant.
instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (MulHiL src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "MULHD   $dst $src1, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
    __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate Multiplication
instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  match(Set dst (MulL src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "MULLI   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
    __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Integer Division with Immediate -1: Negate.
instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  match(Set dst (DivI src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "NEG     $dst, $src1 \t// /-1" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
    __ neg($dst$$Register, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Integer Division with constant, but not -1.
// We should be able to improve this by checking the type of src2.
// It might well be that src2 is known to be positive.
instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (DivI src1 src2));
  predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
  ins_cost(2*DEFAULT_COST);

  format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_divw);
    __ divw($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmovI_bne_negI_reg(iRegIdst dst, flagsRegSrc crx, iRegIsrc src1) %{
  effect(USE_DEF dst, USE src1, USE crx);
  predicate(false);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $dst, neg($src1), $crx" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
    Label done;
    __ bne($crx$$CondRegister, done);
    __ neg($dst$$Register, $src1$$Register);
    // TODO PPC port __ endgroup_if_needed(_size == 12);
    __ bind(done);
  %}
  ins_pipe(pipe_class_default);
%}

// Integer Division with Registers not containing constants.
instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (DivI src1 src2));
  ins_cost(10*DEFAULT_COST);

  expand %{
    immI16 imm %{ (int)-1 %}
    flagsReg tmp1;
    cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
    divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
    cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  %}
%}

// Long Division with Immediate -1: Negate.
instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  match(Set dst (DivL src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "NEG     $dst, $src1 \t// /-1, long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
    __ neg($dst$$Register, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Long Division with constant, but not -1.
instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (DivL src1 src2));
  predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
  ins_cost(2*DEFAULT_COST);

  format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_divd);
    __ divd($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmovL_bne_negL_reg(iRegLdst dst, flagsRegSrc crx, iRegLsrc src1) %{
  effect(USE_DEF dst, USE src1, USE crx);
  predicate(false);

  ins_variable_size_depending_on_alignment(true);

  format %{ "CMOVE   $dst, neg($src1), $crx" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
    Label done;
    __ bne($crx$$CondRegister, done);
    __ neg($dst$$Register, $src1$$Register);
    // TODO PPC port __ endgroup_if_needed(_size == 12);
    __ bind(done);
  %}
  ins_pipe(pipe_class_default);
%}

// Long Division with Registers not containing constants.
instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (DivL src1 src2));
  ins_cost(10*DEFAULT_COST);

  expand %{
    immL16 imm %{ (int)-1 %}
    flagsReg tmp1;
    cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
    divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
    cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  %}
%}

// Integer Remainder with registers.
instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (ModI src1 src2));
  ins_cost(10*DEFAULT_COST);

  expand %{
    immI16 imm %{ (int)-1 %}
    flagsReg tmp1;
    iRegIdst tmp2;
    iRegIdst tmp3;
    cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
    divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
    cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
    mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
    subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
  %}
%}

// Long Remainder with registers
instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (ModL src1 src2));
  ins_cost(10*DEFAULT_COST);

  expand %{
    immL16 imm %{ (int)-1 %}
    flagsReg tmp1;
    iRegLdst tmp2;
    iRegLdst tmp3;
    cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
    divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
    cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
    mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
    subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
  %}
%}

// Integer Shift Instructions

// Register Shift Left

// Clear all but the lowest #mask bits.
// Used to normalize shift amounts in registers.
instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src, USE mask);
  predicate(false);

  format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "SLW     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_slw);
    __ slw($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (LShiftI src1 src2));
  ins_cost(DEFAULT_COST*2);
  expand %{
    uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
    iRegIdst tmpI;
    maskI_reg_imm(tmpI, src2, mask);
    lShiftI_reg_reg(dst, src1, tmpI);
  %}
%}

// Register Shift Left Immediate
instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  match(Set dst (LShiftI src1 src2));

  format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
    __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  %}
  ins_pipe(pipe_class_default);
%}

// AndI with negpow2-constant + LShiftI
instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  match(Set dst (LShiftI (AndI src1 src2) src3));
  predicate(UseRotateAndMaskInstructionsPPC64);

  format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
    long src2      = $src2$$constant;
    long src3      = $src3$$constant;
    long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
    if (maskbits >= 32) {
      __ li($dst$$Register, 0); // addi
    } else {
      __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
    }
  %}
  ins_pipe(pipe_class_default);
%}

// RShiftI + AndI with negpow2-constant + LShiftI
instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
  predicate(UseRotateAndMaskInstructionsPPC64);

  format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
    long src2      = $src2$$constant;
    long src3      = $src3$$constant;
    long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
    if (maskbits >= 32) {
      __ li($dst$$Register, 0); // addi
    } else {
      __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
    }
  %}
  ins_pipe(pipe_class_default);
%}

instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "SLD     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_sld);
    __ sld($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Register Shift Left
instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  match(Set dst (LShiftL src1 src2));
  ins_cost(DEFAULT_COST*2);
  expand %{
    uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
    iRegIdst tmpI;
    maskI_reg_imm(tmpI, src2, mask);
    lShiftL_regL_regI(dst, src1, tmpI);
  %}
%}

// Register Shift Left Immediate
instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  match(Set dst (LShiftL src1 src2));
  format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
    __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// If we shift more than 32 bits, we need not convert I2L.
instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
  match(Set dst (LShiftL (ConvI2L src1) src2));
  ins_cost(DEFAULT_COST);

  size(4);
  format %{ "SLDI    $dst, i2l($src1), $src2" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
    __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// Shift a postivie int to the left.
// Clrlsldi clears the upper 32 bits and shifts.
instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
  match(Set dst (LShiftL (ConvI2L src1) src2));
  predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());

  format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
    __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "SRAW    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
    __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Register Arithmetic Shift Right
instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (RShiftI src1 src2));
  ins_cost(DEFAULT_COST*2);
  expand %{
    uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
    iRegIdst tmpI;
    maskI_reg_imm(tmpI, src2, mask);
    arShiftI_reg_reg(dst, src1, tmpI);
  %}
%}

// Register Arithmetic Shift Right Immediate
instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  match(Set dst (RShiftI src1 src2));

  format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
    __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  %}
  ins_pipe(pipe_class_default);
%}

instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "SRAD    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_srad);
    __ srad($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Register Shift Right Arithmetic Long
instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  match(Set dst (RShiftL src1 src2));
  ins_cost(DEFAULT_COST*2);

  expand %{
    uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
    iRegIdst tmpI;
    maskI_reg_imm(tmpI, src2, mask);
    arShiftL_regL_regI(dst, src1, tmpI);
  %}
%}

// Register Shift Right Immediate
instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  match(Set dst (RShiftL src1 src2));

  format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
    __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// RShiftL + ConvL2I
instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  match(Set dst (ConvL2I (RShiftL src1 src2)));

  format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
    __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "SRW     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_srw);
    __ srw($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Register Shift Right
instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (URShiftI src1 src2));
  ins_cost(DEFAULT_COST*2);

  expand %{
    uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
    iRegIdst tmpI;
    maskI_reg_imm(tmpI, src2, mask);
    urShiftI_reg_reg(dst, src1, tmpI);
  %}
%}

// Register Shift Right Immediate
instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  match(Set dst (URShiftI src1 src2));

  format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
    __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  %}
  ins_pipe(pipe_class_default);
%}

instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "SRD     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_srd);
    __ srd($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Register Shift Right
instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  match(Set dst (URShiftL src1 src2));
  ins_cost(DEFAULT_COST*2);

  expand %{
    uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
    iRegIdst tmpI;
    maskI_reg_imm(tmpI, src2, mask);
    urShiftL_regL_regI(dst, src1, tmpI);
  %}
%}

// Register Shift Right Immediate
instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  match(Set dst (URShiftL src1 src2));

  format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// URShiftL + ConvL2I.
instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  match(Set dst (ConvL2I (URShiftL src1 src2)));

  format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

// Register Shift Right Immediate with a CastP2X
instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
  match(Set dst (URShiftL (CastP2X src1) src2));

  format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  %}
  ins_pipe(pipe_class_default);
%}

instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
  match(Set dst (ConvL2I (ConvI2L src)));

  format %{ "EXTSW   $dst, $src \t// int->int" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
    __ extsw($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

//----------Rotate Instructions------------------------------------------------

// Rotate Left by 8-bit immediate
instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
  match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));

  format %{ "ROTLWI  $dst, $src, $lshift" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
    __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Rotate Right by 8-bit immediate
instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
  match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));

  format %{ "ROTRWI  $dst, $rshift" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
    __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

//----------Floating Point Arithmetic Instructions-----------------------------

// Add float single precision
instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  match(Set dst (AddF src1 src2));

  format %{ "FADDS   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
    __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Add float double precision
instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  match(Set dst (AddD src1 src2));

  format %{ "FADD    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
    __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Sub float single precision
instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  match(Set dst (SubF src1 src2));

  format %{ "FSUBS   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
    __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Sub float double precision
instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  match(Set dst (SubD src1 src2));
  format %{ "FSUB    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
    __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Mul float single precision
instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  match(Set dst (MulF src1 src2));
  format %{ "FMULS   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
    __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Mul float double precision
instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  match(Set dst (MulD src1 src2));
  format %{ "FMUL    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
    __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Div float single precision
instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  match(Set dst (DivF src1 src2));
  format %{ "FDIVS   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
    __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Div float double precision
instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  match(Set dst (DivD src1 src2));
  format %{ "FDIV    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
    __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Absolute float single precision
instruct absF_reg(regF dst, regF src) %{
  match(Set dst (AbsF src));
  format %{ "FABS    $dst, $src \t// float" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
    __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Absolute float double precision
instruct absD_reg(regD dst, regD src) %{
  match(Set dst (AbsD src));
  format %{ "FABS    $dst, $src \t// double" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
    __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

instruct negF_reg(regF dst, regF src) %{
  match(Set dst (NegF src));
  format %{ "FNEG    $dst, $src \t// float" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
    __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

instruct negD_reg(regD dst, regD src) %{
  match(Set dst (NegD src));
  format %{ "FNEG    $dst, $src \t// double" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
    __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// AbsF + NegF.
instruct negF_absF_reg(regF dst, regF src) %{
  match(Set dst (NegF (AbsF src)));
  format %{ "FNABS   $dst, $src \t// float" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
    __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// AbsD + NegD.
instruct negD_absD_reg(regD dst, regD src) %{
  match(Set dst (NegD (AbsD src)));
  format %{ "FNABS   $dst, $src \t// double" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
    __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// VM_Version::has_fsqrt() decides if this node will be used.
// Sqrt float double precision
instruct sqrtD_reg(regD dst, regD src) %{
  match(Set dst (SqrtD src));
  format %{ "FSQRT   $dst, $src" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
    __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Single-precision sqrt.
instruct sqrtF_reg(regF dst, regF src) %{
  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  predicate(VM_Version::has_fsqrts());
  ins_cost(DEFAULT_COST);

  format %{ "FSQRTS  $dst, $src" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
    __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

instruct roundDouble_nop(regD dst) %{
  match(Set dst (RoundDouble dst));
  ins_cost(0);

  format %{ " -- \t// RoundDouble not needed - empty" %}
  size(0);
  // PPC results are already "rounded" (i.e., normal-format IEEE).
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

instruct roundFloat_nop(regF dst) %{
  match(Set dst (RoundFloat dst));
  ins_cost(0);

  format %{ " -- \t// RoundFloat not needed - empty" %}
  size(0);
  // PPC results are already "rounded" (i.e., normal-format IEEE).
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

//----------Logical Instructions-----------------------------------------------

// And Instructions

// Register And
instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (AndI src1 src2));
  format %{ "AND     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_and);
    __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate And
instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
  match(Set dst (AndI src1 src2));
  effect(KILL cr0);

  format %{ "ANDI    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
    // FIXME: avoid andi_ ?
    __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate And where the immediate is a negative power of 2.
instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
  match(Set dst (AndI src1 src2));
  format %{ "ANDWI   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
    __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
  %}
  ins_pipe(pipe_class_default);
%}

instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
  match(Set dst (AndI src1 src2));
  format %{ "ANDWI   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  %}
  ins_pipe(pipe_class_default);
%}

instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
  match(Set dst (AndI src1 src2));
  predicate(UseRotateAndMaskInstructionsPPC64);
  format %{ "ANDWI   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
    __ rlwinm($dst$$Register, $src1$$Register, 0,
              (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
  %}
  ins_pipe(pipe_class_default);
%}

// Register And Long
instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (AndL src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "AND     $dst, $src1, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_and);
    __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate And long
instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
  match(Set dst (AndL src1 src2));
  effect(KILL cr0);

  format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
    // FIXME: avoid andi_ ?
    __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate And Long where the immediate is a negative power of 2.
instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
  match(Set dst (AndL src1 src2));
  format %{ "ANDDI   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
    __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
  %}
  ins_pipe(pipe_class_default);
%}

instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  match(Set dst (AndL src1 src2));
  format %{ "ANDDI   $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  %}
  ins_pipe(pipe_class_default);
%}

// AndL + ConvL2I.
instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  match(Set dst (ConvL2I (AndL src1 src2)));
  ins_cost(DEFAULT_COST);

  format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  %}
  ins_pipe(pipe_class_default);
%}

// Or Instructions

// Register Or
instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (OrI src1 src2));
  format %{ "OR      $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Expand does not work with above instruct. (??)
instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  // no match-rule
  effect(DEF dst, USE src1, USE src2);
  format %{ "OR      $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
  ins_cost(DEFAULT_COST*3);

  expand %{
    // FIXME: we should do this in the ideal world.
    iRegIdst tmp1;
    iRegIdst tmp2;
    orI_reg_reg(tmp1, src1, src2);
    orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
    orI_reg_reg(dst, tmp1, tmp2);
  %}
%}

// Immediate Or
instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  match(Set dst (OrI src1 src2));
  format %{ "ORI     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
    __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  %}
  ins_pipe(pipe_class_default);
%}

// Register Or Long
instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (OrL src1 src2));
  ins_cost(DEFAULT_COST);

  size(4);
  format %{ "OR      $dst, $src1, $src2 \t// long" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// OrL + ConvL2I.
instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (ConvL2I (OrL src1 src2)));
  ins_cost(DEFAULT_COST);

  format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate Or long
instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
  match(Set dst (OrL src1 con));
  ins_cost(DEFAULT_COST);

  format %{ "ORI     $dst, $src1, $con \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
    __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
  %}
  ins_pipe(pipe_class_default);
%}

// Xor Instructions

// Register Xor
instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (XorI src1 src2));
  format %{ "XOR     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_xor);
    __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Expand does not work with above instruct. (??)
instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  // no match-rule
  effect(DEF dst, USE src1, USE src2);
  format %{ "XOR     $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_xor);
    __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
  ins_cost(DEFAULT_COST*3);

  expand %{
    // FIXME: we should do this in the ideal world.
    iRegIdst tmp1;
    iRegIdst tmp2;
    xorI_reg_reg(tmp1, src1, src2);
    xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
    xorI_reg_reg(dst, tmp1, tmp2);
  %}
%}

// Immediate Xor
instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  match(Set dst (XorI src1 src2));
  format %{ "XORI    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_xori);
    __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Register Xor Long
instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (XorL src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "XOR     $dst, $src1, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_xor);
    __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// XorL + ConvL2I.
instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (ConvL2I (XorL src1 src2)));
  ins_cost(DEFAULT_COST);

  format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_xor);
    __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Immediate Xor Long
instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
  match(Set dst (XorL src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "XORI    $dst, $src1, $src2 \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_xori);
    __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  match(Set dst (XorI src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "NOT     $dst, $src1 ($src2)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_nor);
    __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  match(Set dst (XorL src1 src2));
  ins_cost(DEFAULT_COST);

  format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_nor);
    __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// And-complement
instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
  match(Set dst (AndI (XorI src1 src2) src3));
  ins_cost(DEFAULT_COST);

  format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
  size(4);
  ins_encode( enc_andc(dst, src3, src1) );
  ins_pipe(pipe_class_default);
%}

// And-complement
instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src1, USE src2);
  predicate(false);

  format %{ "ANDC    $dst, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_andc);
    __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

//----------Moves between int/long and float/double----------------------------
//
// The following rules move values from int/long registers/stack-locations
// to float/double registers/stack-locations and vice versa, without doing any
// conversions. These rules are used to implement the bit-conversion methods
// of java.lang.Float etc., e.g.
//   int   floatToIntBits(float value)
//   float intBitsToFloat(int bits)
//
// Notes on the implementation on ppc64:
// We only provide rules which move between a register and a stack-location,
// because we always have to go through memory when moving between a float
// register and an integer register.

//---------- Chain stack slots between similar types --------

// These are needed so that the rules below can match.

// Load integer from stack slot
instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $src" %}
  size(4);
  ins_encode( enc_lwz(dst, src) );
  ins_pipe(pipe_class_memory);
%}

// Store integer to stack slot
instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  format %{ "STW     $src, $dst \t// stk" %}
  size(4);
  ins_encode( enc_stw(src, dst) ); // rs=rt
  ins_pipe(pipe_class_memory);
%}

// Load long from stack slot
instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  format %{ "LD      $dst, $src \t// long" %}
  size(4);
  ins_encode( enc_ld(dst, src) );
  ins_pipe(pipe_class_memory);
%}

// Store long to stack slot
instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  format %{ "STD     $src, $dst \t// long" %}
  size(4);
  ins_encode( enc_std(src, dst) ); // rs=rt
  ins_pipe(pipe_class_memory);
%}

//----------Moves between int and float

// Move float value from float stack-location to integer register.
instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
  match(Set dst (MoveF2I src));
  ins_cost(MEMORY_REF_COST);

  format %{ "LWZ     $dst, $src \t// MoveF2I" %}
  size(4);
  ins_encode( enc_lwz(dst, src) );
  ins_pipe(pipe_class_memory);
%}

// Move float value from float register to integer stack-location.
instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
  match(Set dst (MoveF2I src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STFS    $src, $dst \t// MoveF2I" %}
  size(4);
  ins_encode( enc_stfs(src, dst) );
  ins_pipe(pipe_class_memory);
%}

// Move integer value from integer stack-location to float register.
instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
  match(Set dst (MoveI2F src));
  ins_cost(MEMORY_REF_COST);

  format %{ "LFS     $dst, $src \t// MoveI2F" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
    int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
    __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
  %}
  ins_pipe(pipe_class_memory);
%}

// Move integer value from integer register to float stack-location.
instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
  match(Set dst (MoveI2F src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STW     $src, $dst \t// MoveI2F" %}
  size(4);
  ins_encode( enc_stw(src, dst) );
  ins_pipe(pipe_class_memory);
%}

//----------Moves between long and float

instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "storeD  $src, $dst \t// STACK" %}
  size(4);
  ins_encode( enc_stfd(src, dst) );
  ins_pipe(pipe_class_default);
%}

//----------Moves between long and double

// Move double value from double stack-location to long register.
instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
  match(Set dst (MoveD2L src));
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "LD      $dst, $src \t// MoveD2L" %}
  ins_encode( enc_ld(dst, src) );
  ins_pipe(pipe_class_memory);
%}

// Move double value from double register to long stack-location.
instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
  match(Set dst (MoveD2L src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  format %{ "STFD    $src, $dst \t// MoveD2L" %}
  size(4);
  ins_encode( enc_stfd(src, dst) );
  ins_pipe(pipe_class_memory);
%}

// Move long value from long stack-location to double register.
instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
  match(Set dst (MoveL2D src));
  ins_cost(MEMORY_REF_COST);

  format %{ "LFD     $dst, $src \t// MoveL2D" %}
  size(4);
  ins_encode( enc_lfd(dst, src) );
  ins_pipe(pipe_class_memory);
%}

// Move long value from long register to double stack-location.
instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
  match(Set dst (MoveL2D src));
  ins_cost(MEMORY_REF_COST);

  format %{ "STD     $src, $dst \t// MoveL2D" %}
  size(4);
  ins_encode( enc_std(src, dst) );
  ins_pipe(pipe_class_memory);
%}

//----------Register Move Instructions-----------------------------------------

// Replicate for Superword

instruct moveReg(iRegLdst dst, iRegIsrc src) %{
  predicate(false);
  effect(DEF dst, USE src);

  format %{ "MR      $dst, $src \t// replicate " %}
  // variable size, 0 or 4.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ mr_if_needed($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

//----------Cast instructions (Java-level type cast)---------------------------

// Cast Long to Pointer for unsafe natives.
instruct castX2P(iRegPdst dst, iRegLsrc src) %{
  match(Set dst (CastX2P src));

  format %{ "MR      $dst, $src \t// Long->Ptr" %}
  // variable size, 0 or 4.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ mr_if_needed($dst$$Register, $src$$Register);
  %}
 ins_pipe(pipe_class_default);
%}

// Cast Pointer to Long for unsafe natives.
instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
  match(Set dst (CastP2X src));

  format %{ "MR      $dst, $src \t// Ptr->Long" %}
  // variable size, 0 or 4.
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ mr_if_needed($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct castPP(iRegPdst dst) %{
  match(Set dst (CastPP dst));
  format %{ " -- \t// castPP of $dst" %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

instruct castII(iRegIdst dst) %{
  match(Set dst (CastII dst));
  format %{ " -- \t// castII of $dst" %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

instruct checkCastPP(iRegPdst dst) %{
  match(Set dst (CheckCastPP dst));
  format %{ " -- \t// checkcastPP of $dst" %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

//----------Convert instructions-----------------------------------------------

// Convert to boolean.

// int_to_bool(src) : { 1   if src != 0
//                    { 0   else
//
// strategy:
// 1) Count leading zeros of 32 bit-value src,
//    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
// 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
// 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.

// convI2Bool
instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
  match(Set dst (Conv2B src));
  predicate(UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  expand %{
    immI shiftAmount %{ 0x5 %}
    uimmI16 mask %{ 0x1 %}
    iRegIdst tmp1;
    iRegIdst tmp2;
    countLeadingZerosI(tmp1, src);
    urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
    xorI_reg_uimm16(dst, tmp2, mask);
  %}
%}

instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
  match(Set dst (Conv2B src));
  effect(TEMP crx);
  predicate(!UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
            "LI      $dst, #0\n\t"
            "BEQ     $crx, done\n\t"
            "LI      $dst, #1\n"
            "done:" %}
  size(16);
  ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
  ins_pipe(pipe_class_compare);
%}

// ConvI2B + XorI
instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
  match(Set dst (XorI (Conv2B src) mask));
  predicate(UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  expand %{
    immI shiftAmount %{ 0x5 %}
    iRegIdst tmp1;
    countLeadingZerosI(tmp1, src);
    urShiftI_reg_imm(dst, tmp1, shiftAmount);
  %}
%}

instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
  match(Set dst (XorI (Conv2B src) mask));
  effect(TEMP crx);
  predicate(!UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
            "LI      $dst, #1\n\t"
            "BEQ     $crx, done\n\t"
            "LI      $dst, #0\n"
            "done:" %}
  size(16);
  ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
  ins_pipe(pipe_class_compare);
%}

// AndI 0b0..010..0 + ConvI2B
instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
  match(Set dst (Conv2B (AndI src mask)));
  predicate(UseRotateAndMaskInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
    __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
  %}
  ins_pipe(pipe_class_default);
%}

// Convert pointer to boolean.
//
// ptr_to_bool(src) : { 1   if src != 0
//                    { 0   else
//
// strategy:
// 1) Count leading zeros of 64 bit-value src,
//    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
// 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
// 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.

// ConvP2B
instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
  match(Set dst (Conv2B src));
  predicate(UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  expand %{
    immI shiftAmount %{ 0x6 %}
    uimmI16 mask %{ 0x1 %}
    iRegIdst tmp1;
    iRegIdst tmp2;
    countLeadingZerosP(tmp1, src);
    urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
    xorI_reg_uimm16(dst, tmp2, mask);
  %}
%}

instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
  match(Set dst (Conv2B src));
  effect(TEMP crx);
  predicate(!UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
            "LI      $dst, #0\n\t"
            "BEQ     $crx, done\n\t"
            "LI      $dst, #1\n"
            "done:" %}
  size(16);
  ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
  ins_pipe(pipe_class_compare);
%}

// ConvP2B + XorI
instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
  match(Set dst (XorI (Conv2B src) mask));
  predicate(UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  expand %{
    immI shiftAmount %{ 0x6 %}
    iRegIdst tmp1;
    countLeadingZerosP(tmp1, src);
    urShiftI_reg_imm(dst, tmp1, shiftAmount);
  %}
%}

instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
  match(Set dst (XorI (Conv2B src) mask));
  effect(TEMP crx);
  predicate(!UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
            "LI      $dst, #1\n\t"
            "BEQ     $crx, done\n\t"
            "LI      $dst, #0\n"
            "done:" %}
  size(16);
  ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
  ins_pipe(pipe_class_compare);
%}

// if src1 < src2, return -1 else return 0
instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (CmpLTMask src1 src2));
  ins_cost(DEFAULT_COST*4);

  expand %{
    iRegLdst src1s;
    iRegLdst src2s;
    iRegLdst diff;
    convI2L_reg(src1s, src1); // Ensure proper sign extension.
    convI2L_reg(src2s, src2); // Ensure proper sign extension.
    subL_reg_reg(diff, src1s, src2s);
    // Need to consider >=33 bit result, therefore we need signmaskL.
    signmask64I_regL(dst, diff);
  %}
%}

instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
  match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
  format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
    __ srawi($dst$$Register, $src1$$Register, 0x1f);
  %}
  ins_pipe(pipe_class_default);
%}

//----------Arithmetic Conversion Instructions---------------------------------

// Convert to Byte  -- nop
// Convert to Short -- nop

// Convert to Int

instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
  match(Set dst (RShiftI (LShiftI src amount) amount));
  format %{ "EXTSB   $dst, $src \t// byte->int" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
    __ extsb($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// LShiftI 16 + RShiftI 16 converts short to int.
instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
  match(Set dst (RShiftI (LShiftI src amount) amount));
  format %{ "EXTSH   $dst, $src \t// short->int" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
    __ extsh($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// ConvL2I + ConvI2L: Sign extend int in long register.
instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
  match(Set dst (ConvI2L (ConvL2I src)));

  format %{ "EXTSW   $dst, $src \t// long->long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
    __ extsw($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
  match(Set dst (ConvL2I src));
  format %{ "MR      $dst, $src \t// long->int" %}
  // variable size, 0 or 4
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_or);
    __ mr_if_needed($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct convD2IRaw_regD(regD dst, regD src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
    __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsRegSrc crx, stackSlotL src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE crx, USE src);
  predicate(false);

  ins_variable_size_depending_on_alignment(true);

  format %{ "cmovI   $crx, $dst, $src" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  ins_pipe(pipe_class_default);
%}

instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsRegSrc crx, stackSlotL mem) %{
  // no match-rule, false predicate
  effect(DEF dst, USE crx, USE mem);
  predicate(false);

  format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
  postalloc_expand %{
    //
    // replaces
    //
    //   region  dst  crx  mem
    //    \       |    |   /
    //     dst=cmovI_bso_stackSlotL_conLvalue0
    //
    // with
    //
    //   region  dst
    //    \       /
    //     dst=loadConI16(0)
    //      |
    //      ^  region  dst  crx  mem
    //      |   \       |    |    /
    //      dst=cmovI_bso_stackSlotL
    //

    // Create new nodes.
    MachNode *m1 = new loadConI16Node();
    MachNode *m2 = new cmovI_bso_stackSlotLNode();

    // inputs for new nodes
    m1->add_req(n_region);
    m2->add_req(n_region, n_crx, n_mem);

    // precedences for new nodes
    m2->add_prec(m1);

    // operands for new nodes
    m1->_opnds[0] = op_dst;
    m1->_opnds[1] = new immI16Oper(0);

    m2->_opnds[0] = op_dst;
    m2->_opnds[1] = op_crx;
    m2->_opnds[2] = op_mem;

    // registers for new nodes
    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst

    // Insert new nodes.
    nodes->push(m1);
    nodes->push(m2);
  %}
%}

// Double to Int conversion, NaN is mapped to 0.
instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
  match(Set dst (ConvD2I src));
  ins_cost(DEFAULT_COST);

  expand %{
    regD tmpD;
    stackSlotL tmpS;
    flagsReg crx;
    cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
    convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
    moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
    cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  %}
%}

instruct convF2IRaw_regF(regF dst, regF src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
    __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Float to Int conversion, NaN is mapped to 0.
instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
  match(Set dst (ConvF2I src));
  ins_cost(DEFAULT_COST);

  expand %{
    regF tmpF;
    stackSlotL tmpS;
    flagsReg crx;
    cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
    convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
    moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
    cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  %}
%}

// Convert to Long

instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
  match(Set dst (ConvI2L src));
  format %{ "EXTSW   $dst, $src \t// int->long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
    __ extsw($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Zero-extend: convert unsigned int to long (convUI2L).
instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
  match(Set dst (AndL (ConvI2L src) mask));
  ins_cost(DEFAULT_COST);

  format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ clrldi($dst$$Register, $src$$Register, 32);
  %}
  ins_pipe(pipe_class_default);
%}

// Zero-extend: convert unsigned int to long in long register.
instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
  match(Set dst (AndL src mask));
  ins_cost(DEFAULT_COST);

  format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
    __ clrldi($dst$$Register, $src$$Register, 32);
  %}
  ins_pipe(pipe_class_default);
%}

instruct convF2LRaw_regF(regF dst, regF src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
    __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsRegSrc crx, stackSlotL src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE crx, USE src);
  predicate(false);

  ins_variable_size_depending_on_alignment(true);

  format %{ "cmovL   $crx, $dst, $src" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  ins_pipe(pipe_class_default);
%}

instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsRegSrc crx, stackSlotL mem) %{
  // no match-rule, false predicate
  effect(DEF dst, USE crx, USE mem);
  predicate(false);

  format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
  postalloc_expand %{
    //
    // replaces
    //
    //   region  dst  crx  mem
    //    \       |    |   /
    //     dst=cmovL_bso_stackSlotL_conLvalue0
    //
    // with
    //
    //   region  dst
    //    \       /
    //     dst=loadConL16(0)
    //      |
    //      ^  region  dst  crx  mem
    //      |   \       |    |    /
    //      dst=cmovL_bso_stackSlotL
    //

    // Create new nodes.
    MachNode *m1 = new loadConL16Node();
    MachNode *m2 = new cmovL_bso_stackSlotLNode();

    // inputs for new nodes
    m1->add_req(n_region);
    m2->add_req(n_region, n_crx, n_mem);
    m2->add_prec(m1);

    // operands for new nodes
    m1->_opnds[0] = op_dst;
    m1->_opnds[1] = new immL16Oper(0);
    m2->_opnds[0] = op_dst;
    m2->_opnds[1] = op_crx;
    m2->_opnds[2] = op_mem;

    // registers for new nodes
    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst

    // Insert new nodes.
    nodes->push(m1);
    nodes->push(m2);
  %}
%}

// Float to Long conversion, NaN is mapped to 0.
instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
  match(Set dst (ConvF2L src));
  ins_cost(DEFAULT_COST);

  expand %{
    regF tmpF;
    stackSlotL tmpS;
    flagsReg crx;
    cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
    convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
    moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
    cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  %}
%}

instruct convD2LRaw_regD(regD dst, regD src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
    __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Double to Long conversion, NaN is mapped to 0.
instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
  match(Set dst (ConvD2L src));
  ins_cost(DEFAULT_COST);

  expand %{
    regD tmpD;
    stackSlotL tmpS;
    flagsReg crx;
    cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
    convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
    moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
    cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  %}
%}

// Convert to Float

// Placed here as needed in expand.
instruct convL2DRaw_regD(regD dst, regD src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "FCFID $dst, $src \t// convL2D" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
    __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Placed here as needed in expand.
instruct convD2F_reg(regF dst, regD src) %{
  match(Set dst (ConvD2F src));
  format %{ "FRSP    $dst, $src \t// convD2F" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
    __ frsp($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Integer to Float conversion.
instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
  match(Set dst (ConvI2F src));
  predicate(!VM_Version::has_fcfids());
  ins_cost(DEFAULT_COST);

  expand %{
    iRegLdst tmpL;
    stackSlotL tmpS;
    regD tmpD;
    regD tmpD2;
    convI2L_reg(tmpL, src);              // Sign-extension int to long.
    regL_to_stkL(tmpS, tmpL);            // Store long to stack.
    moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
    convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
    convD2F_reg(dst, tmpD2);             // Convert double to float.
  %}
%}

instruct convL2FRaw_regF(regF dst, regD src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "FCFIDS $dst, $src \t// convL2F" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
    __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

// Integer to Float conversion. Special version for Power7.
instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
  match(Set dst (ConvI2F src));
  predicate(VM_Version::has_fcfids());
  ins_cost(DEFAULT_COST);

  expand %{
    iRegLdst tmpL;
    stackSlotL tmpS;
    regD tmpD;
    convI2L_reg(tmpL, src);              // Sign-extension int to long.
    regL_to_stkL(tmpS, tmpL);            // Store long to stack.
    moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
    convL2FRaw_regF(dst, tmpD);          // Convert to float.
  %}
%}

// L2F to avoid runtime call.
instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
  match(Set dst (ConvL2F src));
  predicate(VM_Version::has_fcfids());
  ins_cost(DEFAULT_COST);

  expand %{
    stackSlotL tmpS;
    regD tmpD;
    regL_to_stkL(tmpS, src);             // Store long to stack.
    moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
    convL2FRaw_regF(dst, tmpD);          // Convert to float.
  %}
%}

// Moved up as used in expand.
//instruct convD2F_reg(regF dst, regD src) %{%}

// Convert to Double

// Integer to Double conversion.
instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
  match(Set dst (ConvI2D src));
  ins_cost(DEFAULT_COST);

  expand %{
    iRegLdst tmpL;
    stackSlotL tmpS;
    regD tmpD;
    convI2L_reg(tmpL, src);              // Sign-extension int to long.
    regL_to_stkL(tmpS, tmpL);            // Store long to stack.
    moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
    convL2DRaw_regD(dst, tmpD);          // Convert to double.
  %}
%}

// Long to Double conversion
instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
  match(Set dst (ConvL2D src));
  ins_cost(DEFAULT_COST + MEMORY_REF_COST);

  expand %{
    regD tmpD;
    moveL2D_stack_reg(tmpD, src);
    convL2DRaw_regD(dst, tmpD);
  %}
%}

instruct convF2D_reg(regD dst, regF src) %{
  match(Set dst (ConvF2D src));
  format %{ "FMR     $dst, $src \t// float->double" %}
  // variable size, 0 or 4
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
    __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

//----------Control Flow Instructions------------------------------------------
// Compare Instructions

// Compare Integers
instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
  match(Set crx (CmpI src1 src2));
  size(4);
  format %{ "CMPW    $crx, $src1, $src2" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
    __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
  match(Set crx (CmpI src1 src2));
  format %{ "CMPWI   $crx, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
    __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_compare);
%}

// (src1 & src2) == 0?
instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
  match(Set cr0 (CmpI (AndI src1 src2) zero));
  // r0 is killed
  format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
    __ andi_(R0, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
  match(Set crx (CmpL src1 src2));
  format %{ "CMPD    $crx, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
    __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
  match(Set crx (CmpL src1 src2));
  format %{ "CMPDI   $crx, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
    __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
  match(Set cr0 (CmpL (AndL src1 src2) zero));
  // r0 is killed
  format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_and_);
    __ and_(R0, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
  match(Set cr0 (CmpL (AndL src1 src2) zero));
  // r0 is killed
  format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
    __ andi_(R0, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsRegSrc crx) %{
  // no match-rule, false predicate
  effect(DEF dst, USE crx);
  predicate(false);

  ins_variable_size_depending_on_alignment(true);

  format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
  // Worst case is branch + move + branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
    Label done;
    // li(Rdst, 0);              // equal -> 0
    __ beq($crx$$CondRegister, done);
    __ li($dst$$Register, 1);    // greater -> +1
    __ bgt($crx$$CondRegister, done);
    __ li($dst$$Register, -1);   // unordered or less -> -1
    // TODO: PPC port__ endgroup_if_needed(_size == 20);
    __ bind(done);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsRegSrc crx) %{
  // no match-rule, false predicate
  effect(DEF dst, USE crx);
  predicate(false);

  format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
  postalloc_expand %{
    //
    // replaces
    //
    //   region  crx
    //    \       |
    //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
    //
    // with
    //
    //   region
    //    \
    //     dst=loadConI16(0)
    //      |
    //      ^  region  crx
    //      |   \       |
    //      dst=cmovI_conIvalueMinus1_conIvalue1
    //

    // Create new nodes.
    MachNode *m1 = new loadConI16Node();
    MachNode *m2 = new cmovI_conIvalueMinus1_conIvalue1Node();

    // inputs for new nodes
    m1->add_req(n_region);
    m2->add_req(n_region, n_crx);
    m2->add_prec(m1);

    // operands for new nodes
    m1->_opnds[0] = op_dst;
    m1->_opnds[1] = new immI16Oper(0);
    m2->_opnds[0] = op_dst;
    m2->_opnds[1] = op_crx;

    // registers for new nodes
    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst

    // Insert new nodes.
    nodes->push(m1);
    nodes->push(m2);
  %}
%}

// Manifest a CmpL3 result in an integer register. Very painful.
// This is the test to avoid.
// (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  match(Set dst (CmpL3 src1 src2));
  ins_cost(DEFAULT_COST*5+BRANCH_COST);

  expand %{
    flagsReg tmp1;
    cmpL_reg_reg(tmp1, src1, src2);
    cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
  %}
%}

// Implicit range checks.
// A range check in the ideal world has one of the following shapes:
//  - (If le (CmpU length index)), (IfTrue  throw exception)
//  - (If lt (CmpU index length)), (IfFalse throw exception)
//
// Match range check 'If le (CmpU length index)'.
instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
  match(If cmp (CmpU src_length index));
  effect(USE labl);
  predicate(TrapBasedRangeChecks &&
            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
            PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
            (Matcher::branches_to_uncommon_trap(_leaf)));

  ins_is_TrapBasedCheckNode(true);

  format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_twi);
    if ($cmp$$cmpcode == 0x1 /* less_equal */) {
      __ trap_range_check_le($src_length$$Register, $index$$constant);
    } else {
      // Both successors are uncommon traps, probability is 0.
      // Node got flipped during fixup flow.
      assert($cmp$$cmpcode == 0x9, "must be greater");
      __ trap_range_check_g($src_length$$Register, $index$$constant);
    }
  %}
  ins_pipe(pipe_class_trap);
%}

// Match range check 'If lt (CmpU index length)'.
instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
  match(If cmp (CmpU src_index src_length));
  effect(USE labl);
  predicate(TrapBasedRangeChecks &&
            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
            _leaf->as_If()->_prob >= PROB_ALWAYS &&
            (Matcher::branches_to_uncommon_trap(_leaf)));

  ins_is_TrapBasedCheckNode(true);

  format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_tw);
    if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
      __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
    } else {
      // Both successors are uncommon traps, probability is 0.
      // Node got flipped during fixup flow.
      assert($cmp$$cmpcode == 0x8, "must be less");
      __ trap_range_check_l($src_index$$Register, $src_length$$Register);
    }
  %}
  ins_pipe(pipe_class_trap);
%}

// Match range check 'If lt (CmpU index length)'.
instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
  match(If cmp (CmpU src_index length));
  effect(USE labl);
  predicate(TrapBasedRangeChecks &&
            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
            _leaf->as_If()->_prob >= PROB_ALWAYS &&
            (Matcher::branches_to_uncommon_trap(_leaf)));

  ins_is_TrapBasedCheckNode(true);

  format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_twi);
    if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
      __ trap_range_check_ge($src_index$$Register, $length$$constant);
    } else {
      // Both successors are uncommon traps, probability is 0.
      // Node got flipped during fixup flow.
      assert($cmp$$cmpcode == 0x8, "must be less");
      __ trap_range_check_l($src_index$$Register, $length$$constant);
    }
  %}
  ins_pipe(pipe_class_trap);
%}

instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
  match(Set crx (CmpU src1 src2));
  format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
    __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
  match(Set crx (CmpU src1 src2));
  size(4);
  format %{ "CMPLWI  $crx, $src1, $src2" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
    __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_compare);
%}

// Implicit zero checks (more implicit null checks).
// No constant pool entries required.
instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
  match(If cmp (CmpN value zero));
  effect(USE labl);
  predicate(TrapBasedNullChecks &&
            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
            _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
            Matcher::branches_to_uncommon_trap(_leaf));
  ins_cost(1);

  ins_is_TrapBasedCheckNode(true);

  format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
    if ($cmp$$cmpcode == 0xA) {
      __ trap_null_check($value$$Register);
    } else {
      // Both successors are uncommon traps, probability is 0.
      // Node got flipped during fixup flow.
      assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
      __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
    }
  %}
  ins_pipe(pipe_class_trap);
%}

// Compare narrow oops.
instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
  match(Set crx (CmpN src1 src2));

  size(4);
  ins_cost(2);
  format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
    __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
  match(Set crx (CmpN src1 src2));
  // Make this more expensive than zeroCheckN_iReg_imm0.
  ins_cost(2);

  format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
    __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_compare);
%}

// Implicit zero checks (more implicit null checks).
// No constant pool entries required.
instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
  match(If cmp (CmpP value zero));
  effect(USE labl);
  predicate(TrapBasedNullChecks &&
            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
            _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
            Matcher::branches_to_uncommon_trap(_leaf));
  ins_cost(1); // Should not be cheaper than zeroCheckN.

  ins_is_TrapBasedCheckNode(true);

  format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
    if ($cmp$$cmpcode == 0xA) {
      __ trap_null_check($value$$Register);
    } else {
      // Both successors are uncommon traps, probability is 0.
      // Node got flipped during fixup flow.
      assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
      __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
    }
  %}
  ins_pipe(pipe_class_trap);
%}

// Compare Pointers
instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
  match(Set crx (CmpP src1 src2));
  format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
    __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

// Used in postalloc expand.
instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
  // This match rule prevents reordering of node before a safepoint.
  // This only makes sense if this instructions is used exclusively
  // for the expansion of EncodeP!
  match(Set crx (CmpP src1 src2));
  predicate(false);

  format %{ "CMPDI   $crx, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
    __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
  %}
  ins_pipe(pipe_class_compare);
%}

//----------Float Compares----------------------------------------------------

instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
  // Needs matchrule, see cmpDUnordered.
  match(Set crx (CmpF src1 src2));
  // no match-rule, false predicate
  predicate(false);

  format %{ "cmpFUrd $crx, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
    __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmov_bns_less(flagsReg crx) %{
  // no match-rule, false predicate
  effect(DEF crx);
  predicate(false);

  ins_variable_size_depending_on_alignment(true);

  format %{ "cmov    $crx" %}
  // Worst case is branch + move + stop, no stop without scheduler.
  size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
    Label done;
    __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
    __ li(R0, 0);
    __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
    // TODO PPC port __ endgroup_if_needed(_size == 16);
    __ bind(done);
  %}
  ins_pipe(pipe_class_default);
%}

// Compare floating, generate condition code.
instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
  // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
  //
  // The following code sequence occurs a lot in mpegaudio:
  //
  // block BXX:
  // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
  //    cmpFUrd CCR6, F11, F9
  // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
  //    cmov CCR6
  // 8: instruct branchConSched:
  //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
  match(Set crx (CmpF src1 src2));
  ins_cost(DEFAULT_COST+BRANCH_COST);

  format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
  postalloc_expand %{
    //
    // replaces
    //
    //   region  src1  src2
    //    \       |     |
    //     crx=cmpF_reg_reg
    //
    // with
    //
    //   region  src1  src2
    //    \       |     |
    //     crx=cmpFUnordered_reg_reg
    //      |
    //      ^  region
    //      |   \
    //      crx=cmov_bns_less
    //

    // Create new nodes.
    MachNode *m1 = new cmpFUnordered_reg_regNode();
    MachNode *m2 = new cmov_bns_lessNode();

    // inputs for new nodes
    m1->add_req(n_region, n_src1, n_src2);
    m2->add_req(n_region);
    m2->add_prec(m1);

    // operands for new nodes
    m1->_opnds[0] = op_crx;
    m1->_opnds[1] = op_src1;
    m1->_opnds[2] = op_src2;
    m2->_opnds[0] = op_crx;

    // registers for new nodes
    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx

    // Insert new nodes.
    nodes->push(m1);
    nodes->push(m2);
  %}
%}

// Compare float, generate -1,0,1
instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
  match(Set dst (CmpF3 src1 src2));
  ins_cost(DEFAULT_COST*5+BRANCH_COST);

  expand %{
    flagsReg tmp1;
    cmpFUnordered_reg_reg(tmp1, src1, src2);
    cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
  %}
%}

instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
  // Needs matchrule so that ideal opcode is Cmp. This causes that gcm places the
  // node right before the conditional move using it.
  // In jck test api/java_awt/geom/QuadCurve2DFloat/index.html#SetCurveTesttestCase7,
  // compilation of java.awt.geom.RectangularShape::getBounds()Ljava/awt/Rectangle
  // crashed in register allocation where the flags Reg between cmpDUnoredered and a
  // conditional move was supposed to be spilled.
  match(Set crx (CmpD src1 src2));
  // False predicate, shall not be matched.
  predicate(false);

  format %{ "cmpFUrd $crx, $src1, $src2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
    __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  %}
  ins_pipe(pipe_class_default);
%}

instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
  match(Set crx (CmpD src1 src2));
  ins_cost(DEFAULT_COST+BRANCH_COST);

  format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
  postalloc_expand %{
    //
    // replaces
    //
    //   region  src1  src2
    //    \       |     |
    //     crx=cmpD_reg_reg
    //
    // with
    //
    //   region  src1  src2
    //    \       |     |
    //     crx=cmpDUnordered_reg_reg
    //      |
    //      ^  region
    //      |   \
    //      crx=cmov_bns_less
    //

    // create new nodes
    MachNode *m1 = new cmpDUnordered_reg_regNode();
    MachNode *m2 = new cmov_bns_lessNode();

    // inputs for new nodes
    m1->add_req(n_region, n_src1, n_src2);
    m2->add_req(n_region);
    m2->add_prec(m1);

    // operands for new nodes
    m1->_opnds[0] = op_crx;
    m1->_opnds[1] = op_src1;
    m1->_opnds[2] = op_src2;
    m2->_opnds[0] = op_crx;

    // registers for new nodes
    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx

    // Insert new nodes.
    nodes->push(m1);
    nodes->push(m2);
  %}
%}

// Compare double, generate -1,0,1
instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
  match(Set dst (CmpD3 src1 src2));
  ins_cost(DEFAULT_COST*5+BRANCH_COST);

  expand %{
    flagsReg tmp1;
    cmpDUnordered_reg_reg(tmp1, src1, src2);
    cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
  %}
%}

//----------Branches---------------------------------------------------------
// Jump

// Direct Branch.
instruct branch(label labl) %{
  match(Goto);
  effect(USE labl);
  ins_cost(BRANCH_COST);

  format %{ "B       $labl" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_b);
     Label d;    // dummy
     __ bind(d);
     Label* p = $labl$$label;
     // `p' is `NULL' when this encoding class is used only to
     // determine the size of the encoded instruction.
     Label& l = (NULL == p)? d : *(p);
     __ b(l);
  %}
  ins_pipe(pipe_class_default);
%}

// Conditional Near Branch
instruct branchCon(cmpOp cmp, flagsRegSrc crx, label lbl) %{
  // Same match rule as `branchConFar'.
  match(If cmp crx);
  effect(USE lbl);
  ins_cost(BRANCH_COST);

  // If set to 1 this indicates that the current instruction is a
  // short variant of a long branch. This avoids using this
  // instruction in first-pass matching. It will then only be used in
  // the `Shorten_branches' pass.
  ins_short_branch(1);

  format %{ "B$cmp     $crx, $lbl" %}
  size(4);
  ins_encode( enc_bc(crx, cmp, lbl) );
  ins_pipe(pipe_class_default);
%}

// This is for cases when the ppc64 `bc' instruction does not
// reach far enough. So we emit a far branch here, which is more
// expensive.
//
// Conditional Far Branch
instruct branchConFar(cmpOp cmp, flagsRegSrc crx, label lbl) %{
  // Same match rule as `branchCon'.
  match(If cmp crx);
  effect(USE crx, USE lbl);
  predicate(!false /* TODO: PPC port HB_Schedule*/);
  // Higher cost than `branchCon'.
  ins_cost(5*BRANCH_COST);

  // This is not a short variant of a branch, but the long variant.
  ins_short_branch(0);

  format %{ "B_FAR$cmp $crx, $lbl" %}
  size(8);
  ins_encode( enc_bc_far(crx, cmp, lbl) );
  ins_pipe(pipe_class_default);
%}

// Conditional Branch used with Power6 scheduler (can be far or short).
instruct branchConSched(cmpOp cmp, flagsRegSrc crx, label lbl) %{
  // Same match rule as `branchCon'.
  match(If cmp crx);
  effect(USE crx, USE lbl);
  predicate(false /* TODO: PPC port HB_Schedule*/);
  // Higher cost than `branchCon'.
  ins_cost(5*BRANCH_COST);

  // Actually size doesn't depend on alignment but on shortening.
  ins_variable_size_depending_on_alignment(true);
  // long variant.
  ins_short_branch(0);

  format %{ "B_FAR$cmp $crx, $lbl" %}
  size(8); // worst case
  ins_encode( enc_bc_short_far(crx, cmp, lbl) );
  ins_pipe(pipe_class_default);
%}

instruct branchLoopEnd(cmpOp cmp, flagsRegSrc crx, label labl) %{
  match(CountedLoopEnd cmp crx);
  effect(USE labl);
  ins_cost(BRANCH_COST);

  // short variant.
  ins_short_branch(1);

  format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
  size(4);
  ins_encode( enc_bc(crx, cmp, labl) );
  ins_pipe(pipe_class_default);
%}

instruct branchLoopEndFar(cmpOp cmp, flagsRegSrc crx, label labl) %{
  match(CountedLoopEnd cmp crx);
  effect(USE labl);
  predicate(!false /* TODO: PPC port HB_Schedule */);
  ins_cost(BRANCH_COST);

  // Long variant.
  ins_short_branch(0);

  format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
  size(8);
  ins_encode( enc_bc_far(crx, cmp, labl) );
  ins_pipe(pipe_class_default);
%}

// Conditional Branch used with Power6 scheduler (can be far or short).
instruct branchLoopEndSched(cmpOp cmp, flagsRegSrc crx, label labl) %{
  match(CountedLoopEnd cmp crx);
  effect(USE labl);
  predicate(false /* TODO: PPC port HB_Schedule */);
  // Higher cost than `branchCon'.
  ins_cost(5*BRANCH_COST);

  // Actually size doesn't depend on alignment but on shortening.
  ins_variable_size_depending_on_alignment(true);
  // Long variant.
  ins_short_branch(0);

  format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
  size(8); // worst case
  ins_encode( enc_bc_short_far(crx, cmp, labl) );
  ins_pipe(pipe_class_default);
%}

// ============================================================================
// Java runtime operations, intrinsics and other complex operations.

// The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
// array for an instance of the superklass. Set a hidden internal cache on a
// hit (cache is checked with exposed code in gen_subtype_check()). Return
// not zero for a miss or zero for a hit. The encoding ALSO sets flags.
//
// GL TODO: Improve this.
// - result should not be a TEMP
// - Add match rule as on sparc avoiding additional Cmp.
instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
                             iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
  match(Set result (PartialSubtypeCheck subklass superklass));
  effect(TEMP_DEF result, TEMP tmp_klass, TEMP tmp_arrayptr);
  ins_cost(DEFAULT_COST*10);

  format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
                                     $tmp_klass$$Register, NULL, $result$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// inlined locking and unlocking

instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2) %{
  match(Set crx (FastLock oop box));
  effect(TEMP tmp1, TEMP tmp2);
  predicate(!Compile::current()->use_rtm());

  format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
                                 $tmp1$$Register, $tmp2$$Register, /*tmp3*/ R0,
                                 UseBiasedLocking && !UseOptoBiasInlining);
    // If locking was successfull, crx should indicate 'EQ'.
    // The compiler generates a branch to the runtime call to
    // _complete_monitor_locking_Java for the case where crx is 'NE'.
  %}
  ins_pipe(pipe_class_compare);
%}

// Separate version for TM. Use bound register for box to enable USE_KILL.
instruct cmpFastLock_tm(flagsReg crx, iRegPdst oop, rarg2RegP box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
  match(Set crx (FastLock oop box));
  effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, USE_KILL box);
  predicate(Compile::current()->use_rtm());

  format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3 (TM)" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
                                 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
                                 /*Biased Locking*/ false,
                                 _rtm_counters, _stack_rtm_counters,
                                 ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
                                 /*TM*/ true, ra_->C->profile_rtm());
    // If locking was successfull, crx should indicate 'EQ'.
    // The compiler generates a branch to the runtime call to
    // _complete_monitor_locking_Java for the case where crx is 'NE'.
  %}
  ins_pipe(pipe_class_compare);
%}

instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
  match(Set crx (FastUnlock oop box));
  effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
  predicate(!Compile::current()->use_rtm());

  format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
                                   $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
                                   UseBiasedLocking && !UseOptoBiasInlining,
                                   false);
    // If unlocking was successfull, crx should indicate 'EQ'.
    // The compiler generates a branch to the runtime call to
    // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
  %}
  ins_pipe(pipe_class_compare);
%}

instruct cmpFastUnlock_tm(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
  match(Set crx (FastUnlock oop box));
  effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
  predicate(Compile::current()->use_rtm());

  format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2 (TM)" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
                                   $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
                                   /*Biased Locking*/ false, /*TM*/ true);
    // If unlocking was successfull, crx should indicate 'EQ'.
    // The compiler generates a branch to the runtime call to
    // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
  %}
  ins_pipe(pipe_class_compare);
%}

// Align address.
instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
  match(Set dst (CastX2P (AndL (CastP2X src) mask)));

  format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
    __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
  %}
  ins_pipe(pipe_class_default);
%}

// Array size computation.
instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
  match(Set dst (SubL (CastP2X end) (CastP2X start)));

  format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
    __ subf($dst$$Register, $start$$Register, $end$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Clear-array with dynamic array-size.
instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
  match(Set dummy (ClearArray cnt base));
  effect(USE_KILL cnt, USE_KILL base, KILL ctr);
  ins_cost(MEMORY_REF_COST);

  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.

  format %{ "ClearArray $cnt, $base" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
  %}
  ins_pipe(pipe_class_default);
%}

// String_IndexOf for needle of length 1.
//
// Match needle into immediate operands: no loadConP node needed. Saves one
// register and two instructions over string_indexOf_imm1Node.
//
// Assumes register result differs from all input registers.
//
// Preserves registers haystack, haycnt
// Kills     registers tmp1, tmp2
// Defines   registers result
//
// Use dst register classes if register gets killed, as it is the case for tmp registers!
//
// Unfortunately this does not match too often. In many situations the AddP is used
// by several nodes, even several StrIndexOf nodes, breaking the match tree.
instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
                                  immP needleImm, immL offsetImm, immI_1 needlecntImm,
                                  iRegIdst tmp1, iRegIdst tmp2,
                                  flagsRegCR0 cr0, flagsRegCR1 cr1) %{
  predicate(SpecialStringIndexOf && !CompactStrings);  // type check implicit by parameter type, See Matcher::match_rule_supported
  match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));

  effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);

  ins_cost(150);
  format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
            "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}

  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    immPOper *needleOper = (immPOper *)$needleImm;
    const TypeOopPtr *t = needleOper->type()->isa_oopptr();
    ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *

    __ string_indexof_1($result$$Register,
                        $haystack$$Register, $haycnt$$Register,
                        R0, needle_values->char_at(0),
                        $tmp1$$Register, $tmp2$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

// String_IndexOf for needle of length 1.
//
// Special case requires less registers and emits less instructions.
//
// Assumes register result differs from all input registers.
//
// Preserves registers haystack, haycnt
// Kills     registers tmp1, tmp2, needle
// Defines   registers result
//
// Use dst register classes if register gets killed, as it is the case for tmp registers!
instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
                             rscratch2RegP needle, immI_1 needlecntImm,
                             iRegIdst tmp1, iRegIdst tmp2,
                             flagsRegCR0 cr0, flagsRegCR1 cr1) %{
  match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
  effect(USE_KILL needle, /* TDEF needle, */ TEMP_DEF result,
         TEMP tmp1, TEMP tmp2);
  // Required for EA: check if it is still a type_array.
  predicate(SpecialStringIndexOf && !CompactStrings && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
            n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
  ins_cost(180);

  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.

  format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
            " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    Node *ndl = in(operand_index($needle));  // The node that defines needle.
    ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
    guarantee(needle_values, "sanity");
    if (needle_values != NULL) {
      __ string_indexof_1($result$$Register,
                          $haystack$$Register, $haycnt$$Register,
                          R0, needle_values->char_at(0),
                          $tmp1$$Register, $tmp2$$Register);
    } else {
      __ string_indexof_1($result$$Register,
                          $haystack$$Register, $haycnt$$Register,
                          $needle$$Register, 0,
                          $tmp1$$Register, $tmp2$$Register);
    }
  %}
  ins_pipe(pipe_class_compare);
%}

// String_IndexOf.
//
// Length of needle as immediate. This saves instruction loading constant needle
// length.
// @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
// completely or do it in vector instruction. This should save registers for
// needlecnt and needle.
//
// Assumes register result differs from all input registers.
// Overwrites haycnt, needlecnt.
// Use dst register classes if register gets killed, as it is the case for tmp registers!
instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
                            iRegPsrc needle, uimmI15 needlecntImm,
                            iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
                            flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
  match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
  effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP_DEF result,
         TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
  // Required for EA: check if it is still a type_array.
  predicate(SpecialStringIndexOf && !CompactStrings && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
            n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
  ins_cost(250);

  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.

  format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
            " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    Node *ndl = in(operand_index($needle));  // The node that defines needle.
    ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();

    __ string_indexof($result$$Register,
                      $haystack$$Register, $haycnt$$Register,
                      $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
                      $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

// StrIndexOf node.
//
// Assumes register result differs from all input registers.
// Overwrites haycnt, needlecnt.
// Use dst register classes if register gets killed, as it is the case for tmp registers!
instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
                        iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
  match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
  effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
         TEMP_DEF result,
         TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
  predicate(SpecialStringIndexOf && !CompactStrings);  // See Matcher::match_rule_supported.
  ins_cost(300);

  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.

  format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
             " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ string_indexof($result$$Register,
                      $haystack$$Register, $haycnt$$Register,
                      $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
                      $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

// String equals with immediate.
instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
                           iRegPdst tmp1, iRegPdst tmp2,
                           flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
  match(Set result (StrEquals (Binary str1 str2) cntImm));
  effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2,
         KILL cr0, KILL cr6, KILL ctr);
  predicate(SpecialStringEquals && !CompactStrings);  // See Matcher::match_rule_supported.
  ins_cost(250);

  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.

  format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
            " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
                             $result$$Register, $tmp1$$Register, $tmp2$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

// String equals.
// Use dst register classes if register gets killed, as it is the case for TEMP operands!
instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
                       iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
                       flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
  match(Set result (StrEquals (Binary str1 str2) cnt));
  effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
         KILL cr0, KILL cr1, KILL cr6, KILL ctr);
  predicate(SpecialStringEquals && !CompactStrings);  // See Matcher::match_rule_supported.
  ins_cost(300);

  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.

  format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
            " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
                          $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

// String compare.
// Char[] pointers are passed in.
// Use dst register classes if register gets killed, as it is the case for TEMP operands!
instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
                        iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
  predicate(!CompactStrings);
  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP_DEF result, TEMP tmp, KILL cr0, KILL ctr);
  ins_cost(300);

  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.

  format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
            " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
                      $result$$Register, $tmp$$Register);
  %}
  ins_pipe(pipe_class_compare);
%}

//---------- Min/Max Instructions ---------------------------------------------

instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (MinI src1 src2));
  ins_cost(DEFAULT_COST*6);

  expand %{
    iRegLdst src1s;
    iRegLdst src2s;
    iRegLdst diff;
    iRegLdst sm;
    iRegLdst doz; // difference or zero
    convI2L_reg(src1s, src1); // Ensure proper sign extension.
    convI2L_reg(src2s, src2); // Ensure proper sign extension.
    subL_reg_reg(diff, src2s, src1s);
    // Need to consider >=33 bit result, therefore we need signmaskL.
    signmask64L_regL(sm, diff);
    andL_reg_reg(doz, diff, sm); // <=0
    addI_regL_regL(dst, doz, src1s);
  %}
%}

instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  match(Set dst (MaxI src1 src2));
  ins_cost(DEFAULT_COST*6);

  expand %{
    iRegLdst src1s;
    iRegLdst src2s;
    iRegLdst diff;
    iRegLdst sm;
    iRegLdst doz; // difference or zero
    convI2L_reg(src1s, src1); // Ensure proper sign extension.
    convI2L_reg(src2s, src2); // Ensure proper sign extension.
    subL_reg_reg(diff, src2s, src1s);
    // Need to consider >=33 bit result, therefore we need signmaskL.
    signmask64L_regL(sm, diff);
    andcL_reg_reg(doz, diff, sm); // >=0
    addI_regL_regL(dst, doz, src1s);
  %}
%}

//---------- Population Count Instructions ------------------------------------

// Popcnt for Power7.
instruct popCountI(iRegIdst dst, iRegIsrc src) %{
  match(Set dst (PopCountI src));
  predicate(UsePopCountInstruction && VM_Version::has_popcntw());
  ins_cost(DEFAULT_COST);

  format %{ "POPCNTW $dst, $src" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
    __ popcntw($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

// Popcnt for Power7.
instruct popCountL(iRegIdst dst, iRegLsrc src) %{
  predicate(UsePopCountInstruction && VM_Version::has_popcntw());
  match(Set dst (PopCountL src));
  ins_cost(DEFAULT_COST);

  format %{ "POPCNTD $dst, $src" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
    __ popcntd($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
  match(Set dst (CountLeadingZerosI src));
  predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
  ins_cost(DEFAULT_COST);

  format %{ "CNTLZW  $dst, $src" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
    __ cntlzw($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
  match(Set dst (CountLeadingZerosL src));
  predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
  ins_cost(DEFAULT_COST);

  format %{ "CNTLZD  $dst, $src" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
    __ cntlzd($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
  // no match-rule, false predicate
  effect(DEF dst, USE src);
  predicate(false);

  format %{ "CNTLZD  $dst, $src" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
    __ cntlzd($dst$$Register, $src$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
  match(Set dst (CountTrailingZerosI src));
  predicate(UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  expand %{
    immI16 imm1 %{ (int)-1 %}
    immI16 imm2 %{ (int)32 %}
    immI_minus1 m1 %{ -1 %}
    iRegIdst tmpI1;
    iRegIdst tmpI2;
    iRegIdst tmpI3;
    addI_reg_imm16(tmpI1, src, imm1);
    andcI_reg_reg(tmpI2, src, m1, tmpI1);
    countLeadingZerosI(tmpI3, tmpI2);
    subI_imm16_reg(dst, imm2, tmpI3);
  %}
%}

instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
  match(Set dst (CountTrailingZerosL src));
  predicate(UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  expand %{
    immL16 imm1 %{ (long)-1 %}
    immI16 imm2 %{ (int)64 %}
    iRegLdst tmpL1;
    iRegLdst tmpL2;
    iRegIdst tmpL3;
    addL_reg_imm16(tmpL1, src, imm1);
    andcL_reg_reg(tmpL2, tmpL1, src);
    countLeadingZerosL(tmpL3, tmpL2);
    subI_imm16_reg(dst, imm2, tmpL3);
 %}
%}

// Expand nodes for byte_reverse_int.
instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
  effect(DEF dst, USE src, USE pos, USE shift);
  predicate(false);

  format %{ "INSRWI  $dst, $src, $pos, $shift" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
    __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// As insrwi_a, but with USE_DEF.
instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
  effect(USE_DEF dst, USE src, USE pos, USE shift);
  predicate(false);

  format %{ "INSRWI  $dst, $src, $pos, $shift" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
    __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
  %}
  ins_pipe(pipe_class_default);
%}

// Just slightly faster than java implementation.
instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
  match(Set dst (ReverseBytesI src));
  predicate(UseCountLeadingZerosInstructionsPPC64);
  ins_cost(DEFAULT_COST);

  expand %{
    immI16 imm24 %{ (int) 24 %}
    immI16 imm16 %{ (int) 16 %}
    immI16  imm8 %{ (int)  8 %}
    immI16  imm4 %{ (int)  4 %}
    immI16  imm0 %{ (int)  0 %}
    iRegLdst tmpI1;
    iRegLdst tmpI2;
    iRegLdst tmpI3;

    urShiftI_reg_imm(tmpI1, src, imm24);
    insrwi_a(dst, tmpI1, imm24, imm8);
    urShiftI_reg_imm(tmpI2, src, imm16);
    insrwi(dst, tmpI2, imm8, imm16);
    urShiftI_reg_imm(tmpI3, src, imm8);
    insrwi(dst, tmpI3, imm8, imm8);
    insrwi(dst, src, imm0, imm8);
  %}
%}

//---------- Replicate Vector Instructions ------------------------------------

// Insrdi does replicate if src == dst.
instruct repl32(iRegLdst dst) %{
  predicate(false);
  effect(USE_DEF dst);

  format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
    __ insrdi($dst$$Register, $dst$$Register, 32, 0);
  %}
  ins_pipe(pipe_class_default);
%}

// Insrdi does replicate if src == dst.
instruct repl48(iRegLdst dst) %{
  predicate(false);
  effect(USE_DEF dst);

  format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
    __ insrdi($dst$$Register, $dst$$Register, 48, 0);
  %}
  ins_pipe(pipe_class_default);
%}

// Insrdi does replicate if src == dst.
instruct repl56(iRegLdst dst) %{
  predicate(false);
  effect(USE_DEF dst);

  format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
    __ insrdi($dst$$Register, $dst$$Register, 56, 0);
  %}
  ins_pipe(pipe_class_default);
%}

instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
  match(Set dst (ReplicateB src));
  predicate(n->as_Vector()->length() == 8);
  expand %{
    moveReg(dst, src);
    repl56(dst);
    repl48(dst);
    repl32(dst);
  %}
%}

instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
  match(Set dst (ReplicateB zero));
  predicate(n->as_Vector()->length() == 8);
  format %{ "LI      $dst, #0 \t// replicate8B" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
  match(Set dst (ReplicateB src));
  predicate(n->as_Vector()->length() == 8);
  format %{ "LI      $dst, #-1 \t// replicate8B" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
  match(Set dst (ReplicateS src));
  predicate(n->as_Vector()->length() == 4);
  expand %{
    moveReg(dst, src);
    repl48(dst);
    repl32(dst);
  %}
%}

instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
  match(Set dst (ReplicateS zero));
  predicate(n->as_Vector()->length() == 4);
  format %{ "LI      $dst, #0 \t// replicate4C" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
  match(Set dst (ReplicateS src));
  predicate(n->as_Vector()->length() == 4);
  format %{ "LI      $dst, -1 \t// replicate4C" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
  match(Set dst (ReplicateI src));
  predicate(n->as_Vector()->length() == 2);
  ins_cost(2 * DEFAULT_COST);
  expand %{
    moveReg(dst, src);
    repl32(dst);
  %}
%}

instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
  match(Set dst (ReplicateI zero));
  predicate(n->as_Vector()->length() == 2);
  format %{ "LI      $dst, #0 \t// replicate4C" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
  match(Set dst (ReplicateI src));
  predicate(n->as_Vector()->length() == 2);
  format %{ "LI      $dst, -1 \t// replicate4C" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  %}
  ins_pipe(pipe_class_default);
%}

// Move float to int register via stack, replicate.
instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
  match(Set dst (ReplicateF src));
  predicate(n->as_Vector()->length() == 2);
  ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
  expand %{
    stackSlotL tmpS;
    iRegIdst tmpI;
    moveF2I_reg_stack(tmpS, src);   // Move float to stack.
    moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
    moveReg(dst, tmpI);             // Move int to long reg.
    repl32(dst);                    // Replicate bitpattern.
  %}
%}

// Replicate scalar constant to packed float values in Double register
instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
  match(Set dst (ReplicateF src));
  predicate(n->as_Vector()->length() == 2);
  ins_cost(5 * DEFAULT_COST);

  format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
  postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
%}

// Replicate scalar zero constant to packed float values in Double register
instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
  match(Set dst (ReplicateF zero));
  predicate(n->as_Vector()->length() == 2);

  format %{ "LI      $dst, #0 \t// replicate2F" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
    __ li($dst$$Register, 0x0);
  %}
  ins_pipe(pipe_class_default);
%}


//----------Overflow Math Instructions-----------------------------------------

// Note that we have to make sure that XER.SO is reset before using overflow instructions.
// Simple Overflow operations can be matched by very few instructions (e.g. addExact: xor, and_, bc).
// Seems like only Long intrinsincs have an advantage. (The only expensive one is OverflowMulL.)

instruct overflowAddL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
  match(Set cr0 (OverflowAddL op1 op2));

  format %{ "add_    $op1, $op2\t# overflow check long" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ li(R0, 0);
    __ mtxer(R0); // clear XER.SO
    __ addo_(R0, $op1$$Register, $op2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct overflowSubL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
  match(Set cr0 (OverflowSubL op1 op2));

  format %{ "subfo_  R0, $op2, $op1\t# overflow check long" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ li(R0, 0);
    __ mtxer(R0); // clear XER.SO
    __ subfo_(R0, $op2$$Register, $op1$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct overflowNegL_reg(flagsRegCR0 cr0, immL_0 zero, iRegLsrc op2) %{
  match(Set cr0 (OverflowSubL zero op2));

  format %{ "nego_   R0, $op2\t# overflow check long" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ li(R0, 0);
    __ mtxer(R0); // clear XER.SO
    __ nego_(R0, $op2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}

instruct overflowMulL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
  match(Set cr0 (OverflowMulL op1 op2));

  format %{ "mulldo_ R0, $op1, $op2\t# overflow check long" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ li(R0, 0);
    __ mtxer(R0); // clear XER.SO
    __ mulldo_(R0, $op1$$Register, $op2$$Register);
  %}
  ins_pipe(pipe_class_default);
%}


// ============================================================================
// Safepoint Instruction

instruct safePoint_poll(iRegPdst poll) %{
  match(SafePoint poll);
  predicate(LoadPollAddressFromThread);

  // It caused problems to add the effect that r0 is killed, but this
  // effect no longer needs to be mentioned, since r0 is not contained
  // in a reg_class.

  format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
  size(4);
  ins_encode( enc_poll(0x0, poll) );
  ins_pipe(pipe_class_default);
%}

// Safepoint without per-thread support. Load address of page to poll
// as constant.
// Rscratch2RegP is R12.
// LoadConPollAddr node is added in pd_post_matching_hook(). It must be
// a seperate node so that the oop map is at the right location.
instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
  match(SafePoint poll);
  predicate(!LoadPollAddressFromThread);

  // It caused problems to add the effect that r0 is killed, but this
  // effect no longer needs to be mentioned, since r0 is not contained
  // in a reg_class.

  format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
  ins_encode( enc_poll(0x0, poll) );
  ins_pipe(pipe_class_default);
%}

// ============================================================================
// Call Instructions

// Call Java Static Instruction

// Schedulable version of call static node.
instruct CallStaticJavaDirect(method meth) %{
  match(CallStaticJava);
  effect(USE meth);
  ins_cost(CALL_COST);

  ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);

  format %{ "CALL,static $meth \t// ==> " %}
  size(4);
  ins_encode( enc_java_static_call(meth) );
  ins_pipe(pipe_class_call);
%}

// Call Java Dynamic Instruction

// Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
// Loading of IC was postalloc expanded. The nodes loading the IC are reachable
// via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
// The call destination must still be placed in the constant pool.
instruct CallDynamicJavaDirectSched(method meth) %{
  match(CallDynamicJava); // To get all the data fields we need ...
  effect(USE meth);
  predicate(false);       // ... but never match.

  ins_field_load_ic_hi_node(loadConL_hiNode*);
  ins_field_load_ic_node(loadConLNode*);
  ins_num_consts(1 /* 1 patchable constant: call destination */);

  format %{ "BL        \t// dynamic $meth ==> " %}
  size(4);
  ins_encode( enc_java_dynamic_call_sched(meth) );
  ins_pipe(pipe_class_call);
%}

// Schedulable (i.e. postalloc expanded) version of call dynamic java.
// We use postalloc expanded calls if we use inline caches
// and do not update method data.
//
// This instruction has two constants: inline cache (IC) and call destination.
// Loading the inline cache will be postalloc expanded, thus leaving a call with
// one constant.
instruct CallDynamicJavaDirectSched_Ex(method meth) %{
  match(CallDynamicJava);
  effect(USE meth);
  predicate(UseInlineCaches);
  ins_cost(CALL_COST);

  ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);

  format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
  postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
%}

// Compound version of call dynamic java
// We use postalloc expanded calls if we use inline caches
// and do not update method data.
instruct CallDynamicJavaDirect(method meth) %{
  match(CallDynamicJava);
  effect(USE meth);
  predicate(!UseInlineCaches);
  ins_cost(CALL_COST);

  // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
  ins_num_consts(4);

  format %{ "CALL,dynamic $meth \t// ==> " %}
  ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
  ins_pipe(pipe_class_call);
%}

// Call Runtime Instruction

instruct CallRuntimeDirect(method meth) %{
  match(CallRuntime);
  effect(USE meth);
  ins_cost(CALL_COST);

  // Enc_java_to_runtime_call needs up to 3 constants: call target,
  // env for callee, C-toc.
  ins_num_consts(3);

  format %{ "CALL,runtime" %}
  ins_encode( enc_java_to_runtime_call(meth) );
  ins_pipe(pipe_class_call);
%}

// Call Leaf

// Used by postalloc expand of CallLeafDirect_Ex (mtctr).
instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
  effect(DEF dst, USE src);

  ins_num_consts(1);

  format %{ "MTCTR   $src" %}
  size(4);
  ins_encode( enc_leaf_call_mtctr(src) );
  ins_pipe(pipe_class_default);
%}

// Used by postalloc expand of CallLeafDirect_Ex (actual call).
instruct CallLeafDirect(method meth) %{
  match(CallLeaf);   // To get the data all the data fields we need ...
  effect(USE meth);
  predicate(false);  // but never match.

  format %{ "BCTRL     \t// leaf call $meth ==> " %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
    __ bctrl();
  %}
  ins_pipe(pipe_class_call);
%}

// postalloc expand of CallLeafDirect.
// Load adress to call from TOC, then bl to it.
instruct CallLeafDirect_Ex(method meth) %{
  match(CallLeaf);
  effect(USE meth);
  ins_cost(CALL_COST);

  // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
  // env for callee, C-toc.
  ins_num_consts(3);

  format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
  postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
%}

// Call runtime without safepoint - same as CallLeaf.
// postalloc expand of CallLeafNoFPDirect.
// Load adress to call from TOC, then bl to it.
instruct CallLeafNoFPDirect_Ex(method meth) %{
  match(CallLeafNoFP);
  effect(USE meth);
  ins_cost(CALL_COST);

  // Enc_java_to_runtime_call needs up to 3 constants: call target,
  // env for callee, C-toc.
  ins_num_consts(3);

  format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
  postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
%}

// Tail Call; Jump from runtime stub to Java code.
// Also known as an 'interprocedural jump'.
// Target of jump will eventually return to caller.
// TailJump below removes the return address.
instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
  match(TailCall jump_target method_oop);
  ins_cost(CALL_COST);

  format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
            "BCTR         \t// tail call" %}
  size(8);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ mtctr($jump_target$$Register);
    __ bctr();
  %}
  ins_pipe(pipe_class_call);
%}

// Return Instruction
instruct Ret() %{
  match(Return);
  format %{ "BLR      \t// branch to link register" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_blr);
    // LR is restored in MachEpilogNode. Just do the RET here.
    __ blr();
  %}
  ins_pipe(pipe_class_default);
%}

// Tail Jump; remove the return address; jump to target.
// TailCall above leaves the return address around.
// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
// "restore" before this instruction (in Epilogue), we need to materialize it
// in %i0.
instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
  match(TailJump jump_target ex_oop);
  ins_cost(CALL_COST);

  format %{ "LD      R4_ARG2 = LR\n\t"
            "MTCTR   $jump_target\n\t"
            "BCTR     \t// TailJump, exception oop: $ex_oop" %}
  size(12);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
    __ mtctr($jump_target$$Register);
    __ bctr();
  %}
  ins_pipe(pipe_class_call);
%}

// Create exception oop: created by stack-crawling runtime code.
// Created exception is now available to this handler, and is setup
// just prior to jumping to this handler. No code emitted.
instruct CreateException(rarg1RegP ex_oop) %{
  match(Set ex_oop (CreateEx));
  ins_cost(0);

  format %{ " -- \t// exception oop; no code emitted" %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_default);
%}

// Rethrow exception: The exception oop will come in the first
// argument position. Then JUMP (not call) to the rethrow stub code.
instruct RethrowException() %{
  match(Rethrow);
  ins_cost(CALL_COST);

  format %{ "Jmp     rethrow_stub" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
    cbuf.set_insts_mark();
    __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
  %}
  ins_pipe(pipe_class_call);
%}

// Die now.
instruct ShouldNotReachHere() %{
  match(Halt);
  ins_cost(CALL_COST);

  format %{ "ShouldNotReachHere" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
    __ trap_should_not_reach_here();
  %}
  ins_pipe(pipe_class_default);
%}

// This name is KNOWN by the ADLC and cannot be changed.  The ADLC
// forces a 'TypeRawPtr::BOTTOM' output type for this guy.
// Get a DEF on threadRegP, no costs, no encoding, use
// 'ins_should_rematerialize(true)' to avoid spilling.
instruct tlsLoadP(threadRegP dst) %{
  match(Set dst (ThreadLocal));
  ins_cost(0);

  ins_should_rematerialize(true);

  format %{ " -- \t// $dst=Thread::current(), empty" %}
  size(0);
  ins_encode( /*empty*/ );
  ins_pipe(pipe_class_empty);
%}

//---Some PPC specific nodes---------------------------------------------------

// Stop a group.
instruct endGroup() %{
  ins_cost(0);

  ins_is_nop(true);

  format %{ "End Bundle (ori r1, r1, 0)" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
    __ endgroup();
  %}
  ins_pipe(pipe_class_default);
%}

// Nop instructions

instruct fxNop() %{
  ins_cost(0);

  ins_is_nop(true);

  format %{ "fxNop" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
    __ nop();
  %}
  ins_pipe(pipe_class_default);
%}

instruct fpNop0() %{
  ins_cost(0);

  ins_is_nop(true);

  format %{ "fpNop0" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
    __ fpnop0();
  %}
  ins_pipe(pipe_class_default);
%}

instruct fpNop1() %{
  ins_cost(0);

  ins_is_nop(true);

  format %{ "fpNop1" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
    __ fpnop1();
  %}
  ins_pipe(pipe_class_default);
%}

instruct brNop0() %{
  ins_cost(0);
  size(4);
  format %{ "brNop0" %}
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
    __ brnop0();
  %}
  ins_is_nop(true);
  ins_pipe(pipe_class_default);
%}

instruct brNop1() %{
  ins_cost(0);

  ins_is_nop(true);

  format %{ "brNop1" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
    __ brnop1();
  %}
  ins_pipe(pipe_class_default);
%}

instruct brNop2() %{
  ins_cost(0);

  ins_is_nop(true);

  format %{ "brNop2" %}
  size(4);
  ins_encode %{
    // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
    __ brnop2();
  %}
  ins_pipe(pipe_class_default);
%}

//----------PEEPHOLE RULES-----------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
// peepmatch ( root_instr_name [preceeding_instruction]* );
//
// peepconstraint %{
// (instruction_number.operand_name relational_op instruction_number.operand_name
//  [, ...] );
// // instruction numbers are zero-based using left to right order in peepmatch
//
// peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
// // provide an instruction_number.operand_name for each operand that appears
// // in the replacement instruction's match rule
//
// ---------VM FLAGS---------------------------------------------------------
//
// All peephole optimizations can be turned off using -XX:-OptoPeephole
//
// Each peephole rule is given an identifying number starting with zero and
// increasing by one in the order seen by the parser. An individual peephole
// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
// on the command-line.
//
// ---------CURRENT LIMITATIONS----------------------------------------------
//
// Only match adjacent instructions in same basic block
// Only equality constraints
// Only constraints between operands, not (0.dest_reg == EAX_enc)
// Only one replacement instruction
//
// ---------EXAMPLE----------------------------------------------------------
//
// // pertinent parts of existing instructions in architecture description
// instruct movI(eRegI dst, eRegI src) %{
//   match(Set dst (CopyI src));
// %}
//
// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
//   match(Set dst (AddI dst src));
//   effect(KILL cr);
// %}
//
// // Change (inc mov) to lea
// peephole %{
//   // increment preceeded by register-register move
//   peepmatch ( incI_eReg movI );
//   // require that the destination register of the increment
//   // match the destination register of the move
//   peepconstraint ( 0.dst == 1.dst );
//   // construct a replacement instruction that sets
//   // the destination to ( move's source register + one )
//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// Implementation no longer uses movX instructions since
// machine-independent system no longer uses CopyX nodes.
//
// peephole %{
//   peepmatch ( incI_eReg movI );
//   peepconstraint ( 0.dst == 1.dst );
//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
//   peepmatch ( decI_eReg movI );
//   peepconstraint ( 0.dst == 1.dst );
//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
//   peepmatch ( addI_eReg_imm movI );
//   peepconstraint ( 0.dst == 1.dst );
//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
//   peepmatch ( addP_eReg_imm movP );
//   peepconstraint ( 0.dst == 1.dst );
//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
// %}

// // Change load of spilled value to only a spill
// instruct storeI(memory mem, eRegI src) %{
//   match(Set mem (StoreI mem src));
// %}
//
// instruct loadI(eRegI dst, memory mem) %{
//   match(Set dst (LoadI mem));
// %}
//
peephole %{
  peepmatch ( loadI storeI );
  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
%}

peephole %{
  peepmatch ( loadL storeL );
  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  peepreplace ( storeL( 1.mem 1.mem 1.src ) );
%}

peephole %{
  peepmatch ( loadP storeP );
  peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
  peepreplace ( storeP( 1.dst 1.dst 1.src ) );
%}

//----------SMARTSPILL RULES---------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.