/*
* Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_G1POLICY_HPP
#define SHARE_GC_G1_G1POLICY_HPP
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1GCPhaseTimes.hpp"
#include "gc/g1/g1HeapRegionAttr.hpp"
#include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp"
#include "gc/g1/g1MMUTracker.hpp"
#include "gc/g1/g1RemSetTrackingPolicy.hpp"
#include "gc/g1/g1Predictions.hpp"
#include "gc/g1/g1YoungGenSizer.hpp"
#include "gc/shared/gcCause.hpp"
#include "utilities/pair.hpp"
// A G1Policy makes policy decisions that determine the
// characteristics of the collector. Examples include:
// * choice of collection set.
// * when to collect.
class HeapRegion;
class G1CollectionSet;
class G1CollectionSetCandidates;
class G1CollectionSetChooser;
class G1IHOPControl;
class G1Analytics;
class G1SurvivorRegions;
class G1YoungGenSizer;
class GCPolicyCounters;
class STWGCTimer;
class G1Policy: public CHeapObj<mtGC> {
private:
static G1IHOPControl* create_ihop_control(const G1Predictions* predictor);
// Update the IHOP control with necessary statistics.
void update_ihop_prediction(double mutator_time_s,
size_t mutator_alloc_bytes,
size_t young_gen_size,
bool this_gc_was_young_only);
void report_ihop_statistics();
G1Predictions _predictor;
G1Analytics* _analytics;
G1RemSetTrackingPolicy _remset_tracker;
G1MMUTracker* _mmu_tracker;
G1IHOPControl* _ihop_control;
GCPolicyCounters* _policy_counters;
double _full_collection_start_sec;
jlong _collection_pause_end_millis;
uint _young_list_target_length;
uint _young_list_fixed_length;
// The max number of regions we can extend the eden by while the GC
// locker is active. This should be >= _young_list_target_length;
uint _young_list_max_length;
// SurvRateGroups below must be initialized after the predictor because they
// indirectly use it through this object passed to their constructor.
SurvRateGroup* _short_lived_surv_rate_group;
SurvRateGroup* _survivor_surv_rate_group;
double _reserve_factor;
// This will be set when the heap is expanded
// for the first time during initialization.
uint _reserve_regions;
G1YoungGenSizer* _young_gen_sizer;
uint _free_regions_at_end_of_collection;
size_t _max_rs_length;
size_t _rs_length_prediction;
size_t _pending_cards_at_gc_start;
size_t _pending_cards_at_prev_gc_end;
size_t _total_mutator_refined_cards;
size_t _total_concurrent_refined_cards;
Tickspan _total_concurrent_refinement_time;
// The amount of allocated bytes in old gen during the last mutator and the following
// young GC phase.
size_t _bytes_allocated_in_old_since_last_gc;
G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed;
bool should_update_surv_rate_group_predictors() {
return collector_state()->in_young_only_phase() && !collector_state()->mark_or_rebuild_in_progress();
}
double logged_cards_processing_time() const;
public:
const G1Predictions& predictor() const { return _predictor; }
const G1Analytics* analytics() const { return const_cast<const G1Analytics*>(_analytics); }
G1RemSetTrackingPolicy* remset_tracker() { return &_remset_tracker; }
// Add the given number of bytes to the total number of allocated bytes in the old gen.
void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; }
void set_region_eden(HeapRegion* hr) {
hr->set_eden();
hr->install_surv_rate_group(_short_lived_surv_rate_group);
}
void set_region_survivor(HeapRegion* hr) {
assert(hr->is_survivor(), "pre-condition");
hr->install_surv_rate_group(_survivor_surv_rate_group);
}
void record_max_rs_length(size_t rs_length) {
_max_rs_length = rs_length;
}
double predict_base_elapsed_time_ms(size_t pending_cards) const;
double predict_base_elapsed_time_ms(size_t pending_cards,
size_t scanned_cards) const;
size_t predict_bytes_to_copy(HeapRegion* hr) const;
double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const;
double predict_survivor_regions_evac_time() const;
void cset_regions_freed() {
bool update = should_update_surv_rate_group_predictors();
_short_lived_surv_rate_group->all_surviving_words_recorded(predictor(), update);
_survivor_surv_rate_group->all_surviving_words_recorded(predictor(), update);
}
G1MMUTracker* mmu_tracker() {
return _mmu_tracker;
}
const G1MMUTracker* mmu_tracker() const {
return _mmu_tracker;
}
double max_pause_time_ms() const {
return _mmu_tracker->max_gc_time() * 1000.0;
}
double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const;
double predict_yg_surv_rate(int age) const;
double accum_yg_surv_rate_pred(int age) const;
private:
G1CollectionSet* _collection_set;
double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const;
double other_time_ms(double pause_time_ms) const;
double young_other_time_ms() const;
double non_young_other_time_ms() const;
double constant_other_time_ms(double pause_time_ms) const;
G1CollectionSetChooser* cset_chooser() const;
// The number of bytes copied during the GC.
size_t _bytes_copied_during_gc;
// Stash a pointer to the g1 heap.
G1CollectedHeap* _g1h;
G1GCPhaseTimes* _phase_times;
// This set of variables tracks the collector efficiency, in order to
// determine whether we should initiate a new marking.
double _mark_remark_start_sec;
double _mark_cleanup_start_sec;
// Updates the internal young list maximum and target lengths. Returns the
// unbounded young list target length. If no rs_length parameter is passed,
// predict the RS length using the prediction model, otherwise use the
// given rs_length as the prediction.
uint update_young_list_max_and_target_length();
uint update_young_list_max_and_target_length(size_t rs_length);
// Update the young list target length either by setting it to the
// desired fixed value or by calculating it using G1's pause
// prediction model.
// Returns the unbounded young list target length.
uint update_young_list_target_length(size_t rs_length);
// Calculate and return the minimum desired young list target
// length. This is the minimum desired young list length according
// to the user's inputs.
uint calculate_young_list_desired_min_length(uint base_min_length) const;
// Calculate and return the maximum desired young list target
// length. This is the maximum desired young list length according
// to the user's inputs.
uint calculate_young_list_desired_max_length() const;
// Calculate and return the maximum young list target length that
// can fit into the pause time goal. The parameters are: rs_length
// represent the prediction of how large the young RSet lengths will
// be, base_min_length is the already existing number of regions in
// the young list, min_length and max_length are the desired min and
// max young list length according to the user's inputs.
uint calculate_young_list_target_length(size_t rs_length,
uint base_min_length,
uint desired_min_length,
uint desired_max_length) const;
// Result of the bounded_young_list_target_length() method, containing both the
// bounded as well as the unbounded young list target lengths in this order.
typedef Pair<uint, uint, StackObj> YoungTargetLengths;
YoungTargetLengths young_list_target_lengths(size_t rs_length) const;
void update_rs_length_prediction();
void update_rs_length_prediction(size_t prediction);
// Check whether a given young length (young_length) fits into the
// given target pause time and whether the prediction for the amount
// of objects to be copied for the given length will fit into the
// given free space (expressed by base_free_regions). It is used by
// calculate_young_list_target_length().
bool predict_will_fit(uint young_length, double base_time_ms,
uint base_free_regions, double target_pause_time_ms) const;
public:
size_t pending_cards_at_gc_start() const { return _pending_cards_at_gc_start; }
size_t total_concurrent_refined_cards() const {
return _total_concurrent_refined_cards;
}
size_t total_mutator_refined_cards() const {
return _total_mutator_refined_cards;
}
// Calculate the minimum number of old regions we'll add to the CSet
// during a mixed GC.
uint calc_min_old_cset_length() const;
// Calculate the maximum number of old regions we'll add to the CSet
// during a mixed GC.
uint calc_max_old_cset_length() const;
// Returns the given amount of reclaimable bytes (that represents
// the amount of reclaimable space still to be collected) as a
// percentage of the current heap capacity.
double reclaimable_bytes_percent(size_t reclaimable_bytes) const;
jlong collection_pause_end_millis() { return _collection_pause_end_millis; }
private:
void clear_collection_set_candidates();
// Sets up marking if proper conditions are met.
void maybe_start_marking();
// The kind of STW pause.
enum PauseKind {
FullGC,
YoungOnlyGC,
MixedGC,
LastYoungGC,
InitialMarkGC,
Cleanup,
Remark
};
// Calculate PauseKind from internal state.
PauseKind young_gc_pause_kind() const;
// Record the given STW pause with the given start and end times (in s).
void record_pause(PauseKind kind, double start, double end);
// Indicate that we aborted marking before doing any mixed GCs.
void abort_time_to_mixed_tracking();
void record_concurrent_refinement_data(bool is_full_collection);
public:
G1Policy(STWGCTimer* gc_timer);
virtual ~G1Policy();
static G1Policy* create_policy(STWGCTimer* gc_timer_stw);
G1CollectorState* collector_state() const;
G1GCPhaseTimes* phase_times() const { return _phase_times; }
// Check the current value of the young list RSet length and
// compare it against the last prediction. If the current value is
// higher, recalculate the young list target length prediction.
void revise_young_list_target_length_if_necessary(size_t rs_length);
// This should be called after the heap is resized.
void record_new_heap_size(uint new_number_of_regions);
virtual void init(G1CollectedHeap* g1h, G1CollectionSet* collection_set);
void note_gc_start();
bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
bool about_to_start_mixed_phase() const;
// Record the start and end of an evacuation pause.
void record_collection_pause_start(double start_time_sec);
virtual void record_collection_pause_end(double pause_time_ms, size_t heap_used_bytes_before_gc);
// Record the start and end of a full collection.
void record_full_collection_start();
virtual void record_full_collection_end();
// Must currently be called while the world is stopped.
void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
// Record start and end of remark.
void record_concurrent_mark_remark_start();
void record_concurrent_mark_remark_end();
// Record start, end, and completion of cleanup.
void record_concurrent_mark_cleanup_start();
void record_concurrent_mark_cleanup_end();
void print_phases();
// Record how much space we copied during a GC. This is typically
// called when a GC alloc region is being retired.
void record_bytes_copied_during_gc(size_t bytes) {
_bytes_copied_during_gc += bytes;
}
// The amount of space we copied during a GC.
size_t bytes_copied_during_gc() const {
return _bytes_copied_during_gc;
}
bool next_gc_should_be_mixed(const char* true_action_str,
const char* false_action_str) const;
// Calculate and return the number of initial and optional old gen regions from
// the given collection set candidates and the remaining time.
void calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
double time_remaining_ms,
uint& num_initial_regions,
uint& num_optional_regions);
// Calculate the number of optional regions from the given collection set candidates,
// the remaining time and the maximum number of these regions and return the number
// of actually selected regions in num_optional_regions.
void calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
uint const max_optional_regions,
double time_remaining_ms,
uint& num_optional_regions);
private:
// Set the state to start a concurrent marking cycle and clear
// _initiate_conc_mark_if_possible because it has now been
// acted on.
void initiate_conc_mark();
public:
// This sets the initiate_conc_mark_if_possible() flag to start a
// new cycle, as long as we are not already in one. It's best if it
// is called during a safepoint when the test whether a cycle is in
// progress or not is stable.
bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
// This is called at the very beginning of an evacuation pause (it
// has to be the first thing that the pause does). If
// initiate_conc_mark_if_possible() is true, and the concurrent
// marking thread has completed its work during the previous cycle,
// it will set in_initial_mark_gc() to so that the pause does
// the initial-mark work and start a marking cycle.
void decide_on_conc_mark_initiation();
void finished_recalculating_age_indexes(bool is_survivors) {
if (is_survivors) {
_survivor_surv_rate_group->finished_recalculating_age_indexes();
} else {
_short_lived_surv_rate_group->finished_recalculating_age_indexes();
}
}
size_t young_list_target_length() const { return _young_list_target_length; }
bool should_allocate_mutator_region() const;
bool can_expand_young_list() const;
uint young_list_max_length() const {
return _young_list_max_length;
}
bool use_adaptive_young_list_length() const;
void transfer_survivors_to_cset(const G1SurvivorRegions* survivors);
private:
//
// Survivor regions policy.
//
// Current tenuring threshold, set to 0 if the collector reaches the
// maximum amount of survivors regions.
uint _tenuring_threshold;
// The limit on the number of regions allocated for survivors.
uint _max_survivor_regions;
AgeTable _survivors_age_table;
size_t desired_survivor_size(uint max_regions) const;
// Fraction used when predicting how many optional regions to include in
// the CSet. This fraction of the available time is used for optional regions,
// the rest is used to add old regions to the normal CSet.
double optional_prediction_fraction() { return 0.2; }
public:
// Fraction used when evacuating the optional regions. This fraction of the
// remaining time is used to choose what regions to include in the evacuation.
double optional_evacuation_fraction() { return 0.75; }
uint tenuring_threshold() const { return _tenuring_threshold; }
uint max_survivor_regions() {
return _max_survivor_regions;
}
void note_start_adding_survivor_regions() {
_survivor_surv_rate_group->start_adding_regions();
}
void note_stop_adding_survivor_regions() {
_survivor_surv_rate_group->stop_adding_regions();
}
void record_age_table(AgeTable* age_table) {
_survivors_age_table.merge(age_table);
}
void print_age_table();
void update_max_gc_locker_expansion();
void update_survivors_policy();
virtual bool force_upgrade_to_full() {
return false;
}
};
#endif // SHARE_GC_G1_G1POLICY_HPP